Towards the gauge beta function at $\mathcal{O}\left(1 / N_{f}^{2}\right)$ and $\mathcal{O}\left(1 / N_{f}^{3}\right)$

Manuel Reichert
Bridging perturbative and non-perturbative physics, Primosten, 07. October 2019
$C P^{3}$-Origins, SDU Odense, Denmark
Nicola Dondi, Gerald Dunne, MR, Francesco Saninno: arXiv:1903.02568
Nicola Dondi, MR, Francesco Saninno: in preparation

Cosmology \& Particle Physics

Which matter systems are asymptotically safe in $d=4 ?$

- Gauge-Yukawa theories at large $N_{f} \& N_{c}$ (perturbatively) [Lutim, Sannino '14]
- How far does this extend to small N_{c} ?
- Test gauge theories at large N_{f} non-perturbatively

Standard QCD picture:

- Small N_{f} : asymptotic freedom \& confinement in the IR
- Medium N_{f} : asymptotic freedom \& IR Banks-Zaks fixed point
- Large N_{f} : asymptotic freedom lost

[Antipin, Sannino '17]

Beta functions of (S)QED and (S)QCD

$$
\beta(K)=\beta^{(0)}(K)+\frac{\beta^{(1)}(K)}{N_{f}}+\ldots
$$

UV fixed point for QED \& QCD
Landau pole for SQED \& SQCD

How physical are these fixed points?

- The fermion mass anomalous dimension goes to zero in QCD and to infinity in QED
- Hints for FP in QCD at medium N_{f} from resummations with Meijer G-functions
[Antipin, Maiezza, Vasquez '18]
- Lattice studies inconclusive so far
[Leino, Rindlisbacher, Rummukainen, Sannino, Tuominen '19]
- Poles might be resummable within the $1 / N_{f}$ series

How to go beyond $1 / N_{f}$

- The next orders in the $1 / N_{f}$ expansion would test the physical nature of the FP
- No known resummation formula for two bubble-chains, needed for $1 / N_{f}^{2}$ and higher orders
- Can we extract the location of the pole, the residuum, etc., with a finite amount of coefficients?

How to go beyond $1 / N_{f}$

- The next orders in the $1 / N_{f}$ expansion would test the physical nature of the FP
- No known resummation formula for two bubble-chains, needed for $1 / N_{f}^{2}$ and higher orders
- Can we extract the location of the pole, the residuum, etc., with a finite amount of coefficients?

Two methods:

- Large-order behaviour of expansion coefficients
- Padé approximants

Large-order behaviour: Darboux's Theorem

The nearby singularity determines the large-order growth of the expansion coefficients a_{n}. E.g. for expansion around $z=0$

- pole of order p at $z_{0}\left(f(z) \sim \phi(z)\left(1-z / z_{0}\right)^{p}+\right.$ finite $)$

$$
a_{n} \sim \frac{1}{z_{0}^{n}}\binom{n+p-1}{n} \phi\left(z_{0}\right)+\ldots
$$

- logarithmic branch cut at $z_{0}\left(f(z) \sim \phi(z) \ln \left(1-z / z_{0}\right)+\right.$ finite $)$

$$
a_{n} \sim \frac{1}{z_{0}^{n}} \frac{1}{n} \phi\left(z_{0}\right)+\ldots
$$

Large-order behaviour: Darboux's Theorem

The nearby singularity determines the large-order growth of the expansion coefficients a_{n}. E.g. for expansion around $z=0$

- pole of order p at $z_{0}\left(f(z) \sim \phi(z)\left(1-z / z_{0}\right)^{p}+\right.$ finite $)$

$$
a_{n} \sim \frac{1}{z_{0}^{n}}\binom{n+p-1}{n} \phi\left(z_{0}\right)+\ldots
$$

- logarithmic branch cut at $z_{0}\left(f(z) \sim \phi(z) \ln \left(1-z / z_{0}\right)+\right.$ finite $)$

$$
a_{n} \sim \frac{1}{z_{0}^{n}} \frac{1}{n} \phi\left(z_{0}\right)+\ldots
$$

Expectation for QED $F_{Q E D}=\sum_{n} f_{n} x^{n}$

$$
f_{n} \sim\left[R_{0}\left(\frac{2}{15}\right)^{n}+R_{1}\left(\frac{2}{21}\right)^{n}+R_{2}\left(\frac{2}{27}\right)^{n}+\ldots\right]
$$

Large-order behaviour of $F_{\text {QED }}$

Ratio test $\frac{f_{n+1}}{f_{n}}$ reveals location of the first pole

Large-order behaviour of $F_{\text {QED }}$

Large-order behaviour of $F_{\text {QED }}$

With the knowledge of the pole the residuum is computable

Large-order behaviour of $F_{\text {QED }}$

Subtracting the first pole reveals the second pole

$$
\tilde{f}_{n}=f_{n}+\frac{28}{45 \pi^{2}}\left(\frac{15}{2}\right)^{-n-1}
$$

Large-order behaviour of $F_{\text {QED }}$

After ~ 30 terms the large-order behaviour sets in (for subleading behaviour later)

How many coefficients are needed?

"Closer" to the origin \rightarrow less coefficients are needed

Padé methods

Analytic continuation of truncated Taylor series by ration of two polynomials

$$
F_{\mathrm{QED}}(x) \approx \sum_{n=0}^{M} f_{n} x^{n} \quad \longrightarrow \quad \mathcal{P}^{[R, S]}(x)=\frac{P_{R}(x)}{Q_{S}(x)}
$$

with $R+S=M$.

Padé methods

Analytic continuation of truncated Taylor series by ration of two polynomials

$$
F_{Q E D}(x) \approx \sum_{n=0}^{M} f_{n} x^{n} \quad \longrightarrow \quad \mathcal{P}^{[R, S]}(x)=\frac{P_{R}(x)}{Q_{S}(x)}
$$

with $R+S=M$.

Rewriting of resummed $F_{Q E D}(x)$

$$
F_{\mathrm{QED}}(x) \sim \frac{\Gamma\left(1+\frac{x}{3}\right)}{\Gamma\left(\frac{1}{2}+\frac{x}{3}\right)} \frac{\sin ^{2}\left(\frac{\pi x}{3}\right)}{\cos \left(\frac{\pi x}{3}\right)}
$$

Padé approximant with $2 R \approx S$ should lead to best results.

Padé approximants of $F_{\mathrm{Q} E \mathrm{D}}$

Padé approximants of $F_{\mathrm{Q} E \mathrm{D}}$

Padé approximants of $F_{\mathrm{Q} E \mathrm{D}}$

Padé approximants of $\digamma_{\text {QED }}$

Padé approximants of $\digamma_{\text {QED }}$

Padé approximants of $F_{\mathrm{Q} E \mathrm{D}}$

Padé approximants of $F_{Q E D}$

- Need ~ 30 coefficients to resolve first singularity (similar to large-order growth analysis)
- Can resolve function beyond the first singularity

QED beta function

$1 / N_{f}$:

QED beta function

$1 / N_{f}$:

$1 / N_{f}^{2}$ (subset):

QED beta function

$1 / N_{f}$:

$1 / N_{f}^{2}$ (subset):

Master integral known / not know

Beyond $1 / N_{f}$: nested diagrams

Nested sub-part of beta function: gauge \& RG scale independent

Computation up to K^{44}

Beyond $1 / N_{f}$: nested diagrams

Nested sub-part of beta function: gauge \& RG scale independent

Computation up to K^{44}
At $\mathcal{O}\left(1 / N_{f}^{3}\right)$

Computation up to K^{32}

Ratio test at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

$$
\beta_{\text {nested }}^{(2)}=\sum_{n} b_{n} K^{n}
$$

New finite radius of convergence

Ratio test at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

$$
\beta_{\text {nested }}^{(2)}=\sum_{n} b_{n} K^{n}
$$

New finite radius of convergence but extreme slow convergence

Richardson extrapolation

Enhance the convergence of the series

$$
a_{n}=s+\frac{A}{n}+\frac{B}{n^{2}}+\frac{C}{n^{3}}+\ldots
$$

Richardson extrapolation

Enhance the convergence of the series

$$
a_{n}=s+\frac{A}{n}+\frac{B}{n^{2}}+\frac{C}{n^{3}}+\ldots
$$

First Richardson $(B=C=\ldots=0)$

$$
\mathrm{R}^{(1)} a_{n} \equiv s=(n+1) a_{n+1}-n a_{n}
$$

Richardson extrapolation

Enhance the convergence of the series

$$
a_{n}=s+\frac{A}{n}+\frac{B}{n^{2}}+\frac{C}{n^{3}}+\ldots
$$

First Richardson $(B=C=\ldots=0)$

$$
\mathrm{R}^{(1)} a_{n} \equiv s=(n+1) a_{n+1}-n a_{n}
$$

Second Richardson $(C=\ldots=0)$

$$
\mathrm{R}^{(2)} a_{n} \equiv s=\frac{1}{2}\left((n+2)^{2} a_{n+2}-2(n+1)^{2} a_{n+1}+n^{2} a_{n}\right)
$$

Richardson extrapolation

Enhance the convergence of the series

$$
a_{n}=s+\frac{A}{n}+\frac{B}{n^{2}}+\frac{C}{n^{3}}+\ldots
$$

First Richardson ($B=C=\ldots=0$)

$$
\mathrm{R}^{(1)} a_{n} \equiv s=(n+1) a_{n+1}-n a_{n}
$$

Second Richardson $(C=\ldots=0)$

$$
\mathrm{R}^{(2)} a_{n} \equiv s=\frac{1}{2}\left((n+2)^{2} a_{n+2}-2(n+1)^{2} a_{n+1}+n^{2} a_{n}\right)
$$

For oscillating series: Shanks transformation

Ratio test at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

Bare series: $K^{*}=3.14$

Ratio test at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

Bare series: $K^{*}=3.14$
First Richardson: $K^{*}=3.003$

Ratio test at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

Bare series: $K^{*}=3.14$
First Richardson: $K^{*}=3.003$
Second Richardson: $K^{*}=3.00008$

Residue at $\mathcal{O}\left(1 / N_{f}^{2}\right)$

Bare series: $3^{n} n^{2} b_{n}=-0.512$
Second Richardson: $3^{n} n^{2} b_{n}=-0.500007$

Subleading behaviour

$$
\tilde{b}_{n}=b_{n}+\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n^{2}}
$$

Subleading behaviour

$$
\tilde{b}_{n}=b_{n}+\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n^{2}}
$$

Bare series: $K^{*}=3.215$
Second Richardson: $K^{*}=3.0003$

Subleading behaviour

$$
\tilde{b}_{n}=b_{n}+\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n^{2}}
$$

Bare series: $3^{n} n^{3} \tilde{b}_{n}=-0.512$
Second Richardson: $3^{n} n^{3} \tilde{b}_{n}=-0.500007$

Large-order behaviour

Large-order behaviour

$$
\begin{aligned}
b_{n} & \sim-\frac{1}{2} \frac{1}{3^{n}}\left(\frac{1}{n^{2}}+\frac{1}{n^{3}}+\ldots\right)+\mathcal{O}\left(\frac{1}{(x>3)^{n}}\right) \\
& =-\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n(n-1)}
\end{aligned}
$$

Large-order behaviour

Large-order behaviour

$$
\begin{aligned}
b_{n} & \sim-\frac{1}{2} \frac{1}{3^{n}}\left(\frac{1}{n^{2}}+\frac{1}{n^{3}}+\ldots\right)+\mathcal{O}\left(\frac{1}{(x>3)^{n}}\right) \\
& =-\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n(n-1)}
\end{aligned}
$$

Resummation

$$
\sum_{n=4}^{\infty} b_{n} K^{n} \sim \frac{1}{6}(K-3) \ln \left(1-\frac{K}{3}\right)+\text { finite }
$$

Large-order behaviour

Large-order behaviour

$$
\begin{aligned}
b_{n} & \sim-\frac{1}{2} \frac{1}{3^{n}}\left(\frac{1}{n^{2}}+\frac{1}{n^{3}}+\ldots\right)+\mathcal{O}\left(\frac{1}{(x>3)^{n}}\right) \\
& =-\frac{1}{2} \frac{1}{3^{n}} \frac{1}{n(n-1)}
\end{aligned}
$$

Resummation

$$
\sum_{n=4}^{\infty} b_{n} K^{n} \sim \frac{1}{6}(K-3) \ln \left(1-\frac{K}{3}\right)+\text { finite }
$$

Logarithmic branch cut but no pole!

Nested beta function at $1 / N_{f}^{2}$

"Exact" nested beta function up to $K=3$
Beta function ambiguous beyond $K=3$ or magic cancellation needed

Nested beta function at $1 / N_{f}^{2}$ beyond the first branch cut

No singularity before $K=15 / 2$
Positive pole at $K=15 / 2$?

Nested beta function at $1 / N_{f}^{3}$

No singularity before $K=3$
Branch cut at $K=3$?

Outlook 1: Conformal Padé

Can we do more with the coefficients that we have?

Outlook 1: Conformal Padé

Can we do more with the coefficients that we have?
Conformal map:

$$
K=\frac{6 z}{1+z^{2}} \quad \longleftrightarrow \quad z=\frac{K / 3}{1+\sqrt{1-K^{2} / 9}}
$$

Outlook 1: Conformal Padé

Improvement over standard Padé
Requires knowledge on the location of the branch cut

Outlook 2: Renormalons

Two factorially divergent contributions but the sum goes to zero
Are we picking up renormalon contributions?

Outlook 2: Renormalons

Borel transform of the finite part of $1 / N_{f}$

Outlook 2: Renormalons

Borel transform of the finite part of $1 / N_{f}$

Do we pick up the renormalon at $t=3$?
Why not the renormalon at $t=6$?

Outlook 2: Renormalons

Large-order behaviour

$$
a_{n} \sim \frac{n!}{n^{3} 3^{n}}\left(-3-9 \frac{1}{\ln (n)^{3}}\right)+\ldots
$$

Summary and outlook

- Large-order behaviour \& Padé methods constitute powerful tools
- First partial result beyond $\mathcal{O}\left(1 / N_{f}\right)$ for QED:

New logarithmic branch cut at $K^{*}=3$ without pole

- Ideas: Conformal Padé \& tracking renormalons
- Future: Remaining diagrams (Master integrals?) \& QCD

Summary and outlook

- Large-order behaviour \& Padé methods constitute powerful tools
- First partial result beyond $\mathcal{O}\left(1 / N_{f}\right)$ for QED: New logarithmic branch cut at $K^{*}=3$ without pole
- Ideas: Conformal Padé \& tracking renormalons
- Future: Remaining diagrams (Master integrals?) \& QCD

Thank you for your attention

