The Phase Diagram of Strongly Interacting Matter Helmut Satz Universität Bielefeld, Germany based on joint work with Paolo Castorina, Rajiv Gavai and Krzysztof Redlich - 1. Introduction - 2. Hadronic Matter - 3. Deconfined Quarks The States of Matter 500 B. C. - Experiment ### The States of Matter 500 B. C. - Theory ### The States of Matter 500 B. C. - Theory # Advent of strong interaction: what happens to strongly interacting matter as function of temperature and density? - I. Ya. Pomeranchuk, Doklady Akad. Nauk SSSR 1951: - ...the finite size of hadrons implies a density limit to hadronic matter. - Ya. B. Zel'dovich, JETP Letters 1959: - ...use the equation of state to establish how many different baryons are really elementary. Back to basics: How does the underlying physics depend on where we are in the phase diagram? #### Conventional Basis of Critical Behavior - ullet confinement/deconfinement \sim spontaneous Z_2/Z_N symmetry breaking McLerran & Svetitsky 1981, Svetitsky & Yaffe 1982 - \bullet dynamical mass generation \sim spontaneous chiral symmetry breaking Pisarski & Wilczek 1984 consider phase structure for $\mu=0$: genuine thermal phase transitions (singularities in partition function) only for special values of $m_{u,d}, m_s$ but always \exists "transition region" with sharp variation of thermal observables: "rapid cross-over" How to understand this? What about density? #### What is deconfinement? #### confinement: a quark has within a range of about 1 fm one antiquark or two quarks to form a color singlet a quark has within a range of about 1 fm so many quarks and antiquarks that pairing becomes meaningless → high density phenomenon - 1. Introduction - 2. Hadronic Matter* - 3. Deconfined Quarks ^{*} with Paolo Castorina and Krzysztof Redlich, Eur. Phys. J. C 59 (2009) 67 #### Constituent Structure of Hadronic Matter - low μ : with increasing T, mesonic medium of increasing density mesons experience attraction \rightarrow resonance formation mesons are permeable (overlap) \rightarrow resonances \sim same size - low T: with increasing μ , baryonic medium of increasing density nucleons experience attraction \rightarrow formation of nuclei nucleons repel (hard core) \rightarrow nuclei grow linearly with A #### In both cases, \exists clustering ∃ relation between clustering and critical behavior? Frenkel 1939 Essam & Fisher1963 consider spin systems, e.g., Ising model - ullet for H=0, spontaneous Z_2 symmetry breaking o magnetization transition - but this can be translated into cluster formation and fusion critical behavior via cluster fusion: percolation ≡ critical behavior via spontaneous symmetry breaking Fisher 1967, Fortuin & Kasteleyn 1972, Coniglio & Klein 1980 • for $H \neq 0$, partition function is analytic, no thermal critical behavior but clustering & percolation persists Kertész 1989 ∃ geometic critical behavior In spin systems, \exists geometric critical behavior for all values of H; for H=0, this can become identical to thermal critical behavior, with non-analytic partition function & Z_2 exponents for $H \neq 0$, \exists Kertész line geometric transition with singular cluster behavior & percolation exponents For spin systems, thermal critical behavior ⊂ geometric critical behavior Also in QCD? Hadrons have intrinsic size, with increasing density they form clusters & eventually percolate #### Hadron Percolation \sim Color Deconfinement Pomeranchuk 1951 Baym 1979, Çelik, Karsch & S. 1980 #### Recall percolation • 2-d, with overlap: lilies on a pond • 3-d: N spheres of volume V_h in box of volume V, with overlap increase density n=N/V until largest cluster spans volume: percolation critical percolation density $n_p \simeq 0.34/V_h$ at $n = n_P$, 30 % of space filled by overlapping spheres, 70 % still empty how dense is the percolating cluster? critical cluster density $n_m \simeq 1.2/V_h$ Digal, Fortunato & S. 2004 $R_h \simeq 0.8 \; { m fm} \; \Rightarrow \; \; n_m \simeq {0.6 \over { m fm}^3} \; \; \; { m as \; deconfinement \; density}$ so far, cluster constituents were allowed arbitrary overlap what if they have a hard core? then ∃ jamming at high density, constituents have restricted spatial mobility ∃ jamming transition with mobility \sim order parameter Karsch & S. 1980 percolation for spheres of radius R_0 with a hard core of radius $R_{hc}=R_0/2$ Kratky 1988 hard cores tend to prevent dense clusters; higher density needed to achieve percolating jammed clusters $$n_b \simeq rac{2.0}{V_0} = rac{0.25}{V_{hc}} \simeq rac{1.0}{{ m fm}^3} \simeq 6 \ { m n}_0$$ for the deconfinement density of baryonic matter NB: additional uniform attractive potential \rightarrow first order thermal transition ∃ two percolation thresholds in strongly interacting matter: - mesonic matter, full overlap: $n_m \simeq 0.6/\mathrm{fm}^3$ - baryonic matter, hard core: $n_b \simeq 1.0/{ m fm}^3$ now apply to determine critical behavior If interactions are resonance dominated, interacting medium \equiv ideal resonance gas Beth & Uhlenbeck 1937; Dashen, Ma & Bernstein 1969 consider ideal resonance gas of all PDG states for $M \leq 2.5~{ m GeV}$ partition function $$\ln Z(T,\mu,\mu_S,V) = \ln Z_M(T,\mu_S,V) + \ln Z_B(T,\mu,\mu_S,V)$$ with $$\ln \; Z_M(T,V,\mu_S) = \sum\limits_{ ext{mesons i}} \ln \; Z_M^i(T,V,\mu_S)$$ $$\ln \ Z_B(T,\mu,\mu_S,V) = \sum\limits_{ ext{baryons i}} \ln \ Z_B^i(T,\mu,\mu_S,V)$$ for mesonic and baryonic contributions; enforce S=0 • low baryon-density limit: percolation of overlapping hadrons $$n_h(T_h,\mu)= rac{\ln Z(T,\mu,V)}{V}=0.6/ ext{fm}^3$$ Obtain at $\mu = 0$ $$T_h \simeq 180 \; \mathrm{MeV}$$ deconfinement temperature based on hadron percolation baryons included, but hard core effects ignored slow decrease of transition temperature with μ , due to associated production #### • high baryon-density limit: percolation/jamming of hard-core baryons density of pointlike baryons $$n_b^0 = rac{1}{V} iggl(rac{\partial \; T \ln Z_B(T,\mu,V)}{\partial \mu} iggr)$$ hard core \Rightarrow excluded volume (Van der Waals) $$n_b= rac{n_b^0}{1+V_{hc}n_b^0}$$ percolation threshold \rightarrow transition line $$n_b^c(T,\mu) = rac{2.0}{V_0} = rac{0.9}{{ m fm}^3} \simeq 5 \,\, n_0$$ combine the two mechanisms: phase diagram of hadronic matter - low baryon density: percolation of overlapping hadrons clustering \sim attraction - high baryon density:percolation of hard-core baryons nuclear attraction plus hard-core repulsion $\rightarrow 1^{st}$ order transition - 1. Introduction - 2. Hadronic Matter - 3. Deconfined Quarks* ^{*} with Rajiv Gavai and Paolo Castorina, arXiv:1003.6078 #### What happens beyond the limits? There are two roads to deconfinement: - Increase quark density so that several quarks/antiquarks within confinement radius → pairing ambiguous or meaningless. - Increase temperature so much that gluon screening forbids communication between quarks/antiquarks distance r apart. Illustration of the second case: heavy quark correlations Quarks separated by about 1 fm no longer "see" each other for $T \geq T_c$ mesonic matter: when quark density is high enough, output limits of the state baryonic matter? in hadrons & in hadronic matter \exists chiral symmetry breaking \Rightarrow confined quarks acquire effective mass $M_q \simeq 300~{ m MeV}$ effective size $R_q \simeq R_h/3 \simeq 0.3~{ m fm}$ through surrounding gluon cloud what happens at deconfinement? Possible scenarios: - ullet plasma of massless quarks and gluons, ground state shift re physical vacuum ullet bag pressure B - ullet plasma of massive "constituent" quarks, all gluon effects in M_q "effective" quark? \sim depends on how you look: - hadronic distances, soft probes: massive constituent quark (additive quark model) - sub-hadronic distances, hard probes: bare current quark (deep inelastic scattering) Origin of constituent quark mass? quark polarizes gluon medium → gluon cloud around quark $$M_q \sim m_q + \epsilon_g r^3$$ where ϵ_g is the change in energy density of the gluon field due to the presence of the quark #### QCD: non-abelian gluon screening limits "visibility" range to r_q \rightarrow energy density of gluon cloud and screening radius determine "asymptotic" constituent quark mass \sim gluon cloud relation to chiral symmetry breaking? estimates from perturbative QCD Politzer 1976 effective quark mass $M_q^{\mathrm{eff}}(r)$ at distance r $$M_q^{ m eff}(r)=4\;g^2(r)\;r^2\left[rac{g^2(r)}{g^2(r_0)} ight]^{-d}\langlear\psi\psi(r_0) angle$$ with reference point r_0 for determination of $\langle \bar{\psi}\psi(r_0)\rangle$; coupling is $$g^2(r) = rac{16\pi^2}{9} rac{1}{\ln[1/(r^2\Lambda_{ m QCD}^2)]}$$ for $$N_f = 3$$, $N_c = 3 \rightarrow d = 4/9$ constituent quark mass is defined as solution of $$M_q=M_q^{ m eff}(r=1/2M_q)$$ giving M_q in terms of r_0 and $\langle \bar{\psi}\psi(r_0) \rangle$ With $r_0 = 1/2M_q$ (meeting of perturbative and non-perturbative) $$M_q^3 = \left\{ rac{16\pi^2}{9} \, rac{1}{\ln(4M_q^2/\Lambda_{QCD}^2)} ight\} \langle ar{\psi}\psi(r_0) angle$$ and with $\Lambda_{QCD}=0.2~{ m GeV},~\langle ar{\psi}\psi(r_0) angle^{1/3}=0.2~{ m GeV}$ $$M_q = 375 \; { m MeV}; \quad R_q = 0.26 \; { m fm}$$ constituent quark mass determined by chiral condensate how does $\langle \bar{\psi}\psi(T)\rangle^{1/3}$ change with temperature? gluon cloud evaporates, constituent quark mass vanishes as $T o T_c$ So there are two ways to make the effective quark mass vanish - decrease interquark distance - increase temperature now consider different $T - \mu$ regions: - $\mu \simeq 0$, $T \simeq T_c$: interquark distance ~ 1 fm but hot medium makes gluon cloud evaporate $\Rightarrow M_q^{\text{eff}} \simeq 0$ - $T \simeq 0$, $\mu \simeq \mu_c$: interquark distance ~ 1 fm and cold medium, gluon cloud does not evaporate $\Rightarrow M_q^{\text{eff}} \simeq M_q$ in cold dense matter, $M_q^{\rm eff} \to 0$ requires short interquark distance \sim constituent quark percolation intermediate massive quark plasma for 0.3 < r < 1 fm and $T \lesssim T_c$ color deconfinement, but chiral symmetry remains broken; constituents: massive colored quarks, gluons only as quark dressing baryon density limit through quark percolation $n_b^c \simeq 3.5~{\rm fm^{-3}}$ - nuclear matter $n_b \leq 0.9 \text{ fm}^{-3}$ - quark plasma $0.9 \text{ fm}^{-3} \leq n_b \leq 3.5 \text{ fm}^{-3}$ - \bullet quark-gluon plasma $n_b \geq 3.5 \ \mathrm{fm^{-3}}$ #### **Transitions:** #### Nature of massive quark plasma - massive quarks and (at higher T) some massive antiquarks - no gluons, "chiral pions"? no color confinement, but colored bound states possible anti-triplet qq bound states = diquarks (genuine two-body states, not Cooper pairs) attractive interaction for $qq \to { m color}$ anti-triplet, $q \bar q \to { m color}$ singlet, with same functional form of potential in r,T Bielefeld Lattice Group 2002 constituent quark plasma can be structurally similar to hadron gas: - massive quarks - ullet (antitriplet) diquark and (singlet) $qar{q}$ states - higher excitations (colored resonance gas) - also possible: glueballs, chiral pions - all states have intrinsic finite size, hence ∃ percolation limit quark plasma has effective color degrees of freedom - ullet hadron gas: $d_{ ext{eff}}=1$ - ullet massive quark plasma: $d_{ ext{eff}}=N_c$ - ullet quark-gluon plasma: $d_{ ext{eff}} = N_c^2$ relation to quarkyonic matter? McLerran & Pisarski 2007 phase structure of QCD for $N_c \to \infty$: • confined hadronic matter is purely mesonic, since $$n_b \sim \exp\{(\mu - M)\}$$, and μ , $M \sim N_c$. • quark-gluon plasma becomes gluon plasma, since gluon sector $$\sim N_c^2$$, quark sector $\sim N_c$. • quarkyonic matter proposed to have color degrees of freedom $$\sim N_c$$, hence no "free" gluons. ullet quark plasma, with $n_q \sim N_c(\mu_q^2 - M_q^2)$, contracted to $\mu_q = M_q$. #### Conclusion - Three State Phase Diagram (modulo color superconductor) - Hadronic matter: quarks and gluons confined to hadrons, broken chiral symmetry - Quark plasma: massive deconfined quarks, broken chiral symmetry - Quark-gluon plasma: deconfined massless quarks and gluons, restored chiral symmetry