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Motivations

m A-theorem is a constraining tool for RG flows, also beyond perturbation theory.
m Large-N methods can produce new results concerning conformal anomalies.

m Usually, the a-theorem is valid within perturbative RG flows. We aim at find
non-trivial counter-examples in Large-N models.

Based on:

O. Antipin, NAD, F. Sannino, A. E. Thomsen [1808.00482]
NAD, E. Sannino, A. E. Thomsen... [Ongoing]
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Statements of the a-Theorem

m weak version: It exists a quantity "a" defined at a CFT such that every RG flow
between two CFTs (IR/UV) satisfies ayy > arg.

[Cardy, *88] [Komargodski, Schwimmer "11]

m strong version: For every QFT it exist a function of the couplings a(g) such that

- a(g) monotonically decreases along RG flows
- at a fixed point it satisfies a(g*) = a

[Komargodski, Schwimmer *11] [Jack, Osborn "90]
m gradient flow: the quantity & satisfies an equation of the form:

dia = xi;f = pgy = Bidia = x{;Bib;
the strong version: X;; to be symmetric and positive definite.

[ Jack, Osborn *90]
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Statements of the a-theorem

"a" is a measure of effective degrees of freedom in a CFT: RG flows are irreversible

m D.o.F(UV)> D.o.F(IR)
m Theory space has a foliated structure

m Weyl consistency conditions

[ Jack, Poole "14]

[ Antipin et al. *13]
[ Poole, Thomsen *19]
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Proposal in d = 4: Weyl Anomalies

4 4 CFTiRlgw] L — = <

T) D B0 T/ D AL+ 30"
Weyl symmetry is broken by an additional c-number anomaly:

A=cW?—aEy; aw/ ddw<T[f>
Sd

Proven to satisty ayv > arg.
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LRG - Introduction

Motivation for local renormalization group (LRG):
m It gives a as the loop-corrected F24 coefficient.
m G automatically satisfies a gradient flow equation.
m [t relates curved space anomalies to flat space divergences of correlators.

[ Jack, Osborn 90 *13]

[ Baume, Keren-Zur, Rattazzi, Vitale *14]
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LRG - Introduction

Consider the connected vacuum functional WV:

Wl :N/Dqseiscmmu,mifz 90(2)Ol6] /E/d%ﬁ.

The theory is regularized in d = 4 — ¢, and all CTs are in M S scheme

go(x) = g(z,pu) S — S+ Sci[v,9]

If correclty renormalised, this generates connected green’s functions:

Wi, Jo ] = Zn, / 901, 1), m)(T{O1)--Own)})
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LRG - Weyl symmetry

Nuv = Ypv

Exact SO(d,2) == Diff(d) x Weyl =~ Anomalous

Each symmetry acts on metric and CFT operators as:
Weyl: v — e 27, 0= @20,
Diff: Y (2) = OuE” 00 Yop (€7 (2)),  O() = O™ (w)),

Of course, we avoid Diff(d) anomalies,
aw = [ o
x
AW =0.
Notice: Weyl anomalies are related to scale anomalies since

d =0 and A,—_1 =0 = no anomaly
n—w = /Ag:ﬂ[’y,g] =0 and A,—_1 #0 = Type A anomaly
du
¥ #0 = Type B anomaly

[ S. Deser, A. Schwimmer "93]
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LRG - Weyl symmetry

The source transformation implementing Weyl is fixed:

Ao Vv = —20Vu0, Aogi = —af where B’ = —p'g'e+ 5 (g)

This leaves the action invariant, apart from Se +:

, 0 s 0
‘ AUW[Q%’Y}“’] = /U (27# (5’)/7 _5 6_92> Sc.t. = /Aa[")’pu,f]i]

a

At the starting CFT the anomaly reads:

Ao [V, 0] = U{CW2 —a B4} + O(00).
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LRG - Gradient flow equation

We can consider an ansatz for S, ; containing all possible tensor structures:

Set D / NI {)\aE4 + %gijaugiayng“U + %Aij VQgiVQQj
1 iou jw2 k
+ 2Bijk 0ug'0"g’V7yg }

This can be used to obtain a formal expression for A, W. A similar expansion has to
be present for the RHS:

Aa ['Y;uu gz] Daky + %ijapgi&,ngW + %X;'lj V2giv2gj
+ 2x0k Oug 0" g’ V29" + O(00) .

anomaly coefficient need to match some c.t. combinations. On top of that, the
anomaly is by definition a finite functional!
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LRG - Gradient flow equation

m Matching O(o):
x{; = (e = B*0r) Gig — Ge; 0:8° — Gued; B°
X4 = (e - B‘ae) Aij — A0i3° — Ai0d; B
Xijk = (6 - Bzae) Bijk — Bojr0i3* — Biond; B — Bijedf* — 20:0;8° Awk,  [..]
m Matching O(9o):

8ugk = 86:0:a = xI;8:B; ,

X4 = —2x% + X8t — B 0Vi; — 0 Viy — 9;8Vae [
And every quantity on the RHS is written in term of A, B;jx.

Take-home message:

We have a gradient flow equation and a calculation prescription for @ in terms of flat
spacetime CTs A;;, B of marginal operators.
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general procedure for @

Find which Green’s function A;;, B;;x renormalises. Using

0
— W gi| = OZ x)|),
5oy Vloil = (0:@)
applying an appropriate number of derivatives in the limit of flat space/sources one

gets:

([0:@)[0; (@] & = ([O:([O;(@)]) + 1™ “Aip*a*5(p + q),

([0: O (D)][O; (r)]) r =([O:(P)][O; (D][O; (r)]) + ...
i+ T (Bijep - qr° + Bikgp - 7¢° 4 Bikiq - 7).

— build some perturbative expansion for the 2,3-pt functions as well as
[B-functions.
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LRG at large N

Application: Large Ny gauge theories (see Simone’s and Manuel’s talk).

N
. - 1
L: = ZZT[)zwd)z - @Fz + l:ghost + ;C,g,f
i=1

Of course, we will use a normalisation different from the literature:

_ Boa _ S2(Ry)Nsg® _ 2
K= p— 62 = Bu=r +O(1/N).

To have a feeling: now the (in)famous pole at 15/2 is found at k = 5. We restrict
ourselves to LO, where the RG flow features a one-loop landau pole:

A\
k(1) = log () . A= Moel/n(uo)_
I3
The marginal operator driving the flow is

35S B

O] = dr(z) — 16m2k2

F? 4 gf. terms + O(1/N)
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LRG at large N

m We study a one-coupling theory: all coupling indexes are suppressed.

m The CTs A, A renormalize divergences in 2 and 3-pt function of F%:
(F2F?), (F? F? F?) when insertion points merge.

m We calculate the LO resummation of the metric and a-function.
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LO a-function at large N

The final result reads:

Xl = Toragz O W H (k) — 557 H (8)]

where two resummed functions appear:

HO () — (1 — £)(240 — 240z + 902” — 152° + 2*)['(4 — )
()= 60(4 —2)(6 —2)I(1+ 5)I(2— 3) )
a o (80—60x+13x2 —Jjg)x['(zlfl)
@) = TXa-—wrarnree -5

we have poles at z = 5 4+ n,n € N, the 1/N expansion is broken there.
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LO a-function at large N

0.5

-0.5
0

violation of metric positivity at x* ~ 0.51, = p* ~0.14 A
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4-point function contribution

m We added to the action marginal scalar primaries only, but those are not the only
ones appearing in the trace anomaly equation,

Scrr([y, 9] + / {giOi + AﬁJ’X + ma(’)a} .

m Turns out that the J/| contribution modifies the metric definition x¥, — Trore.
Gets contribution from 4-pt functions:

+2 perm.

[ Baume, Keren-Zur, Rattazzi, Vitale *14]
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Metric comparisons
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0.5

a from x¥ .

a from Ty
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Redefinition of a

violation of metric positivity at £* = 0.51 (n.imp.) — 0.43 (imp.).
Caveat(?): The gradient flow equation is invariant under:
a—a+ci;B'B, X — xis+ Laci

The strong theorem is in principle valid as long as it exist a choice for c;; such that
Xij 18 positive definite.

—> Can we find a more "physical" scheme?
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Dilaton Effective action

m The Dilaton effective action is defined by:

F[’_W T, /L] = W[’Yl“’ = 627—’_)/#1179’;(/1‘)]'

where g* are now spacetime independent!

m This effective action generates correlators of 77/:

Iy, mul = Z

Work with on-shell condition:

n } (2 {T{T(21)...T (1) }) 5,4

R(eQT'S’W) =0

m The action can be split in two distinct contributions:

I'= Z—|l0«3 +Fn.loc
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2 — 2 dilaton scattering

m The 2 — 2 dilaton scattering amplitude has an analogous splitting
A(57 t) = Aloc(57 t) + Anloc(sv t)

m The non-local contribution can be obtained from the effective coupling in the
action for canonical dilatons e™” = 1 + ¢,

Lt = g'(ne™)0; = (gi - 6"+ %5j (65 + ;8" + ) O;.

m We look at the absorptive part in the specifical kinematic region t = 0 where:

A(s,0) = —8s%a(s) sothat ImA(s,0) >0 <= Ima(s) <0
| | |
| | |
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Relation to a-function

Why do we use this definition? Because this amplitude satisfies:

A(s,0) _

53 0,

A(s,0) = A(—s,0) ,A(s,0)" = A(s%,0), / ds
c

this conditions lead to the definition of a monotonically decreasing function:

a(s) = /7r dfa(se™), a(s2) —a(s1) = —% /32 %Ima(s) >0(?)

1
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Computation strategy

m To compute o(s) we need finite parts of F'2 correlators.

m It possible to show that these multiple-chain diagrams are factorially divergent:
as a computational trick we consider renormalised chains for which the Borel

transform reads:
B 1 — o Ct/2 kj v
1 — IIr(k) I

m For a double chain integral we use the convolution property:

g + me Qo — U2
(SO D [ fomsm
n,m [us] [u;]
a1 + ne a1 — Ul
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Result: 2-pt function part

Applying this procedure to the (F2F'?) correlator one gets
B 2 2 2i€_Ct/2 4m : 2—t/2
F*(p)F*(— =—— | — —s)°"
(FOF (o)) =~ T (5 ) 9

X / G(l —u1,1—u2) [1+ Pur,uz)]
{ui}

with a polynomial coming from the numerator structure,

 2uz(1 +u2)(10 + Tuz + 8ux + duruz + u3)
(1+u1 +u2)(2 4+ w1 +u2)2(3 + u1 + u2)

and a loop integral contribution:

P(u1,uz) =

_T(—t/2) T +w) (1 + us)
G(l—u1,1l—u2) = re+t/2) rl—w) 'l —u2)’

—> This correlator is not Borel summable! Renormalon poles at t = 2n,n > 1.

N.A.Dondi (CP3 -Origins) 07/05/2019 25/26



Conclusions

To conclude:

m We showed that "counterterm-derived" definitions of @ are not monotonic at LO
in large Ny.

m We are extending the Large Ny methods to dilaton cross-sections.
Coming next:

m Verify wether positivity is lost in the dilaton cross section.

m Adress renormalon issues in the dilaton cross-sections and their relation to
non-perturbative contributions.

Thank you!
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