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Which matter systems are asymptotically safe in d = 4?

• Gauge-Yukawa theories at large Nf & Nc (perturbatively) [Litim, Sannino ’14]

• How far does this extend to small Nc?

• Test gauge theories at large Nf non-perturbatively

Standard QCD picture:

• Small Nf : asymptotic freedom &

confinement in the IR

• Medium Nf : asymptotic freedom

& IR Banks-Zaks fixed point

• Large Nf : asymptotic freedom lost

→ asymptotic safety?
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Beta functions of (S)QED and (S)QCD
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How physical are these fixed points?

• The fermion mass anomalous dimension goes to zero in QCD and to

infinity in QED [Antipin, Sannino ’17]

• Hints for FP in QCD at medium Nf from resummations with Meijer

G-functions [Antipin, Maiezza, Vasquez ’18]

• Lattice studies inconclusive so far

[Leino, Rindlisbacher, Rummukainen, Sannino, Tuominen ’19]

• Poles might be resummable within the 1/Nf series

[Alanne, Blasi, Dondi ’19]
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How to go beyond 1/Nf

• The next orders in the 1/Nf expansion would test the physical

nature of the FP

• No known resummation formula for two bubble-chains,

needed for 1/N2
f and higher orders

• Can we extract the location of the pole, the residuum, etc.,

with a finite amount of coefficients?

Two methods:

• Large-order behaviour of expansion coefficients

• Padé approximants
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Large-order behaviour: Darboux’s Theorem

The nearby singularity determines the large-order growth of the expansion

coefficients an. E.g. for expansion around z = 0

• pole of order p at z0 (f (z) ∼ φ(z)(1− z/z0)p + finite)

an ∼
1

zn0

(
n + p − 1

n

)
φ(z0) + . . .

• logarithmic branch cut at z0 (f (z) ∼ φ(z) ln(1− z/z0) + finite)

an ∼
1

zn0

1

n
φ(z0) + . . .

Expectation for QED FQED =
∑

n fn x
n

fn ∼
[
R0

(
2

15

)n

+ R1

(
2

21

)n

+ R2

(
2

27

)n

+ . . .

]
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Large-order behaviour of FQED
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Large-order behaviour of FQED
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Large-order behaviour of FQED
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Large-order behaviour of FQED
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Large-order behaviour of FQED
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(for subleading behaviour later)
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How many coefficients are needed?
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Padé methods

Analytic continuation of truncated Taylor series by ration of two

polynomials

FQED(x) ≈
M∑

n=0

fn x
n −→ P [R,S](x) =

PR(x)

QS(x)

with R + S = M.

Rewriting of resummed FQED(x)

FQED(x) ∼ Γ(1 + x
3 )

Γ( 1
2 + x

3 )

sin2
(
πx
3

)

cos
(
πx
3

)

Padé approximant with 2R ≈ S should lead to best results.
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Padé approximants of FQED
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• Need ∼ 30 coefficients to resolve first singularity

(similar to large-order growth analysis)

• Can resolve function beyond the first singularity
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QED beta function

1/Nf :

1/N2
f (subset):

Master integral known / not know
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Beyond 1/Nf : nested diagrams

Nested sub-part of beta function: gauge & RG scale independent

1/Nf

Computation up to K 44

At O(1/N3
f )

Computation up to K 32
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Ratio test at O(1/N2
f )
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Richardson extrapolation

Enhance the convergence of the series

an = s +
A

n
+

B

n2
+

C

n3
+ . . .

First Richardson (B = C = . . . = 0)

R(1)an ≡ s = (n + 1)an+1 − nan

Second Richardson (C = . . . = 0)

R(2)an ≡ s =
1

2

(
(n + 2)2an+2 − 2(n + 1)2an+1 + n2an

)

For oscillating series: Shanks transformation
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Ratio test at O(1/N2
f )
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Residue at O(1/N2
f )
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Subleading behaviour
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Large-order behaviour

Large-order behaviour

bn ∼ −
1

2

1

3n

(
1

n2
+

1

n3
+ . . .

)
+O

(
1

(x > 3)n

)

= −1

2

1

3n

1

n(n − 1)

Resummation

∞∑

n=4

bnK
n ∼ 1

6
(K − 3) ln

(
1− K

3

)
+ finite

Logarithmic branch cut but no pole!
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Nested beta function at 1/N2
f
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Nested beta function at 1/N2
f beyond the first branch cut
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Nested beta function at 1/N3
f
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Outlook 1: Conformal Padé [Costin, Dunne ’19]

Can we do more with the coefficients that we have?

Conformal map:

K =
6z

1 + z2
←→ z =

K/3

1 +
√

1− K 2/9
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Outlook 1: Conformal Padé

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

K

β
(2

)
n
e
st
e
d

exact

P [13,13]

CP [13,13]

Improvement over standard Padé
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Outlook 2: Renormalons
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Two factorially divergent contributions but the sum goes to zero

Are we picking up renormalon contributions?
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Outlook 2: Renormalons

Borel transform of the finite part of 1/Nf
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Do we pick up the renormalon at t = 3?

Why not the renormalon at t = 6?
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Outlook 2: Renormalons
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Large-order behaviour
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Summary and outlook

• Large-order behaviour & Padé methods constitute powerful tools

• First partial result beyond O(1/Nf ) for QED:

New logarithmic branch cut at K∗ = 3 without pole

• Ideas: Conformal Padé & tracking renormalons

• Future: Remaining diagrams (Master integrals?) & QCD

Thank you for your attention
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