Exploring the Large-N a-theorem through Dilaton Scattering

Nicola Andrea Dondi
$C P^{3}$-Origins, University of Southern Denmark

Primosten, 7th October 2019

- A-theorem is a constraining tool for RG flows, also beyond perturbation theory.
- Large-N methods can produce new results concerning conformal anomalies.
- Usually, the a-theorem is valid within perturbative RG flows. We aim at find non-trivial counter-examples in Large-N models.

Based on:
O. Antipin, NAD, F. Sannino, A. E. Thomsen [1808.00482]
NAD, F. Sannino, A. E. Thomsen... [Ongoing]

- weak version: It exists a quantity " a " defined at a CFT such that every RG flow between two CFTs (IR/UV) satisfies $a_{U V}>a_{I R}$.
[Cardy, '88] [Komargodski, Schwimmer '11]
- strong version: For every QFT it exist a function of the couplings $\tilde{a}(g)$ such that
- $\tilde{a}(g)$ monotonically decreases along RG flows
- at a fixed point it satisfies $\tilde{a}\left(g^{*}\right)=a$
- gradient flow: the quantity \tilde{a} satisfies an equation of the form:

$$
\partial_{i} \tilde{a}=\chi_{i j} \beta^{j} \Longrightarrow \mu \frac{d \tilde{a}}{d \mu}=\beta_{i} \partial_{i} \tilde{a}=\chi_{i j}^{g} \beta_{i} \beta_{j}
$$

the strong version: $\chi_{i j}$ to be symmetric and positive definite.
" a " is a measure of effective degrees of freedom in a CFT: RG flows are irreversible

■ D.o.F $(U V)>$ D.o.F $(I R)$

- Theory space has a foliated structure

■ Weyl consistency conditions
[Jack, Poole '14]
[Antipin et al. '13]
[Poole, Thomsen '19]

$T_{\mu}^{\mu} \supset \beta_{i} \mathcal{O}^{i}$

$$
T_{\mu}^{\mu} \supset \mathcal{A} \mathbb{I}+\beta_{i} \mathcal{O}^{i}
$$

Weyl symmetry is broken by an additional c-number anomaly:

$$
\mathcal{A}=c W^{2}-a E_{4} ; \quad a \sim \int_{S^{d}} d^{d} x\left\langle T_{\mu}^{\mu}\right\rangle
$$

Proven to satisfy $a_{U V}>a_{I R}$.

Motivation for local renormalization group (LRG):

- It gives \tilde{a} as the loop-corrected E_{4} coefficient.
- \tilde{a} automatically satisfies a gradient flow equation.
- It relates curved space anomalies to flat space divergences of correlators.
[Jack, Osborn '90 '13]
[Baume, Keren-Zur, Rattazzi, Vitale '14]

Consider the connected vacuum functional \mathcal{W} :

$$
e^{i \mathcal{W}[\gamma, g]}=\mathcal{N} \int \mathcal{D} \phi e^{i S_{C F T}\left[\gamma_{\mu \nu}, \phi\right]+i} \int_{x} g_{0}(x) \cdot \mathcal{O}[\phi], \quad \int_{x} \equiv \int \mathrm{~d}^{4} x \sqrt{-\gamma}
$$

The theory is regularized in $d=4-\epsilon$, and all CTs are in $M S$ scheme

$$
g_{0}(x) \rightarrow g(x, \mu) \quad S \rightarrow S+S_{c . t .}[\gamma, g] .
$$

If correclty renormalised, this generates connected green's functions:

$$
\mathcal{W}[\gamma, J, \mu]=\sum_{n} \frac{1}{n!} \int_{\left\{x_{i}\right\}} g\left(x_{1}, \mu\right) \ldots g\left(x_{n}, \mu\right)\left\langle\mathbf{T}\left\{\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{n}\right)\right\}\right\rangle_{R, \gamma}
$$

$$
\text { Exact } S O(d, 2) \xrightarrow{\eta_{\mu \nu} \rightarrow \gamma_{\mu \nu}} \operatorname{Diff}(d) \times \text { Weyl } \sim \text { Anomalous }
$$

Each symmetry acts on metric and CFT operators as:
Weyl: $\quad \gamma_{\mu \nu} \rightarrow e^{-2 \sigma(x)} \gamma_{\mu \nu}, \quad \mathcal{O} \rightarrow e^{\sigma(x) \Delta} \mathcal{O}$,
Diff: $\quad \gamma_{\mu \nu}(x) \rightarrow \partial_{\mu} \xi^{\sigma} \partial_{\nu} \xi^{\rho} \gamma_{\sigma \rho}\left(\xi^{-1}(x)\right), \quad \mathcal{O}(x) \rightarrow \mathcal{O}\left(\xi^{-1}(x)\right)$.
Of course, we avoid $\operatorname{Diff}(d)$ anomalies,

$$
\begin{aligned}
\Delta_{\sigma} W & =\int_{x} \mathcal{A}_{\sigma}[\gamma, g] \\
\Delta_{\xi} W & =0
\end{aligned}
$$

$\underline{\text { Notice: Weyl anomalies are related to scale anomalies since }}$

$$
\mu \frac{\mathrm{d}}{\mathrm{~d} \mu} W=\int_{x} \mathcal{A}_{\sigma=-1}[\gamma, g]\left\{\begin{array}{lll}
=0 & \text { and } & \mathcal{A}_{\sigma=-1}=0 \Longrightarrow \text { no anomaly } \\
=0 & \text { and } & \mathcal{A}_{\sigma=-1} \neq 0 \Longrightarrow \text { Type A anomaly } \\
\neq 0 & \Longrightarrow & \text { Type B anomaly }
\end{array}\right.
$$

The source transformation implementing Weyl is fixed:

$$
\Delta_{\sigma} \gamma_{\mu \nu}=-2 \sigma \gamma_{\mu \nu}, \quad \Delta_{\sigma} g_{i}=-\sigma \hat{\beta}^{i} \quad \text { where } \quad \hat{\beta}^{i}=-\rho^{i} g^{i} \epsilon+\beta^{i}(g)
$$

This leaves the action invariant, apart from $S_{c . t}$:

$$
\Delta_{\sigma} W\left[g_{i}, \gamma_{\mu \nu}\right]=\int_{x} \sigma\left(2 \gamma^{\mu \nu} \frac{\delta}{\delta \gamma^{\mu \nu}}-\hat{\beta}^{i} \frac{\delta}{\delta g_{i}}\right) S_{c . t .} \equiv \int_{x} \mathcal{A}_{\sigma}\left[\gamma_{\mu \nu}, g_{i}\right]
$$

At the starting CFT the anomaly reads:

$$
\mathcal{A}_{\sigma}\left[\gamma_{\mu \nu}, 0\right]=\sigma\left\{c W^{2}-a E_{4}\right\}+O(\partial \sigma)
$$

We can consider an ansatz for $S_{c . t}$ containing all possible tensor structures:

$$
\begin{aligned}
S_{c . t} \supset & \int_{x} \sqrt{\gamma} \mu^{-\epsilon}\left\{\lambda_{a} E_{4}+\frac{1}{2} \mathcal{G}_{i j} \partial_{\mu} g^{i} \partial_{\nu} g^{j} G^{\mu \nu}+\frac{1}{2} \mathcal{A}_{i j} \nabla^{2} g^{i} \nabla^{2} g^{j}\right. \\
& \left.+\frac{1}{2} \mathcal{B}_{i j k} \partial_{\mu} g^{i} \partial^{\mu} g^{j} \nabla^{2} g^{k}\right\}
\end{aligned}
$$

This can be used to obtain a formal expression for $\Delta_{\sigma} W$. A similar expansion has to be present for the RHS:

$$
\begin{gathered}
\mathcal{A}_{\sigma}\left[\gamma_{\mu \nu}, g_{i}\right] \supset \tilde{a} E_{4}+\frac{1}{2} \chi_{i j}^{g} \partial_{\mu} g^{i} \partial_{\nu} g^{j} G^{\mu \nu}+\frac{1}{2} \chi_{i j}^{a} \nabla^{2} g^{i} \nabla^{2} g^{j} \\
+\frac{1}{2} \chi_{i j k}^{b} \partial_{\mu} g^{i} \partial^{\mu} g^{j} \nabla^{2} g^{k}+O(\partial \sigma)
\end{gathered}
$$

anomaly coefficient need to match some c.t. combinations. On top of that, the anomaly is by definition a finite functional!

- Matching $O(\sigma)$:

$$
\begin{aligned}
\chi_{i j}^{g} & =\left(\epsilon-\hat{\beta}^{\ell} \partial_{\ell}\right) \mathcal{G}_{i j}-\mathcal{G}_{\ell j} \partial_{i} \hat{\beta}^{\ell}-\mathcal{G}_{i \ell} \partial_{j} \hat{\beta}^{\ell} \\
\chi_{i j}^{a} & =\left(\epsilon-\hat{\beta}^{\ell} \partial_{\ell}\right) \mathcal{A}_{i j}-\mathcal{A}_{\ell j} \partial_{i} \hat{\beta}^{\ell}-\mathcal{A}_{i \ell} \partial_{j} \hat{\beta}^{\ell} \\
\chi_{i j k}^{b} & =\left(\epsilon-\hat{\beta}^{\ell} \partial_{\ell}\right) \mathcal{B}_{i j k}-\mathcal{B}_{\ell j k} \partial_{i} \hat{\beta}^{\ell}-\mathcal{B}_{i \ell k} \partial_{j} \hat{\beta}^{\ell}-\mathcal{B}_{i j \ell} \partial_{k} \hat{\beta}^{\ell}-2 \partial_{i} \partial_{j} \hat{\beta}^{\ell} \mathcal{A}_{\ell k}, \quad[\ldots]
\end{aligned}
$$

■ Matching $O(\partial \sigma)$:

$$
8 \mu \frac{d \tilde{a}}{d \mu}=8 \beta_{i} \partial_{i} \tilde{a}=\chi_{i j}^{g} \beta_{i} \beta_{j}
$$

$$
\chi_{i j}^{g}=-2 \chi_{i j}^{a}+\bar{\chi}_{i j k}^{a} \beta^{k}-\beta^{\ell} \partial_{\ell} V_{i j}-\partial_{i} \beta^{\ell} V_{\ell j}-\partial_{j} \beta^{\ell} V_{i \ell} \quad[\ldots]
$$

And every quantity on the RHS is written in term of $\mathcal{A}_{i j}, \mathcal{B}_{i j k}$.

Take-home message:

We have a gradient flow equation and a calculation prescription for \tilde{a} in terms of flat spacetime $\mathrm{CTs} \mathcal{A}_{i j}, \mathcal{B}_{i j k}$ of marginal operators.

Find which Green's function $\mathcal{A}_{i j}, \mathcal{B}_{i j k}$ renormalises. Using

$$
\frac{\delta}{\delta g_{i}(x)} W\left[g_{i}\right]=\left\langle\left[\mathcal{O}_{i}(x)\right]\right\rangle
$$

applying an appropriate number of derivatives in the limit of flat space/sources one gets:

$$
\begin{aligned}
\left\langle\left[\mathcal{O}_{i}(p)\right]\left[\mathcal{O}_{j}(q)\right]\right\rangle_{R}= & \left\langle\left[\mathcal{O}_{i}(p)\right]\left[\mathcal{O}_{j}(q)\right]\right\rangle+\mu^{-\epsilon} \mathcal{A}_{i j} p^{2} q^{2} \delta(p+q) \\
\left\langle\left[\mathcal{O}_{i}(p)\right]\left[\mathcal{O}_{j}(q)\right]\left[\mathcal{O}_{j}(r)\right]\right\rangle_{R}= & \left\langle\left[\mathcal{O}_{i}(p)\right]\left[\mathcal{O}_{j}(q)\right]\left[\mathcal{O}_{j}(r)\right]\right\rangle+\ldots \\
& \ldots+\mu^{-\epsilon}\left(\mathcal{B}_{i j k} p \cdot q r^{2}+\mathcal{B}_{i k j} p \cdot r q^{2}+\mathcal{B}_{j k i} q \cdot r p^{2}\right) .
\end{aligned}
$$

\Longrightarrow build some perturbative expansion for the 2,3-pt functions as well as β-functions.
$\underline{\text { Application: Large } N_{f} \text { gauge theories (see Simone's and Manuel's talk). } ~}$

$$
\mathcal{L}=i \sum_{i=1}^{N} \bar{\psi}_{i} \not D \psi_{i}-\frac{1}{4 g^{2}} F^{2}+\mathcal{L}_{g h o s t}+\mathcal{L}_{g . f}
$$

Of course, we will use a normalisation different from the literature:

$$
\kappa=\frac{\beta_{0} \alpha}{\pi}=\frac{S_{2}\left(R_{\phi}\right) N_{f} g^{2}}{6 \pi^{2}} \Longrightarrow \beta_{\kappa}=\kappa^{2}+\mathcal{O}(1 / N)
$$

To have a feeling: now the (in)famous pole at $15 / 2$ is found at $\kappa=5$. We restrict ourselves to LO, where the RG flow features a one-loop landau pole:

$$
\kappa(\mu)=\log \left(\frac{\Lambda}{\mu}\right)^{-1}, \quad \Lambda=\mu_{0} e^{1 / \kappa\left(\mu_{0}\right)}
$$

The marginal operator driving the flow is

$$
\left[\mathcal{O}_{\kappa}\right]=\frac{\delta S}{\delta \kappa(x)}=\frac{\beta_{0}}{16 \pi^{2} \kappa^{2}} F^{2}+\text { g.f. terms }+\mathcal{O}(1 / N)
$$

- We study a one-coupling theory: all coupling indexes are suppressed.
- The $\mathrm{CTs} \mathcal{A}, \overline{\mathcal{A}}$ renormalize divergences in 2 and 3-pt function of F^{2} : $\left\langle F^{2} F^{2}\right\rangle,\left\langle F^{2} F^{2} F^{2}\right\rangle$ when insertion points merge.
- We calculate the LO resummation of the metric and \tilde{a}-function.

The final result reads:

$$
\chi_{\kappa \kappa}^{g}=\frac{d(G)}{16 \pi^{2} \kappa^{2}} \partial_{\kappa}\left[\kappa H^{a}(\kappa)-\frac{1}{6} \kappa^{2} \bar{H}^{a}(\kappa)\right],
$$

where two resummed functions appear:

$$
\begin{aligned}
H^{a}(x) & =\frac{\left(1-\frac{x}{3}\right)\left(240-240 x+90 x^{2}-15 x^{3}+x^{4}\right) \Gamma(4-x)}{60(4-x)(6-x) \Gamma\left(1+\frac{x}{2}\right) \Gamma^{3}\left(2-\frac{x}{2}\right)} \\
\bar{H}^{a}(x) & =\frac{\left(80-60 x+13 x^{2}-x^{3}\right) x \Gamma(4-x)}{120(4-x) \Gamma\left(1+\frac{x}{2}\right) \Gamma^{3}\left(2-\frac{x}{2}\right)}
\end{aligned}
$$

we have poles at $x=5+n, n \in \mathbb{N}$, the $1 / N_{f}$ expansion is broken there.

violation of metric positivity at $\kappa^{*} \sim 0.51, \Longrightarrow \mu^{*} \sim 0.14 \Lambda$

- We added to the action marginal scalar primaries only, but those are not the only ones appearing in the trace anomaly equation,

$$
S_{C F T}[\gamma, \phi]+\int_{x}\left\{g^{i} \mathcal{O}_{i}+A_{\mu}^{A} J_{A}^{\mu}+m^{a} \mathcal{O}_{a}\right\}
$$

- Turns out that the J_{A}^{μ} contribution modifies the metric definition $\chi_{\kappa \kappa}^{g} \rightarrow \hat{T}_{\kappa \kappa}$. Gets contribution from 4-pt functions:

violation of metric positivity at $\kappa^{*}=0.51$ (n.imp.) -0.43 (imp.).

Caveat(?): The gradient flow equation is invariant under:

$$
\tilde{a} \rightarrow \tilde{a}+c_{i j} \beta^{i} \beta^{j}, \quad \chi_{i j} \rightarrow \chi_{i j}+\mathcal{L}_{\beta} c_{i j}
$$

The strong theorem is in principle valid as long as it exist a choice for $c_{i j}$ such that $\chi_{i j}$ is positive definite.
\Longrightarrow Can we find a more "physical" scheme?

- The Dilaton effective action is defined by:

$$
\Gamma[\bar{\gamma}, \tau, \mu]=W\left[\gamma_{\mu \nu}=e^{2 \tau} \bar{\gamma}_{\mu \nu}, g^{i}(\mu)\right]
$$

where g^{i} are now spacetime independent!
■ This effective action generates correlators of T_{μ}^{μ} :

$$
\Gamma[\bar{\gamma}, \tau, \mu]=\sum_{n} \frac{i^{n-1}}{n!} \int_{\left\{x_{i}\right\}} \tau\left(x_{1}\right) \ldots \tau\left(x_{n}\right)\left\langle\mathbf{T}\left\{T\left(x_{1}\right) \ldots T\left(x_{n}\right)\right\}\right\rangle_{\bar{\gamma}, \mu}
$$

- Work with on-shell condition:

$$
R\left(e^{2 \tau} \bar{\gamma}_{\mu \nu}\right)=0
$$

- The action can be split in two distinct contributions:

$$
\Gamma=\Gamma_{l o c}+\Gamma_{n . l o c}
$$

- The $2 \rightarrow 2$ dilaton scattering amplitude has an analogous splitting $A(s, t)=A_{l o c}(s, t)+A_{n . l o c}(s, t)$.
- The non-local contribution can be obtained from the effective coupling in the action for canonical dilatons $e^{-\tau}=1+\phi$,

$$
\mathcal{L}_{\text {eff }}=g^{i}\left(\mu e^{\tau}\right) \mathcal{O}_{i}=\left(g^{i}-\phi \beta^{i}+\frac{\phi^{2}}{2} \beta^{j}\left[\delta_{j}^{i}+\partial_{j} \beta^{i}\right]+\ldots\right) \mathcal{O}_{i}
$$

- We look at the absorptive part in the specifical kinematic region $t=0$ where:

$$
A(s, 0)=-8 s^{2} \alpha(s) \text { so that } \operatorname{Im} A(s, 0)>0 \Longleftrightarrow \operatorname{Im} \alpha(s)<0
$$

Why do we use this definition? Because this amplitude satisfies:

$$
A(s, 0)=A(-s, 0) \quad, A(s, 0)^{*}=A\left(s^{*}, 0\right), \quad \int_{C} \mathrm{~d} s \frac{A(s, 0)}{s^{3}}=0
$$

this conditions lead to the definition of a monotonically decreasing function:

$$
\bar{\alpha}(s)=\int_{0}^{\pi} \mathrm{d} \theta \alpha\left(s e^{i \theta}\right), \quad \bar{\alpha}\left(s_{2}\right)-\bar{\alpha}\left(s_{1}\right)=-\frac{2}{\pi} \int_{s_{1}}^{s_{2}} \frac{\mathrm{~d} s}{s} \operatorname{Im} \alpha(s)>0(?)
$$

- To compute $\alpha(s)$ we need finite parts of F^{2} correlators.
- It possible to show that these multiple-chain diagrams are factorially divergent: as a computational trick we consider renormalised chains for which the Borel transform reads:

$$
\mathcal{B}\left[\frac{1}{1-\Pi_{R}(k)}\right]=e^{-C t / 2}\left(\frac{k^{2}}{\mu^{2}}\right)^{t / 2}
$$

- For a double chain integral we use the convolution property:

Applying this procedure to the $\left\langle F^{2} F^{2}\right\rangle$ correlator one gets

$$
\begin{aligned}
\mathcal{B}\left[\left\langle F^{2}(p) F^{2}(-p)\right\rangle\right]= & -\frac{2 i e^{-C t / 2}}{32 \pi^{2}}\left(\frac{4 \pi}{\beta_{0}}\right)^{2}(-s)^{2-t / 2} \\
& \times \int_{\left\{u_{i}\right\}} G\left(1-u_{1}, 1-u_{2}\right)\left[1+\mathcal{P}\left(u_{1}, u_{2}\right)\right]
\end{aligned}
$$

with a polynomial coming from the numerator structure,

$$
\mathcal{P}\left(u_{1}, u_{2}\right)=-\frac{2 u_{2}\left(1+u_{2}\right)\left(10+7 u_{2}+8 u_{1}+4 u_{1} u_{2}+u_{2}^{2}\right)}{\left(1+u_{1}+u_{2}\right)\left(2+u_{1}+u_{2}\right)^{2}\left(3+u_{1}+u_{2}\right)}
$$

and a loop integral contribution:

$$
G\left(1-u_{1}, 1-u_{2}\right)=\frac{\Gamma(-t / 2)}{\Gamma(2+t / 2)} \frac{\Gamma\left(1+u_{1}\right)}{\Gamma\left(1-u_{1}\right)} \frac{\Gamma\left(1+u_{2}\right)}{\Gamma\left(1-u_{2}\right)} .
$$

\Longrightarrow This correlator is not Borel summable! Renormalon poles at $t=2 n, n \geq 1$.

To conclude:

■ We showed that "counterterm-derived" definitions of \tilde{a} are not monotonic at LO in large N_{f}.

- We are extending the Large N_{f} methods to dilaton cross-sections.

Coming next:

- Verify wether positivity is lost in the dilaton cross section.
- Adress renormalon issues in the dilaton cross-sections and their relation to non-perturbative contributions.

Thank you!

