Why should we study Yang-Mills gauge theories in 5d?

Omar Zanusso

Università di Pisa & INFN - Sezione di Pisa

Bridging perturbative and non-perturbative physics Oct. 2019, Primosten Motivation: uncovering the universality class of quantum gravity

A look at Weinberg's proposal

Asymptotic safety in QG \iff UV universality class

Weinberg proposes that the FP does not appear out of the blue but comes from continuing asymptotically free 2d quantum gravity above its critical dimension to $d = 2 + \epsilon$

Weinberg 1979

However a lot can happen from from d = 2 to d = 4 ...

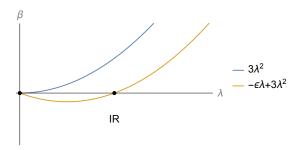
YM above d = 4 is certainly a great toy model for this

Take the continuation for granted, what are the obstructions?

Beta functions and ϵ -expansion

or what to look for when moving away from the critical dimension

Example: φ^4 in $d = 4 - \epsilon$

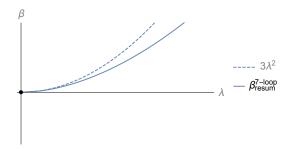


- One loop $\beta > 0$ for $d_c = 4$
- ▶ Well-defined *ϵ*-expansion
- Exactly solved CFT in 2d
- Numerical evidence in 3d

Bridging to non-perturbative physics: triviality in d = 4

For example approximate Borel transform with hypergeometric in $d = d_c$:

$$\beta_{\lambda} = 3\lambda^2 \left\{ 1 - 10^{-15} G_{3,4}^{4,1} \left(\frac{1.2}{\lambda} | \begin{array}{c} 1, 3, 0.058 \\ 1, 1, 18.85, 0.063 \end{array} \right) \right\}$$

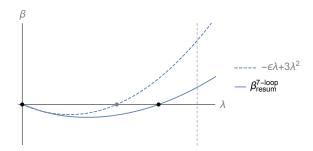


beta from Antipin, Maiezza, Vasquez 2018

Bridging to non-perturbative physics: IR FP

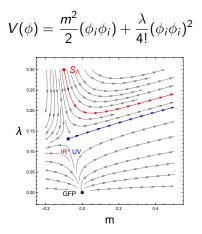
Include the scaling term for $d < d_c$:

$$\beta_{\lambda} = -\epsilon\lambda + 3\lambda^2 \left\{ 1 - 10^{-15} G_{3,4}^{4,1} \left(\frac{1.2}{\lambda} | \begin{array}{c} 1, 3, 0.058 \\ 1, 1, 18.85, 0.063 \end{array} \right) \right\}$$



• Does an IR FP exist for each d < 4 when $\beta > 0$?

Example: O(N) sigma model



Blue trajectory is nonlinear O(N) sigma model!

- same $FP \equiv$ same universality class
- ► asymptotically free in d = 2 (Gaussian), nontrivial in $d = 2 + \epsilon$ Mermin-Wagner
- Does it always end in Gaussian?

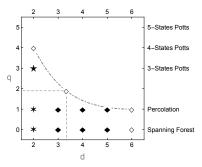
8/30

Example: *q*-states Potts-Landau field theory

Potential invariant under permutations:

$$V(\phi_i) = \lambda \sum_{\alpha=1}^{q} e_i^{\alpha} e_j^{\alpha} e_k^{\alpha} \phi_i \phi_j \phi_k$$

Critical dimension based on power counting is $d_c = 6$ but univ. class nontrivial for $d < d_{ec}(q) < 6$ (critical Potts model)



Codello, Safari, Vacca, Z 2019? but several others too

Mechanism: fixed points annihilation

FP annihilates with a multicritical friend for $d > d_{an}$ Therefore $d_{ec} = d_{an}$

For q = 3 we have $d_{an} \approx 3 \ll 6$



Very difficult mechanism to see perturbatively but we have evidence in $d = \frac{10}{3} - \epsilon$ (almost perturbative in d = 3)

Recap

The ϵ -expansion:

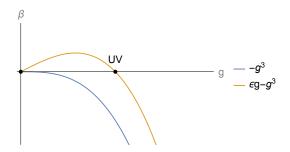
- Perfect for perturbative exploration/classification
- May bridge to non-perturbative (e.g. resum estimates)
- ► Has interplay with other non-perturbative (e.g. CFT)

However non-trivial things can happen:

- Same universality for different exp. (e.g. LSM vs NLSM)
- Fixed points might collide (Potts)

Yang-Mills in more than 4 dimensions

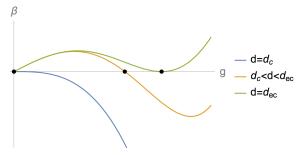
Yang-Mills pure gauge



- $\beta < 0$ for $d_c = 4$, asymptotic freedom
- Continuation to $d = 4 + \epsilon$ already by Peskin 1980
- "Confined" vs "deconfined" phases separated by g^* for $\epsilon > 0$?
- Testable on the lattice?

Kawai, Nio, Okamoto 1992

UV completion for any d > 4? Unlikely



Here's a conundrum for you:

Theoretical evidence $d_{ec} \approx 5$ or 6 includes

- $\alpha \simeq 1$ exponent
- Functional RG
- Properties of the β series

Numerical evidence against $\epsilon > 0$ is

Only first-order from Wilson plaquette action!

Creutz 1979; Nishimura 1996; Ejiri et al. 2000; Farakos et al. 2003

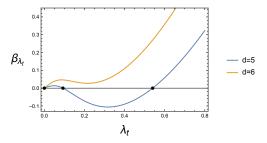
Peskin 1980

Gies 2003

Morris 2005

Theory side: resumming 5-loop YM β

 λ_t is t'Hooft coupling. Beta from Herzog et al. 2017



Bonati, Z 2020 in prep.

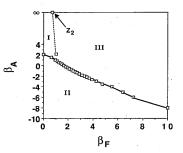
Qualitative features:

- UV FP always present for d = 5
- $d_{ec} \approx 6$, higher resums favor $d_{ec} \gtrsim 6$
- Necessity to circumvent Borel singularity or $\text{Im}\beta \neq 0$:(
- Mechanism: collision with an unidentified IR FP

Well actually there is something on the lattice...

Change plaquette action (N = 2)

$$S = \sum_{\Box \in \mathcal{L}} \left\{ \beta_F S_{\Box}^F + \beta_A S_{\Box}^A \right\} \qquad \qquad \frac{4}{g^2} = \beta_F + \frac{8}{3} \beta_A$$



- 1st order for $\beta_A = 0$
- Line of 1st order varying $\beta_A \lesssim 0$
- Indications that $\Delta E \rightarrow 0$ along the line

plot from Kawai et al. 1992

How does the new action differ from the traditional one?

Expansion in lattice spacing

$$\begin{split} S &= \sum_{\Box} \left\{ \beta_F S_{\Box}^F + \beta_A S_{\Box}^A \right\} \\ &\simeq \int \mathrm{d}^5 x \left\{ c_2 F_{\mu\nu}^a F_{\mu\nu}^a + c_{3,1} F_{\mu\nu}^a \Box F_{\mu\nu}^a + c_{3,2} f_{abc} F_{\mu\nu}^a F_{\nu\rho}^b F_{\rho\mu}^c + \dots \right\} \end{split}$$

We deduce that higher derivative interactions must play a role

Let's apply the ideas on classification using the ϵ -expansion to infer which could be the active players here:

there are in principle infinitely many higher derivative (non-unitary) generalizations of YM with $d_c = 2n = 4, 6, 8, ...$

$$S = \frac{1}{4g_{2n}^2} \int \mathrm{d}^{2n} x \Big\{ F^a_{\mu\nu} \Box^{n-2} F^a_{\mu\nu} + \dots \Big\}$$

Perturbative d = 6 higher derivative YM

The one in d = 4 we know already, however

$$S = \frac{1}{2g_6} \int \mathrm{d}^6 x \left\{ (D^\nu F^a_{\mu\nu})^2 + \lambda f_{abc} F^a_{\mu\nu} F^b_{\nu\rho} F^c_{\rho\mu} \right\}$$

is perturbatively renormalizable in d = 6

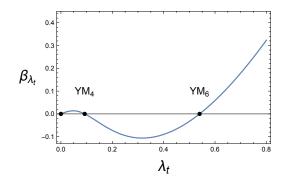
Gracey 2015; Casarin, Tseytlin 2019

- Asymptotically free in g₆
- Need to set λ for freedom, one tunable parameter
- ► F^2 is relevant deformation hence $\frac{1}{g^2} = 0$ in $\overline{\text{MS}}$ at d = 6

Two conjecture(s)

- ► Either the FP of d = 4 YM collides with the one of d = 6 like in Potts-Landau
- Or FP of d = 4 YM interpolates with the one of d = 6 like in O(N) NLSM

In the first case:



Implications for gravity?

If asymptotic safety is asymptotic freedom extended to $d=2+\epsilon$ Unlikely continuation to $d=\infty$

my opinion which might differ from Litim 2004

because FRG displays same problem for NLSM $$_{\mbox{again my opinion which might differ Codello, Percacci 2008}$}$

We need to determine the active players!

Critical dimensions:

$$d_c=2n=2,4,6,\ldots$$

So which models are we talking about?

•
$$d_c = 2$$
 controlled by $\int R$ or $\int \left\{ R \frac{1}{\Delta} R \right\}$

• $d_c = 4$ is Stelle's perturbative $\int \left\{ R^2 + C_{\mu\nu\rho\theta}^2 + \dots \right\}$

•
$$d_c = 6$$
 would include $\int \left\{ R \Box R + C_{\mu\nu\rho\theta} \Box C^{\mu\nu\rho\theta} + \dots \right\}$

Quadratic gravity is distinct universality from $2 + \epsilon$ Codello, Percacci 2006; Rechenberger et al. 2011 Related to original proposal of Smolin with large-NSmolin 1982

Cubic gravity might pose a threat to continuation or it could provide a brand new model (but was never studied)

Indications that terms \mathcal{R}^3 might play a role

Cubic relevant deformation Falls et al. 2011

Estimate of $d_c \approx 5$ to 6 Gies et al. 2015

The universality class of $d = 2 + \epsilon$ quantum gravity

or a tale of two central charges

Linearized fluctuations

We want to construct the perturbative series in G

$$S[g] = -\frac{1}{G}\int \mathrm{d}^2x \sqrt{g}R[g]$$

Perform the expansion:

$$g_{\mu
u} = \overline{g}_{\mu
u} + h_{\mu
u}$$

Gauge-fixed propagator:

$$G(
ho^2)^{
ho heta}_{\mu
u}=rac{1}{
ho^2}\left\{\delta^{
ho heta}_{\mu
u}+rac{1}{d-2}g_{\mu
u}g^{
ho heta}
ight\}$$

Conformal mode problem

The pole in the conformal part signals change in d.o.f.s. Locally

$$g_{\mu
u} = \mathrm{e}^{2\sigma} \hat{g}_{\mu
u}$$

In d = 2 there is strictly only σ and no spin-2

- Discontinuity at d = 2
- ▶ Kawai-Ninomija: need to reproduce d = 2 in $\epsilon \rightarrow 0$ limit
- ► Jack-Jones: new poles cannot be countered beyond 1-loop

Solution by Aida-Kitazawa: separate conformal mode and quantize nonlinearly the conformal sector

My point of view on AK's approach

General diff
$$g_{\mu\nu}
ightarrow g_{\mu\nu} +
abla_{\mu} \xi_{\nu} +
abla_{\nu} \xi_{\mu}$$

Aida-Kitazawa suggest to split $g_{\mu
u}={
m e}^{2\sigma}\hat{g}_{\mu
u}$; preserve Weyl

$$\hat{g}_{\mu
u}
ightarrow \hat{g}_{\mu
u} +
abla_{\mu} \xi_{
u} +
abla_{
u} \xi_{\mu} - rac{2}{d}
abla \cdot \xi \, \hat{g}_{\mu
u}$$

and then break Weyl by $\langle \sigma \rangle \neq 0$

Diff group is nonlinearly realized

$$\mathit{TDiff} \ltimes \mathit{Weyl}
ightarrow \mathit{Diff}^* \simeq \mathit{Diff}$$

realization discussed in **Gielen**, de Leon Ardon, Percacci 2018 Natural expansion

$$g_{\mu
u}
ightarrow \mathrm{e}^{2\sigma}[\mathrm{e}^{\hat{h}}]_{\mu}{}^{
ho}g_{
ho
u}=g_{\mu
u}+h_{\mu
u}+rac{1}{2}h_{\mu}{}^{
ho}h_{
ho
u}+\ldots$$

AK gravity: functional perspective

Renormalized to two loops by Aida and Kitazawa (with counterterms on-shell)

In passing we briefly discussed how to *best* renormalize it. Consider unimodular dilaton gravity with unimodular metric and normalized dilaton ψ :

$$S[\psi, \hat{g}] = -\frac{1}{G} \int \mathrm{d}^d x \sqrt{\hat{g}} \left\{ L[\psi, \phi] R[\hat{g}] + \frac{1}{2} (\partial \psi)^2 \right\}$$

Impose $\langle\psi\rangle=1$ and $\mathit{L}[1,0]\equiv1$ along the RG flow

$$\beta_G = \epsilon G - \frac{25 - c}{24\pi} G^2 \qquad \qquad G^* = \frac{24\pi\epsilon}{25 - c}$$

brief discussion in Martini, Z 2019

procedure reminiscent of yesterday's talk by Orlando

My point of view on JJ gravity

Diff is now linearly realized

Inconsistency at d = 2, but $\epsilon = 2$ at d = 4... Solution: give different names to the poles in d - 2

Gauge-fixed propagator in $d = 2 + \overline{\epsilon}$

$$G(p^2)^{
ho heta}_{\mu
u} = rac{1}{p^2} \left\{ \delta^{
ho heta}_{\mu
u} + rac{1}{\overline{\epsilon}} g_{\mu
u} g^{
ho heta}
ight\}$$

 $\overline{\mathrm{MS}}$ poles in $d = 2 + \epsilon$

Traces of the metric $g^{\mu}{}_{\mu} = d$

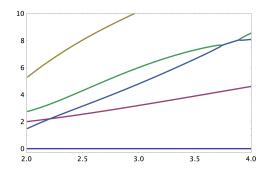
JJ gravity: some result

Setting $\epsilon = \overline{\epsilon} = d - 2$

$$\beta_G = \varepsilon G - \frac{19 - c}{24\pi} G^2 \qquad \qquad G^* = \frac{24\pi\varepsilon}{19 - c}$$

21----

Leading spectrum of scaling dimensions Δ up to \mathcal{R}^2 :



Complex conjugate pairs might danger unitarity Martini, Z 2020 in prep

Conclusion

- ► 5d YM can be interesting case study for asymptotic safety besides the naive arguments that the asymptotically free theory can be continued above d = 4
- Considerations on universality and universality classes might help pinning where to look for more evidence (and which evidence) of asymptotically safe quantum gravity

Thank you!