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Motivation:
uncovering the universality class

of quantum gravity
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A look at Weinberg’s proposal

Asymptotic safety in QG ⇐⇒ UV universality class

Weinberg proposes that the FP does not appear out of the blue
but comes from continuing asymptotically free 2d quantum gravity
above its critical dimension to d = 2 + ε

Weinberg 1979

However a lot can happen from from d = 2 to d = 4 ...

YM above d = 4 is certainly a great toy model for this

Take the continuation for granted, what are the obstructions?
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Beta functions and ε-expansion
or what to look for when moving away from the critical dimension
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Example: ϕ4 in d = 4− ε

λ

β

IR

3λ2

-ϵλ+3λ2

I One loop β > 0 for dc = 4

I Well-defined ε-expansion

I Exactly solved CFT in 2d

I Numerical evidence in 3d
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Bridging to non-perturbative physics: triviality in d = 4

For example approximate Borel transform with hypergeometric in
d = dc :

βλ = 3λ2

{
1− 10−15G 4,1

3,4

(
1.2

λ
| 1, 3, 0.058

1, 1, 18.85, 0.063

)}

λ

β

3λ2

βresum
7-loop

beta from Antipin, Maiezza, Vasquez 2018
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Bridging to non-perturbative physics: IR FP

Include the scaling term for d < dc :

βλ = −ελ+ 3λ2

{
1− 10−15G 4,1

3,4

(
1.2

λ
| 1, 3, 0.058

1, 1, 18.85, 0.063

)}

λ

β

-ϵλ+3λ2

βresum
7-loop

I Does an IR FP exist for each d < 4 when β > 0?
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Example: O(N) sigma model

V (φ) =
m2

2
(φiφi ) +

λ

4!
(φiφi )

2
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Blue trajectory is nonlinear O(N) sigma model!
I same FP ≡ same universality class
I asymptotically free in d = 2 (Gaussian), nontrivial in

d = 2 + ε Mermin-Wagner

I Does it always end in Gaussian?
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Example: q-states Potts-Landau field theory

Potential invariant under permutations:

V (φi ) = λ

q∑
α=1

eαi eαj eαk φiφjφk

Critical dimension based on power counting is dc = 6
but univ. class nontrivial for d < dec(q) < 6 (critical Potts model)
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Codello, Safari, Vacca, Z 2019? but several others too
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Mechanism: fixed points annihilation

FP annihilates with a multicritical friend for d > dan

Therefore dec = dan

For q = 3 we have dan ≈ 3� 6

d = 2 d = 3dan

gi

cubic

quintic

Very difficult mechanism to see perturbatively
but we have evidence in d = 10

3 − ε (almost perturbative in d = 3)
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Recap

The ε-expansion:

I Perfect for perturbative exploration/classification

I May bridge to non-perturbative (e.g. resum estimates)

I Has interplay with other non-perturbative (e.g. CFT)

However non-trivial things can happen:

I Same universality for different exp. (e.g. LSM vs NLSM)

I Fixed points might collide (Potts)
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Yang-Mills in more than 4 dimensions
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Yang-Mills pure gauge

g

β

UV
-g3

ϵg-g3

I β < 0 for dc = 4, asymptotic freedom

I Continuation to d = 4 + ε already by Peskin 1980

I “Confined” vs “deconfined” phases separated by g∗ for ε > 0?

I Testable on the lattice? Kawai, Nio, Okamoto 1992
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UV completion for any d > 4? Unlikely

Here’s a conundrum for you:

Theoretical evidence dec ≈ 5 or 6 includes

I α ' 1 exponent Peskin 1980

I Functional RG Gies 2003

I Properties of the β series Morris 2005

Numerical evidence against ε > 0 is

I Only first-order from Wilson plaquette action!

Creutz 1979; Nishimura 1996; Ejiri et al. 2000; Farakos et al. 2003
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Theory side: resumming 5-loop YM β

λt is t’Hooft coupling. Beta from Herzog et al. 2017
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Bonati, Z 2020 in prep.

Qualitative features:

I UV FP always present for d = 5

I dec ≈ 6, higher resums favor dec & 6

I Necessity to circumvent Borel singularity or Imβ 6= 0 :(

I Mechanism: collision with an unidentified IR FP
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Well actually there is something on the lattice...

Change plaquette action (N = 2)

S =
∑
2∈L

{
βFSF

2 + βASA
2

} 4

g 2
= βF +

8

3
βA

344 H. Kawai, M. Nio and Y. Okamoto 

§ 3. Addition of adjoint representation 

3.1. Phase diagram 

In the previous section we examined the phase transition of SU(2) Yang-Mills 
theory with fundamental representation in five dimensions. The transition, however, 
turned out to be of first order and we cannot take a well-defined continuum limit there. 
We now add the adjoint representation to the theory and search for a second-order 
doconfining phase transition in the two-parameter space (/3F, /3A) where /3A is the 
coupling constant for adjoint representation. The action is given by 

S= 2.:, (/3FSd + /3ASd) , 
o 

(3·1) 

where SOF is taken from Eq. (2.4) and Sd is defined by 

Sd=l- ~TrUA. (3'2) 

Here, UA is an ordered product of four link variables in adjoint representation around 
a plaquette O. The ordinary coupling constant g is now written in terms of /3F and 
/3A as*) 

(3·3) 

For numerical work it is convenient to rewrite the trace of adjoint representation as 

(3'4) 

The Metropolis algorithm has been employed here. In Fig. 4 we show a phase 
diagram of the theory in /3F-/3A space which was obtained from simulations on a 45 
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Fig. 4. Phase diagram of SU(2) Yang-Mills theory 
in five dimensions. 

lattice. The phase space is divided into 
three regions, I, II and III. One of the 
distinct features of this diagram compar
ed with the one for d =4 case6

) is that the 
boundary curve between regions II and 
III extends without any sign of termina
tion, while the corresponding curve for d 
=4 ends at (/3F, /3A)=(1.48, 0.9) before 
reaching the /3Faxis. This difference 
presumably arises from the fact that 
there is only confining phase in d =4 but 
there are confining and deconfining 
phases for d >4, according to the E

expansion (see Fig. 1). Hence, the 

*) When /3A< -(3/S)/3F, II is negative, indicating that the positivity is violated at the classical level. 
Therefore, one has to check the positivity in the continuum limit, if a second-order phase transition is found 
around this region. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article-abstract/88/2/341/1824030 by guest on 31 D

ecem
ber 2018

I 1st order for βA = 0
I Line of 1st order varying βA . 0
I Indications that ∆E → 0 along the line

plot from Kawai et al. 1992
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How does the new action differ from the traditional one?

Expansion in lattice spacing

S =
∑
2

{
βFSF

2 + βASA
2

}
'

∫
d5x

{
c2F a

µνF a
µν + c3,1F a

µν2F a
µν + c3,2fabcF a

µνF b
νρF c

ρµ + . . .
}

We deduce that higher derivative interactions must play a role

Let’s apply the ideas on classification using the ε-expansion
to infer which could be the active players here:

there are in principle infinitely many higher derivative (non-unitary)
generalizations of YM with dc = 2n = 4, 6, 8, . . .

S =
1

4g 2
2n

∫
d2nx

{
F a
µν2

n−2F a
µν + . . .

}
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Perturbative d = 6 higher derivative YM

The one in d = 4 we know already, however

S =
1

2g6

∫
d6x

{
(DνF a

µν)2 + λfabcF a
µνF b

νρF c
ρµ

}
is perturbatively renormalizable in d = 6

Gracey 2015; Casarin, Tseytlin 2019

I Asymptotically free in g6

I Need to set λ for freedom, one tunable parameter

I F 2 is relevant deformation hence 1
g2 = 0 in MS at d = 6
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Two conjecture(s)

I Either the FP of d = 4 YM collides with the one of d = 6
like in Potts-Landau

I Or FP of d = 4 YM interpolates with the one of d = 6
like in O(N) NLSM

In the first case:
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Implications for gravity?

If asymptotic safety is asymptotic freedom extended to d = 2 + ε
Unlikely continuation to d =∞

my opinion which might differ from Litim 2004

because FRG displays same problem for NLSM
again my opinion which might differ Codello, Percacci 2008

We need to determine the active players!

Critical dimensions:

dc = 2n = 2, 4, 6, . . .
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So which models are we talking about?

I dc = 2 controlled by
∫

R or
∫ {

R 1
∆ R
}

I dc = 4 is Stelle’s perturbative
∫ {

R2 + C 2
µνρθ + . . .

}
I dc = 6 would include

∫ {
R2R + Cµνρθ2Cµνρθ + . . .

}
Quadratic gravity is distinct universality from 2 + ε

Codello, Percacci 2006; Rechenberger et al. 2011

Related to original proposal of Smolin with large-N
Smolin 1982

Cubic gravity might pose a threat to continuation
or it could provide a brand new model (but was never studied)

Indications that terms R3 might play a role
Cubic relevant deformation Falls et al. 2011

Estimate of dc ≈ 5 to 6 Gies et al. 2015
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The universality class of d = 2 + ε
quantum gravity

or a tale of two central charges
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Linearized fluctuations

We want to construct the perturbative series in G

S [g ] = − 1

G

∫
d2x
√

gR[g ]

Perform the expansion:

gµν = gµν + hµν

Gauge-fixed propagator:

G (p2)ρθµν =
1

p2

{
δρθµν +

1

d − 2
gµνgρθ

}
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Conformal mode problem

The pole in the conformal part signals change in d.o.f.s.
Locally

gµν = e2σĝµν

In d = 2 there is strictly only σ and no spin-2

I Discontinuity at d = 2

I Kawai-Ninomija: need to reproduce d = 2 in ε→ 0 limit

I Jack-Jones: new poles cannot be countered beyond 1-loop

Solution by Aida-Kitazawa: separate conformal mode
and quantize nonlinearly the conformal sector

24/30



My point of view on AK’s approach

General diff gµν → gµν +∇µξν +∇νξµ

Aida-Kitazawa suggest to split gµν = e2σĝµν ; preserve Weyl

ĝµν → ĝµν +∇µξν +∇νξµ −
2

d
∇ · ξ ĝµν

and then break Weyl by 〈σ〉 6= 0

Diff group is nonlinearly realized

TDiff n Weyl → Diff ∗ ' Diff

realization discussed in Gielen, de Leon Ardon, Percacci 2018

Natural expansion

gµν → e2σ[eĥ]µ
ρgρν = gµν + hµν +

1

2
hµ

ρhρν + . . .
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AK gravity: functional perspective

Renormalized to two loops by Aida and Kitazawa
(with counterterms on-shell)

In passing we briefly discussed how to best renormalize it.
Consider unimodular dilaton gravity
with unimodular metric and normalized dilaton ψ:

S [ψ, ĝ ] = − 1

G

∫
ddx

√
ĝ

{
L[ψ, φ]R[ĝ ] +

1

2
(∂ψ)2

}

Impose 〈ψ〉 = 1 and L[1, 0] ≡ 1 along the RG flow

βG = εG − 25− c

24π
G 2 G ∗ =

24πε

25− c

brief discussion in Martini, Z 2019

procedure reminiscent of yesterday’s talk by Orlando
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My point of view on JJ gravity

Diff is now linearly realized

Inconsistency at d = 2, but ε = 2 at d = 4...
Solution: give different names to the poles in d − 2

Gauge-fixed propagator in d = 2 + ε

G (p2)ρθµν =
1

p2

{
δρθµν +

1

ε
gµνgρθ

}

MS poles in d = 2 + ε

Traces of the metric gµµ = d
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JJ gravity: some result

Setting ε = ε = d − 2

βG = εG − 19− c

24π
G 2 G ∗ =

24πε

19− c

Leading spectrum of scaling dimensions ∆ up to R2:

Complex conjugate pairs might danger unitarity Martini, Z 2020 in prep
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Conclusion

I 5d YM can be interesting case study for asymptotic safety
besides the naive arguments that the asymptotically free
theory can be continued above d = 4

I Considerations on universality and universality classes might
help pinning where to look for more evidence (and which
evidence) of asymptotically safe quantum gravity
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Thank you!
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