The Origin of Statistical Hadronization

Helmut Satz

Universität Bielefeld, Germany

Bad Liebenzell

April 27, 2010

basic observation in all high energy multihadron production

statistical production pattern

Fermi, Landau, Pomeranchuk, Hagedorn

- ullet species abundances \sim ideal resonance gas at T_H
- universal $T_H \simeq 150 200$ MeV for all (large) \sqrt{s}
- thermal transverse momentum spectra with same T_H

caveats: baryon density, strangeness, heavy flavors, flow

begin by recalling what is "statistical" and what are the experimental features to be described

1. Statistical Hadron Production

what is "statistical"?

- equal a priori probabilities for all states in accord with a given overall average energy \Rightarrow temperature T;
- partition function of ideal resonance gas

$$\ln Z(T) = V \sum\limits_i rac{d_i}{(2\pi)^3} \phi(m_i,T)$$

Boltzmann factor $\phi(m_i,T)=4\pi m_i^2 T K_2(m_i/T)$

• relative abundances

$$rac{N_i}{N_j} = rac{d_i \phi(m_i,T)}{d_j \phi(m_j,T)}$$

• transverse momenta

$$rac{dN}{dp_T^2}\sim \exp{-rac{1}{T}}\sqrt{m_i^2+p_T^2}.$$

Hadronization features in elementary & nuclear collisions

- jet structure
- multiplicity per jet $\ln \sqrt{s}$ (caveat multi-jets, evolution)
- universal hadronization temperature
 - from species abundances
 - (caveat: strangeness, heavy flavors)
 - from transverse mass spectra
 - (caveat: flow in nuclear collisions)
- initial state quantum number structure
 - baryon number, heavy flavor

 \exists a universal scenario (including the caveats)?

summarize experimental situation on abundances & p_T

Species abundances in elementary collisions

[Becattini et al. 1996 - 2008]

independent of \sqrt{s} , incident production configuration

Transverse momentum spectra in elementary collisions requires resonance decay code; model dependence?

[Becattini & Passaleva 2001]

Conclude:

 $T_H = 163 \pm ? {
m MeV}$

independent of species

Heavy ion collisions

- temperature T, baryochem. pot. μ_B ; $\mu_B \Downarrow$ for $\sqrt{s} \uparrow$
- elementary high energy collisions low baryon content
- compare to species abundances for RHIC, peak SPS

 $egin{aligned} {
m SPS}\ ({
m Pb-Pb}),\ \sqrt{s} &= 17\ {
m GeV} \ T_H &= 157.8 \pm 2.5\ {
m MeV},\ \mu_B &= 248.9 \pm 9.0\ {
m MeV} \ {
m RHIC}\ ({
m Au-Au}),\ \sqrt{s} &= 130,\ y &= 0\ {
m GeV} \ T_H &= 163.8 \pm 4.1\ {
m MeV},\ \mu_B &= 36.3 \pm 10.2\ {
m MeV} \ {
m RHIC}\ ({
m Au-Au}),\ \sqrt{s} &= 200\ {
m GeV} \ T_H &= 169.2 \pm 5.2\ {
m MeV},\ \mu_B &= 29.5 \pm 11.2\ {
m MeV} \ {
m in\ general}\ \gamma_s \simeq 0.8 - 1.1 \end{aligned}$

[Andronic, Braun-Munzinger & Stachel 2006, Becattini & Manninen 2008]

Data Summary

Conclude:

The hadron abundances in <u>all high energy collisions</u> $(e^+e^- \text{ annihilation, hadron-hadron & nuclear collisions)}$ are specified by an ideal resonance gas of a universal temperature

$T_H \simeq 170 \pm 20$ MeV.

The transverse momentum spectra in elementary collisions are in accord with such "thermal" behavior; \exists broadening (flow) in nuclear collisions.

Strangeness production in elementary collisions is systematically reduced; strangeness suppression is weakened or removed in nuclear collisions.

Conclude:

The hadron abundances in <u>all high energy collisions</u> $(e^+e^- \text{ annihilation, hadron-hadron & nuclear collisions)}$ are specified by an ideal resonance gas of a universal temperature

$T_H \simeq 170 \pm 20$ MeV.

The transverse momentum spectra in elementary collisions are in accord with such "thermal" behavior; \exists broadening (flow) in nuclear collisions.

Strangeness production in elementary collisions is systematically reduced; strangeness suppression is weakened or removed in nuclear collisions. Why should high energy collisions produce statistical behavior?

Multiple parton interactions $\rightarrow \underline{\text{kinetic}}$ thermalization? nucleus-nucleus maybe; e^+e^- , hadron-hadron not

 \exists a "<u>non-kinetic</u>" mechanism producing statistical features? \exists a <u>common</u> origin of statistical hadron production in all high energy collisions?

Passing color charge disturbs vacuum, vacuum recovers by hadron production according to maximum entropy

What does that mean?

Color Confinement \Rightarrow Event Horizon \Rightarrow Hawking-Unruh Radiation [Castorina, Kharzeev, HS 2007]

2. Event Horizons & Hawking-Unruh Radiation

• Unruh radiation

[Unruh 1976]

event horizon arises for systems in uniform acceleration mass m in uniform acceleration a

 \exists event horizon: m cannot reach hidden region observer in hidden region cannot communicate with m m passes through vacuum, can use part of acceleration energy to excite vacuum fluctuations on-shell

"quantum entanglement"

 \sim Einstein-Podolsky-Rosen effect

observer on m as well as observer in hidden region have incomplete information: \Rightarrow each sees thermal radiation

observer on m: physical vacuum ~ thermal medium of temperature T_U observer in hidden region: passage of $m \rightarrow$ thermal radiation of temperature T_U Unruh temperature

 $T_U=rac{\hbar a}{2\pi c}$

relativistic (c) quantum (\hbar)effect

Unruh temperature

 $T_U={\hbar a\over 2\pi c}$

relativistic (c) quantum (\hbar)effect

Applications

• Black Holes

event horizon R=2GM (Schwarzschild radius)

$$egin{aligned} F &= ma = Grac{Mm}{R^2} \ \Rightarrow \ a = rac{GM}{R^2} = rac{1}{4GM} \ \Rightarrow \ T_U &= rac{a}{2\pi} = rac{1}{8\pi GM} = T_{BH} \end{aligned}$$

obtain temperature T_{BH} of Hawking radiation

[Hawking 1975]

• Schwinger Mechanism

in strong electric field \mathcal{E} , vacuum becomes unstable against pair production

 $F = e\mathcal{E} = (m/2)a$ leads to production of pair of charges of mass m

$$T_U = rac{a}{2\pi} = rac{e \mathcal{E}}{\pi m}$$

 $P(m,\mathcal{E})\sim \exp\{-m/T_U\}=\exp\{-\pi m^2/e\mathcal{E}\}$

obtain Schwinger production probability $P(m, \mathcal{E})$ [Schwinger 1951]

In general: [T. D. Lee 1986, Parikh & Wilczek 2000] event horizon \sim information transfer forbidden \Rightarrow quantum tunnelling \sim thermal radiation

Caveat

Color event horizon in QCD reasonable, but speculative Gravitation: space-time metric is given by

$$ds^2 = g_0\,dt^2 - g_0^{-1}dr^2 - d^2\Omega$$

for flat space, $g_0 = 1$; solution of Einstein equations gives

$$g_0 = \left(1 - rac{2GM}{r}
ight)$$

determines Schwarzschild radius R = 2GM as <u>event horizon</u> non-linear electrodynamics \rightarrow space compactification, photon trapping

 $QCD? \rightarrow million \ dollar \ question \ Nr. 7,$ Clay Mathematics Institute

3. Pair Production and String Breaking

Basic process:

two-jet e^+e^- annihilation, cms energy \sqrt{s} : $e^+e^- \rightarrow \gamma * \rightarrow q\bar{q} \rightarrow \text{ hadrons}$

 $q\bar{q}$ separate subject to constant confining force $F = \sigma$

$${
m initial} {
m quark} {
m velocity} \quad v_0 = rac{p}{\sqrt{p^2+m^2}} \;, \;\; p \simeq \sqrt{s}/2$$

Solve $ma = \sigma$ (hyperbolic motion): [Hosoya 1979, Horibe 1979]

$$egin{aligned} & ilde{x} = [1-\sqrt{1-v_0 ilde{t}+ ilde{t}^2}] \;,\; ilde{x} = x/x_0 \;,\; ilde{t} = t/x_0 \ & ext{with} & x_0 = rac{m}{\sigma}rac{1}{\sqrt{1-v_0^2}} = rac{m}{\sigma}\; \gamma = rac{1}{a}\; \gamma \end{aligned}$$

classical turning point $v(t^*) = 0$ at

$$x^*=x(t^*)=rac{m}{\sigma}\,\gamma\,[1{-}\sqrt{1-(v_0/2)^2}]\simeqrac{\sqrt{s}}{2\sigma}$$

 $q\bar{q}$ can separate arbitrarily far if \sqrt{s} is large enough

What's wrong?

classical turning point $v(t^*) = 0$ at

$$x^*=x(t^*)=rac{m}{\sigma}\,\gamma\,[1{-}\sqrt{1-(v_0/2)^2}]\simeqrac{\sqrt{s}}{2\sigma}$$

 $q\bar{q}$ can separate arbitrarily far if \sqrt{s} is large enough

What's wrong?

classical event horizon

Strong field \Rightarrow vacuum unstable against pair production [Schwinger 1951]

when $\sigma x > \sigma x_Q \equiv 2m$ string connecting $q\bar{q}$ breaks

Result:

quantum event horizon

Hadron production in e^+e^- annihilation:

"inside-outside cascade" [Bjorken 1976]

 $q\bar{q}$ flux tube has thickness

$$r_T\simeq \sqrt{rac{2}{\pi\sigma}}$$

 $q_1ar{q}_1$ at rest in cms, but

$$k_T \simeq rac{1}{r_T} \simeq \sqrt{rac{\pi\sigma}{2}}$$

 $qar{q}$ separation at $q_1ar{q}_1$ production

 $\sigma x(qar q)=2\sqrt{m^2+k_T^2}$

 q_1 screens \bar{q} from q, hence string breaking at

$$x_q \simeq rac{2}{\sigma} \sqrt{m^2 + (\pi \sigma/2)} \simeq \sqrt{2\pi/\sigma} \simeq 1 \,\, {
m fm}$$

new flux tubes $q\bar{q}_1$ and $\bar{q}q_1$ stretch $q_1\bar{q}_1$ to form new pair $q_2\bar{q}_2$

$$\sigma x(q_1ar q_1)=2\sqrt{m^2+k_T^2}$$

self-similar pattern:

temperature of H-U radiation: what acceleration?

 $(ar q_1 o ar q_2 o ar q_3 o ...)$

$$a=F/m \; \Rightarrow \; a_q = rac{\sigma}{w_q} = rac{\sigma}{\sqrt{m_q^2+k_q^2}}$$

string breaking & thickness determine $k_q\simeq \sqrt{\pi\sigma/2}$

$$\Rightarrow ~~ a_q \simeq rac{\sigma}{\sqrt{m_q^2 + (\sigma/2\pi)}}$$

for light quarks, $m_q \ll \sqrt{\sigma} \simeq 420$ MeV, hence

$$T=rac{a}{2\pi}\simeq \sqrt{rac{\sigma}{2\pi}}\simeq 170\,\,{
m MeV}$$

temperature of hadronic Hawking-Unruh radiation

hadronization pattern: hadron multiplicity?

thickness of classical "overstretched" string:

$$R_T^2 = rac{2}{\pi\sigma}\sum\limits_{k=0}^K rac{1}{2k+1} \simeq rac{2}{\pi\sigma} \ln 2K \simeq rac{2}{\pi\sigma} \ln \sqrt{s}$$

quantum breaking at $x_q \sim r_T$, hence hadron multiplicity

$$u(s) \simeq rac{R_T^2}{r_T^2} \simeq \ln \sqrt{s}$$

NB: parton evolution (minijets), multiple jets lead to stronger increase

4. Strangeness Production

[Becattini, Castorina, Manninen, HS 2008]

Unruh temperature \sim 1 / mass of secondary

we had for finite quark mass m_q

$$a_q \simeq rac{\sigma}{\sqrt{m_q^2 + (\sigma/2\pi)}} ~~\Rightarrow~~ T_U = rac{a_q}{2\pi}$$

produced meson consists of quarks \bar{q}_1 and q_2

meson containing two different quark masses will have average acceleration

$$ar{a}_{12} = rac{w_1 a_1 + w_2 a_2}{w_1 + w_2} = rac{2\sigma}{w_1 + w_2}; \hspace{0.3cm} w_i \simeq \sqrt{m_i^2 + (\sigma/2\pi)}$$

leading to

$$T(12)\simeq {a_{12}\over 2\pi}$$

easily extended to baryons; result: five temperatures

 $T(00) = T(000); \ T(s0); \ T(ss) = T(sss); \ T(00s); \ T(0ss)$

fully determined by σ and m_s

T	[GeV]
T(00)	0.164
T(0s)	0.156
T(ss)	0.148
T(000)	0.164
T(00s)	0.158
T(0ss)	0.153
T(sss)	0.148

for $\sigma \simeq 0.17~{\rm GeV^2}$ and $m_s \simeq 0.08~{\rm GeV}$ obtain temperatures: does this work?

analyse all high energy e^+e^- data

hadron production data in e^+e^- annhibition exist at

 $\sqrt{s} = 14, \ 22, \ 29, \ 35, \ 43, 91, 180 \ {
m GeV}$

(PETRA, PEP, LEP)

example:

long-lived hadrons produced at LEP for $\sqrt{s} = 91.25$ GeV

fit data in terms of σ and m_s

result:

 $\sigma=0.169\pm0.002~{
m GeV^2}$

 $m_s=0.083\,\,{
m GeV}$

 $\chi^2/{
m dof}=23/12$

standard values:

 $\sigma=0.195\pm0.030~{
m GeV^2}$

 $m_s = 0.095 \pm 0.025 \,\, {
m GeV}$

 $e^+e^- \ \sqrt{s} = 91.2 \ GeV$

species	me	asure	ed	fit
π^+	8.50	\pm	0.10	8.30
π^0	9.61	\pm	0.29	9.67
K^+	1.127	\pm	0.026	1.089
K^0	1.038	\pm	0.001	1.049
η	1.059	\pm	0.996	0.910
ω	1.024	\pm	0.059	0.971
p	0.519	\pm	0.018	0.557
η'	0.166	\pm	0.047	0.096
ϕ	0.0977	\pm	0.0058	0.1060
Λ	0.1943	\pm	0.0038	0.1891
Σ^+	0.0535	\pm	0.0052	0.0437
Σ^0	0.0389	\pm	0.0041	0.0444
Σ^{-}	0.0410	\pm	0.0037	0.0400
Ξ^-	0.01319	\pm	0.0005	0.01269
Ω	0.00062	\pm	0.0001	0.00077

illustration: ϕ production in H-U vs. standard statistical model

 ϕ production density in standard statistical model

$$\langle n
angle_{\phi} = 3 rac{Tm^2}{2\pi^2} \mathrm{K}_2(m/T) \,\, \gamma_S^2$$

with $T \simeq 165$ MeV, $\gamma_S \simeq 0.65$: $\langle n \rangle_{\phi} \simeq 1.85 \ \gamma_S^2 \simeq 0.078$ NB: $\gamma_S^2 \simeq 0.42$ reduces equilibrium rate by more than 2

 ϕ production density in H-U statistical model

$$\langle n
angle_{\phi} = 3 rac{T(ss)m^2}{2\pi^2} \mathrm{K}_2(m/T(ss))$$

with $T(ss) \simeq 148$ (vs. 164) MeV: $\langle n \rangle_{\phi} \simeq 0.077$

[NB: actual production rates \sim heavy flavor decay]

results from all data

Conclude

thermal hadron production in e^+e^- annihilation, includ'g strangeness suppression, is reproduced parameter-free as Hawking-Unruh radiation of QCD

Conclude

thermal hadron production in e^+e^- annihilation, includ'g strangeness suppression, is reproduced parameter-free as Hawking-Unruh radiation of QCD

 $\Rightarrow pp/p\bar{p}$ (straight-forward); heavy ions (interesting)

Heavy Ions

- elementary collisions
 - sequential $q\bar{q}$ pair production \Rightarrow independent hadron emission
- nuclear collisions
 - superposition of $q\bar{q}$ pair production, interference exogamous pairing, not hadronic scattering

result: increase in strange hadron temperatures

$$T(0s) \; o \; [T(00) + T(0s)]/2 \equiv T_r(0s) > T(0s)$$

 $T(ss) ~
ightarrow [T(0s)+T(0s)]/2 \equiv T_r(ss) > T(ss)$

T_r			Т
$T_r(00)$	T(00)	0.164	0.164
$T_r(0s)$	[T(00)+T(0,s)]/2	0.160	0.156
$T_r(ss)$	T(0s)	0.156	0.148
$T_r(00s)$	[2 T(00) + T(0s)]/3	0.161	0.158
$T_r(0ss)$	[T(00)+2 T(0s)]/3	0.159	0.153
$T_r(sss)$	T(0s)	0.156	0.148

corresponds to $\gamma_s \simeq 0.82$ (vs. 0.65) strangeness suppression is considerably reduced

Further nuclear effect: transverse momentum broadening

- \bullet initial state collisions \rightarrow rotation of emission axes
- quarks from different NN collisions not collinear
- exogamous pairing broadens p_T distribution
- NB: combination of initial & final state effects

5. Kinetic vs. Stochastic Thermalization

Kinetic thermalization:

time evolution of given non-equilibrium configuration (two parallel colliding parton beams) through multiple collisions to a time-independent equilibrium state (quark-gluon plasma)

requires

- many constituents
- sufficiently large interaction cross sections
- sufficiently long time

thermal hadron production in e^+e^- , $pp/p\bar{p}$?

Hagedorn: the emitted hadrons are "born into equilibrium"

Hawking-Unruh radiation:

- final state produced at random from the set of all states corresponding to temperature T_H determined by confining field
- this set of all final states is same as that produced by kinetic thermalization
- measurements cannot tell if the equilibrium was reached by thermal evolution or by throwing dice:

 \Rightarrow Ergodic Equivalence Principle \Leftarrow

gravitation \sim acceleration

kinetic \sim stochastic

• Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.

- Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.
- Hadronization temperature T_H : quark acceleration and deceleration in color field at (quantum) horizon.

- Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.
- Hadronization temperature T_H : quark acceleration and deceleration in color field at (quantum) horizon.
- Hadron multiplicity: $\nu(s) \sim \ln s$.

- Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.
- Hadronization temperature T_H : quark acceleration and deceleration in color field at (quantum) horizon.
- Hadron multiplicity: $\nu(s) \sim \ln s$.
- Strangeness suppression: T_H modified by strange quark mass.

- Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.
- Hadronization temperature T_H : quark acceleration and deceleration in color field at (quantum) horizon.
- Hadron multiplicity: $\nu(s) \sim \ln s$.
- Strangeness suppression: T_H modified by strange quark mass.
- Nuclear collisions: exogamous pairing reduces strangeness suppression, causes p_T broadening.

- Physical vacuum: event horizon for colored quarks & gluons; thermal hadrons: Hawking-Unruh radiation from quark tunnelling through event horizon.
- Hadronization temperature T_H : quark acceleration and deceleration in color field at (quantum) horizon.
- Hadron multiplicity: $\nu(s) \sim \ln s$.
- Strangeness suppression: T_H modified by strange quark mass.
- Nuclear collisions: exogamous pairing reduces strangeness suppression, causes p_T broadening.
- Given string tension σ and strange quark mass m_s , obtain parameter-free description of thermal hadron production in high energy interactions.

God does play dice, but He sometimes throws them where they can't be seen.

Stephen Hawking