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A Higgs discovery

• Back in 2012:

• Higgs discovery and tests at the LHC confirm the Standard Model as an excellent
low-energy approximation to the electroweak interactions (within the current precision).
Higgsless alternatives ruled out.



Is the Higgs fundamental?

• First elementary scalar? Nature has so far chosen a different path to introduce scalar
modes (fermion condensation, Goldstone bosons). Naturalness issues avoided.

• Old idea: EWSB from a new strong confining interaction at the TeV scale. Flagship:
Technicolor. [Weinberg’76; Susskind’79]

• Technicolor 1.0 a higgsless theory, in analogy with QCD. Nowadays ruled out.

• However , a light scalar can be present, typically as a pseudo-NG boson. Explicit breaking
at the EW scale will give it a mass, but protected by the Goldstone symmetry from effects
at the dynamical scale and above. The mechanism is viable but not many realizations of it.

1. Composite Higgs models: [e.g., Agashe et al’04]

(i) hard to make them realistic (fermions);

(ii) typical v/f deviations from the SM are rather constrained.

2. Walking TC with dilatonic extensions: [e.g., Dietrich et al’ 05; Appelquist et al’10]

(i) large number of technipions;

(ii) hard to prove whether a light scalar actually exists.



Crawling TC in a nutshell
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Alternative to WTC with the following ingredients:

• New interactions (e.g. SU(3)) strong at the TeV scale.

• An infrared fixed point (IRFP) exists, αIR. Scale-invariant limit exists, but hidden. At αIR,
Higgs as a (massless) dilaton. (Explicit) scale breaking like αIR − α or better m2

h.

• Both electroweak and scale symmetries spontaneously broken by the same object, e.g. a
chiral condensate:

〈ψ̄ψ〉TC 6= 0

• To avoid technipions, SU(2)× SU(2) global symmetry (not ruled out!). Only light modes:
Higgs and EW Goldstones.



Crawling TC vs other TC’s
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Main features:

• Key observation: in crawling, scales can (and do) exist at αIR.

• Higgs as a dilaton (true Goldstone mode of scale breaking).

• EW scale: confining phase, nonperturbative regime.

• Technicolor 1.0 put in serious trouble by EWPO. Subsequent sophistications of the theory,
mostly to address flavour issues:

TC → ETC → Walking (E)TC

Crawling not worse than Walking in accommodating EWPO and flavour.



Scale invariance and its breaking

• A scale transformation on coordinates, xµ → eλxµ, induces the scale transformation on
fields:

ϕ(x) → eλdϕ(eλx)

d (scaling dimension) depends on the field. Infinitesimally,

δϕ(x) = (d+ xµ∂µ)ϕ(x)

• The associated Noether current is the dilatation current:

Dµ(x) = xνθµν(x)

where θµν is symmetric, gauge invariant and improved.

• For a general operator O in a Lagrangian, one finds

δO = ∂µ(x
µO) + (dO − 4)O

and

∂µD
µ(x) = θµµ(x) = δL =

∑

j

(dj − 4)Oj

The current is conserved as long as operators have overall d = 4, i.e., if no scales are
present.



The conformal anomaly

Example:

LQCD = −
1

4
Ga
µνG

µνa +
∑

j

ψ̄j(iγ
µDµ −mj)ψj

• Classically, one finds that

θµµ(x) =
∑

j

mjψ̄jψj

signalling explicit breaking by (mass) scales.

• At the quantum level, we know that gs is scale-dependent. Even in the absence of masses,
the Lagrangian has a separate source of breaking:

θµµ = β(g)
δL

δg
=
β(αs)

4αs
Ga
µνG

µνa

referred to as the trace anomaly.

• Anomalous breaking can be avoided at fixed points, i.e., points where β(α∗
s) = 0. At those

points scale symmetry is exact.

• As with any continuous symmetry, scale invariance might be manifest (WW mode) or
hidden (NG mode). Strictu sensu, a dilaton only appears with hidden scale invariance.
With WW mode, one gets scalons.



Scalons vs dilatons

Scalon Dilaton

WW (manifest) NG (hidden)

scaleless at αIR scaleful at αIR

perturbative nonperturbative (condensates)

dilatonic WTC crawling TC

scalars with CW potentials ?

Decoupling vs Nondecoupling:

Light scalars in WW mode might exist but not protected by symmetry (no genuine dilaton):

m2
σfσ = −〈0|θµµ|σ〉 = O(α− α∗)

Compare:

fσ ∼ 0 for α∗ ∼ αWW mσ arbitrary

fσ → constant 6= 0 as α∗ → αIR mσ small



An example: the Nambu-Freund model

• Consider two real scalar fields φ and ϕ with potential:

V (φ, ϕ) =
1

2
f2φ2ϕ2 +

τ

8g4
(g2ϕ2 − 1)2

• Field redefinition χ = (2g)−1(g2ϕ2 − 1)2 brings it to

V (φ, χ) =
1

2
m2
φ(1 + 2gχ) +

1

2
m2
χχ

2, m2
φ = f2ϕ2

0; m2
χ = τϕ2

0

where ϕ0 = g−1 is τ -independent.

In the scale-invariant limit (τ → 0):

• Scales are generated, mφ 6= 0.

• There is a dilaton, mχ → 0.



The Callan-Symanzik NG-mode equation

• CS equation for an arbitrary operator:
{

µ
∂

∂µ
+ β(α)

∂

∂α
+ γO(α)

}

〈O〉 = 0

• The β term is equivalent to a −iθµµ insertion at zero momentum:
{

µ
∂

∂µ
+ γO(α)

}

〈O〉 = −i lim
q→0

∫

d4x eiq·x 〈0|T
{
θµµ(x)O(0)

}
|0〉

= −i lim
q→0

[

〈0|θµµ|σ〉
i

q2 −m2
σ

〈σ|O|0〉

]

= fσ〈σ|O|0〉

using PCDC:
〈0|θµµ|σ〉 = −fσm

2
σ

• In WW mode one finds instead
{

µ
∂

∂µ
+ γO(α)

}

〈O〉 = 0

• Soft-dilaton theorem vs hyperscaling



Two important results from the Callan-Symanzik equation

• Consider the CS equation for a RG-invariant amplitude A:
{

µ
∂

∂µ
+ β(α)

∂

∂α

}

A = 0

• Apply α∂/∂α:
{

µ
∂

∂µ
+ β(α)

∂

∂α
+ β′(α)−

β(α)

α

}

α
∂A

∂α
= 0

• But α∂A
/
∂α is a Ĝ2 insertion, so

{

µ
∂

∂µ
+ β(α)

∂

∂α
+ γĜ2(α)

}

AĜ2 = 0

and the anomalous dimension of Ĝ2 can be read off:

γĜ2(α) = β′(α)−
β(α)

α

• The breaking of scale invariance due to the gluonic anomaly is driven by

γĜ2(αIR) = β′(αIR)



Two important results from the Callan-Symanzik equation

• Take the CS equation for Ĝ2 itself in the NG mode:

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(α)

}
〈
Ĝ2

〉

vac
= fσ

〈
σ
∣
∣θµµ

∣
∣vac

〉

• For an IR expansion in the physical region, ǫ = αIR − α & 0,

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(αIR)

}
〈
Ĝ2

〉

vac
= −

ǫβ′(4 + β′)

4αIR

〈
Ĝ2

〉

vac
+ O(ǫ2) = −m2

σf
2
σ

• Prediction for the mass:

m2
σ =

ǫβ′(4 + β′)

4αIRf2
σ

〈
Ĝ2

〉

vac
+ O(ǫ2)

• The formula can be easily generalized if technifermion masses are present:

m2
σf

2
σ =

ǫβ′(4 + β′)

4αIR
〈Ĝ2〉vac − (3− γm)(1 + γm)mψ〈ψ̄ψ〉vac +O(ǫ2, ǫmψ, m

2
ψ)



Effective Field Theories

• EFTs are the most efficient way of describing the physics at a certain scale µ, if

– There is a mass gap between typical scales, such that µ/Λ can be a good expansion
parameter.

– The particle content (ϕ) and symmetries at µ are known

• One can then generally write

Leff(ϕ) = L0(ϕ) + L1(ϕ)
︸ ︷︷ ︸

O(µ2/Λ2)

+ . . .

Each term satisfies in turn

Lj =
∑

n

c(j)n O(j)
n (ϕ)

• On(ϕ), IR-sensitive (ϕ and symmetries); cn, UV-sensitive (Λ physics).

• EFTs right template (general, QFT-based, improvable) to parametrize deviations of the
SM.



How many EFTs?

• Toy model: SM extended with a real scalar S endowed with a Z2 symmetry: [e.g., Buchalla et

al’ 16]

LΦS = (DµΦ)†(DµΦ) + ∂µS∂µS − V (Φ, S)

with

V (Φ, S) = −
µ2
1

2
Φ†Φ−

µ2
2

2
S2 +

λ1
4
(Φ†Φ)2 +

λ2
4
S4 +

λ3
2
Φ†ΦS2

• Expanding around the vacuum

L = −
1

2
〈GµνG

µν〉 −
1

2
〈WµνW

µν〉 −
1

4
BµνB

µν +
∑

f

f̄ i 6Df +
1

2
∂µh∂

µh

+
1

2
∂µH∂

µH +
v2

4
〈DµU

†DµU〉

(

1 +
2c

v
h+

2s

v
H +

c2

v2
h2 +

s2

v2
H2 +

2sc

v2
hH

)

− v
(
q̄YuUP+r + q̄YdUP−r + ℓ̄YeUP−η + h.c.

) [

1 +
c

v
h+

s

v
H
]

− V (h,H)

with

V (h,H) =
1

2
m2h2 +

1

2
M2H2 − d1h

3 − d2h
2H − d3hH

2 − d4H
3

− z1h
4 − z2h

3H − z3h
2H2 − z4hH

3 − z5H
4



How many EFTs?

• Assume M ≫ m and integrate out H.

(−∂2 −M2 + 2J2)H + J1 + 3J3H
2 + 4J4H

3 = 0

• The solution depends on the relative magnitude of Ji/M
2. Two scenarios:

(i) M ∼ vs ≫ v,m, χ λi ∼ O(1)

(ii) M ≫ vs, v,m, χ λi . 32π2

• Take for example:

d4 = −
M2

2vvs
[c3v + s3vs] →

{
∼M
∼M2

• The two scenarios correspond to decoupling and nondecoupling limits.



Linear vs nonlinear EFT

• In the different limits:

H(h) ∼
h2

M
H(h) ∼

∞∑

n≥2

an
hn+1

vn
, an ∼ O(1)

• The corresponding EFTs look like:

L ⊃
1

2
∂µh∂

µh+
v2

4
tr
[
DµU

†DµU
]
f(h)− v

[

ψ̄fψ(h)UP±ψ + h.c.
]

− V (h)

with

f(h) = 1 + (2− α2)
h

v
+ (1− 2α2)

(
h

v

)2

−
4

3
α2

(
h

v

)3

−
α2

3

(
h

v

)4

, α2 ∼ O(M−2)

or

f(h) = 1 + 2c

(
h

v

)

+

[

c4 − s3c
v

vs

](
h

v

)2

−
4

3v2s
s2c3(vs+ vsc)

2

(
h

v

)3

+O(h4)

• Both canonical and loop expansions arise naturally depending on the nature of the UV.



A tale of two EFTs
Assuming:

• observed particle content.

• a mass gap:
v2

M2
NP

≪ 1

• known symmetries valid up to probed scales, SU(3)c × SU(2)L × U(1)Y .

then the corresponding EFT at LO is either

LSM = −
1

4
Xa
µνX

µν a + i
∑

j

ψ̄j 6Dψj +DµH
†DµH − V (H)

−
[

ydQ̄LHd+ yuQ̄LH̃u+ yeĒLHe+ h.c.
]

or

LLO = −
1

4
Xa
µνX

µν a + i
∑

j

ψ̄j 6Dψj +
1

2
∂µh∂

µh+
v2

4
tr
[
DµUD

µU †
]
f(h)

− v
[

ψ̄fψ(h)UP±ψ + h.c.
]

− V (h)

Every model compatible with the assumptions looks at low energies like LSM or LLO.



How to build scale-invariant EFTs for NG modes

• Old wisdom (60s-70s), starting with Salam et al.; Wess et al; Ellis.

• Given a Lagrangian operator O, weight it by the conformal compensator χ to

O → Oχ = O ×
{
cOχ

4−dO + (1− cO)χ
4−dO+β′}

= cOOinv + (1− cO)Oβ′

• Oβ′ has dimension 4 + β′ (explicit scale breaking by the gluonic trace anomaly near αIR)

• cO = 1 + O(ǫ), implied by

θµµ
∣
∣
eff

=
∑

j

(
dj − 4

){
Oj
σ −

〈
Oj
σ

〉

vac

}
= β′

∑

j

(1− cOj)
{
Oj
β′ − 〈Oj

β′〉vac
}

which vanishes in the scale-invariant limit.

• Example (χPT in the chiral limit):

v2

4
tr(DµUD

µU †) →
v2

4
tr(DµUD

µU †)χ2 +
f2
σ

2
∂µχ∂

µχ

• Common to use the representation

χ = eσ/fσ



EFT for crawling TC

• General description valid below the TeV scale, which is the natural cutoff of the EFT:

Λ ∼ 4πfσ ∼ 4πv

Agnostic about the explicit UV theory.

• Assume minimal setup: SU(2)L × SU(2)R global symmetry, spontaneously broken to give
3 Goldstones; Higgs as a dilaton; only SM fields.

• Main advantage of the effective Lagrangian formalism: radiative corrections are easily
computed; contact can be made with the SM Lagrangian.

• Final result can be constructed from higgsless EFT with conformal weights, with
Goldstones of electroweak and scale symmetry breaking parametrized by

U = eiϕ
aτa/v; χ = eσ/fσ



Crawling TC as an EFT

• LO EFT:

Llo =
1

2
e2σ/fσ∂µσ∂

µσ − V (σ)−
1

4
GA
µνG

Aµν −
1

4
W a
µνW

aµν −
1

4
BµνB

µν

+ q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + ℓ̄Li /DℓL + ēRi /DeR

+
v2

4
tr(DµUD

µU †)e2σ/fσ − v
{

q̄LŶuUUR + q̄LŶdUDR + ℓ̄LŶeUER + h.c.
}

eσ/fσ

• Power counting: LO Lagrangian dictated by homogeneity in chiral dimensions [Llo] = 2:

[Gµ,Wµ, Bµ, σ, ϕ
a] = 0 , [ψ] = 1

2
, [gs, gw, g

′
w, ŷu,d,e, ∂µ] = 1 , [m2

σ ∼ ǫ] = 2

Equivalent to loop counting.

• Subleading terms given by

Left =
∑

ℓ>0

Lnℓlo with
[
Lnℓlo

]
= 2ℓ+ 2



The dilaton potential

• When Goldstones come from the breaking of an internal symmetry (χPT), the potential is
clearly proportional to the explicit symmetry breaking:

LχPT =
f2
0B0

2
tr
[
χU † + χ†U

]
, χ =





mu

md

ms





• With scale invariance, it seems that a scale-invariant term is possible:

Lχ = λf4
σχ

4

Common lore: [exceptions: Zumino’73; Bardeen et al’86]

A. If symmetry allows an operator, it should be there

Information on the symmetry realization actually depends on coefficients:

V (Φ) = +
µ2

2
Φ2 +

λ

2
Φ4; V (Φ) = −

µ2

2
Φ2 +

λ

2
Φ4

The NG realization for scale symmetry corresponds to λ = 0.

B. A potential without explicit breaking means that dilatons do not exist

A quadratic term is generated for σ, but the potential has no minimum (not a mass!).



The dilaton potential

• V (χ) has to be of first order in ǫ to have a well-defined propagator and to satisfy
Goldstone theorem:

V (χ) = c1χ
4 + c2χ

4+β′

; c1, c2 = O(ǫ)

• Assume c1 < 0 and c2 > 0 (minimum exists) and 〈σ〉vac = 0 (convenient).

• c1, c2 determined from V ′(0) = 0 (no tadpole condition) and V ′′(0) = m2
σ.

• One can write the dilaton potential in closed form as

V (σ) =
m2
σf

2
σ

β′

[

−
1

4
e4σ/fσ +

1

4 + β′
e(4+β

′)σ/fσ

]

• In NG mode of scale breaking, the Higgs potential is largely fixed by symmetry.

• As expected for Goldstones, interactions with any power of σ.

• Cross-check: this potential should reproduce the CS results.



Dilaton mass (again)

• Expression of the dilaton mass found from the CS equation for Ĝ2 using:

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(α)

}
〈
Ĝ2

〉

vac
= Fσ

〈
σ
∣
∣θµµ

∣
∣vac

〉

with

γĜ2(α) = β′(α)−
β(α)

α

• Alternatively, from the EFT by matching the trace anomaly at the fundamental and EFT
levels:

θµµ
∣
∣
eff

= −
M2

σF
2
σ

4 + β′

{(

1 +
h

Fσ

)4+β′

− 1

}

; θµµ = −
ǫβ′

4αIR

{
Ĝ2 − 〈Ĝ2〉vac

}
+ O(ǫ2)

• End result:

M2
σ =

ǫβ′(4 + β′)

4αIRF 2
σ

〈
Ĝ2

〉

vac
+O(ǫ2)



Effective Field Theory

• Simplification: perform the field redefinition

h =

∫ σ

0

eσ
′/fσdσ′ = fσ(e

σ/fσ − 1) , h ≥ −fσ

which brings the dilaton kinetic term into canonical form.

• The LO Lagrangian takes the form:

Llo =
1

2
(∂h)2 − V (h)−

1

4
GA
µνG

Aµν −
1

4
W a
µνW

aµν −
1

4
BµνB

µν

+ q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + ℓ̄Li /DℓL + ēRi /DeR +
v2

4
tr(DµUD

µU †)

(

1 +
h

fσ

)2

− v
{

q̄LŶuUUR + q̄LŶdUDR + ℓ̄LŶeUER + h.c.
}(

1 +
h

fσ

)

with

V (h) =
m2
σf

2
σ

β′

[

−
1

4

(

1 +
h

fσ

)4

+
1

4 + β′

(

1 +
h

fσ

)4+β′
]



Phenomenological highlights

• Higgs couplings of the LO Lagrangian behave like the SM with v → fσ.

• In Crawling TC no significant deviations expected: electroweak and scale invariance get
spontaneously broken by the same condensate, so v ∼ fσ. (Compare with Goldstone Higgs
of internal symmetries)

• Higgs self-interactions differ. They are affected by β′:

V (h)− V (0) = m2
σf

2
σ

{
1

2

(
h

fσ

)2

+
5 + β′

3!

(
h

fσ

)3

+
11 + β′(β′ + 6)

4!

(
h

fσ

)4

+O(h5)

}

• Even with small β′, triple vertex at least twice as big. However, β′ nonperturbative, so not
necessarily small.

• At the LHC: constraints on β′ from Higgs double production. Challenging but feasible.



Testing CTC on the lattice

Different possibilities:

• Freezing of α outside the conformal window in the deep infrared. Hard but a large window
for Nf .

• Light scalar mass, m2
σ ∝ mψ of the form

m̃2
σ =

ǫβ′(4 + β′)

4f̃2
σ

〈Ĝ2〉vac − (3− γm)(1 + γm)mψ
〈ψ̄ψ〉vac

f̃2
σ

+O(ǫ2, ǫmψ, m
2
ψ)

• Promising candidates: Nf = 8 (triplet fermions) [Aoki et al’14]; Nf = 2 (sextet fermions)
[Fodor et al’14]. Search methods have to be adapted: hyperscaling relations do not hold,
soft-dilaton theorems do.

• fσ from matrix element residue with dilatons, and γm from the soft-dilaton theorem:

3− γm = fσ

〈
σ
∣
∣ψ̄ψ

∣
∣0
〉

〈
0
∣
∣ψ̄ψ

∣
∣0
〉 +O(mψ)



Testing CTC on the lattice

• Summary chart for lattice searches on IRFPs relevant for EWSB:

crawling TC

Nf

α
IR

0 2 3 4 8 12 16

WW mode:

conformal

window

WW or

NG mode?

NG mode:

〈ψ̄ψ〉vac �= 0

︸ ︷︷ ︸

• Crawling TC opens up a broader range of phenomenologically relevant IRFPs.



Conclusions

• CTC vs WTC: NG-mode vs WW-mode implementation of conformal breaking in dynamical
EWSB. No hierarchy problem, no technipions, similar mechanism to address FCNCs and
fermion masses.

• Genuine Goldstone mode of hidden scale symmetry:

m2
σ =

ǫβ′(4 + β′)

4αIRf2
σ

〈
Ĝ2

〉

vac
+ O(ǫ2)

• NG-mode IR fixed points for small Nf are not excluded: power-law scaling of Green’s
functions tests only WW-mode IRFPs.

• Phenomenologically interesting: no expected deviations for Higgs couplings to fermions and
gauge bosons. Deviations in Higgs potential can be written down in closed form in terms
of β′(αIR). Typically, couplings larger than the SM.

• Tests at the LHC (Higgs double production) and with lattice simulations (fσ, γm, β
′, 〈Ĝ2〉).


