Physics at FCC-ee

Tadeusz Lesiak

Institute of Nuclear Physics Polish Academy of Sciences, Kraków on behalf of the FCC-ee study group

Outline

- 1. The Future Circular Collider Study
- 2. FCC-ee Electroweak Studies at the Z Pole, ZH, W+W- and ttbar thresholds
- 3. QCD Physics at FCC-ee

FCC – Future Circular Collider

FCC - international collaboration hosted at CERN,

goal: construction of ~100 km circumference

tunnel infrastructure in Geveva area

to host:

- e-e+ collider: FCC-ee potential first step preceding the FCC-pp
- p-p collider: FCC-hh flagship, 100 TeV p-p, 16T Nb₃Sn magnets
- ✓ e-p collider: FCC-he additional option of e-p collisions; e- from ERL

- 136 institutes
- 34 countries
- 32 industrial partners

- EuroCirCol project
- EASITrain ITN

The Conceptual Design Report issued in January, 2019:

(~1364 contributors, 351 institutes – a truly global collaboration and effort

- as suggested by the EPPSU'13 https://fcc-cdr.web.cern.ch/

The FCC-ee European Particle Physics **Strategy Update (EPPSU) document:**

https://cds.cern.ch/record/2653669

FCC week 2019, Brussels, 24-28, June

http://fccweek2019.web.cern.ch/

FCC Integrated Project Technical Schedule

The FCC project plan is fully integrated with HL-LHC exploitation and provides for seamless further continuation of particle physics in Europe

FCC-ee Operation Model

working point	Design luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	total luminosity (2 IPs)/ yr	physics goal	run time [years]		
Z first 2 years	115 (50% nominal)	24 ab ⁻¹ /year	150 ab ⁻¹	4		
<i>Z</i> later	230	48 ab ⁻¹ /year				
W	28	6 ab ⁻¹ /year	10 ab ⁻¹	2		
Н	8.5	1.7 ab ⁻¹ /year	5 ab ⁻¹	3		
machine modification for RF installation & rearrangement: 1 year						
top 1st year (350 GeV)	0.95 (50% nominal)	0.2 ab ⁻¹ /year	0.2 ab ⁻¹	1		
top later (365 GeV)	1.55	0.34 ab ⁻¹ /year	1.5 ab ⁻¹	4		

total program duration: 15 years (including machine modifications)

phase 1 (Z, W, H): 9 years, phase 2 (top): 6 years

(Total luminosity calculation based on 185 physics days per year, 75% efficiency, design luminosities and 10% overall contingency)

FCC-ee Collider Parameters

two rings (separate for e⁺ and e⁻); two interaction points (3 & 4 IPs under study), flat beams with very strong focusing ($\beta^*_y \approx 1$ mm); top-up injection, crab waist crossing optics, non-zero (30 mrad) crossing angle; $P_{SR} = 50$ MW four working points:

Parameter	$\sqrt{s} = M_Z$	$\sqrt{s} = M(WW)$	$\sqrt{s} = M(ZH)$	$\sqrt{s} = M(t\bar{t})$	LEP2
E _{beam} [GeV]	45.6	80	120	175 - 182.5	104.5
Beam current [mA]	1390	147	29	5.4	4
No. Bunches/beam	16 640	2 000	393	48	4
SR energy loss/turn [GeV]	0.036	0.34	1.72	9.21	3.34
SR power [MW]	100	100	100	100	22
SR energy loss/turn [GeV]	0.036	0.34	1.72	9.21	3,4
RF Voltage [GV]	0.1	0.44	2.0	10.9	3.5
β* _x [m]	0.15	0.2	0.3	1	1.5
β* _y [mm]	0.8	1	1	1.6	50
ε_{x} [nm]	0.27	0.28	0.63	1.46	19.3
ε_{y} [pm]	1	1.7	1.3	2.9	230
L (10 ³⁴ cm ⁻² s ⁻¹)/IP	230	28	8.5	1.55	0.012
Statistics (2expts)	5x10 ¹² Z / 6yrs	3x10 ⁷ WW/2yr	10 ⁶ ZH/5yrs	10 ⁶ tt / 5yrs	
· · · · · · · · · · · · · · · · · · ·		3x10 ⁷ WW/2yr		_	0.012

FCC-ee Collider Parameters

FCC-ee Detectors: CLD

CLD - detector model for FCC-ee derived from CLICdp model and optimized for FCC-ee experimental conditions

- Full silicon tracking system (≥12 hits/track)
- High granularity calorimeters optimized for particle flow reconstruction
- Superconducting coil (2T) located outside the calorimeters
- Steel return yoke containing muon chambers
- Forward region reserved for Machine-Detector Interface and LumiCal
- Tracking fully efficient from 700 MeV
- $\delta pT \approx 4 \times 10^{-5} \text{ GeV}^{-1}$ (for muons p=100 GeV)
- $\Delta E/E = (3-5)\%$ (barrel region)
- Efficiency for electrons and gammas > 95%

FCC-ee Detectors: IDEA

IDEA – new, innovative, possibly more cost-effective design

- Silicon vertex detector
 (5 layers of pixels (MAPS) 30x30 μm², point resolution of 5 μm)
- Short-drift, ultra light wire chamber (90%/10% He/iC₄H₁₀, momentum resolution 0.25%, impact parameter resolution 4 μm)
- Dual-readout calorimeter (scintillating fibers sensitive to all charged particles, clear fibers sensitive only to Cherenkov light; $\frac{\sigma}{E} = \frac{11\%}{\sqrt{E}} + 1\%$
- Thin and light solenoid coil inside calorimetric system (2T, stored energy 170 MJ)

FCC-ee Higgs Physics

The ZH threshold never studied in e⁺e⁻

FCC-ee

 $N_{ZH} \sim 10^6$

✓ The Higgs production measured inclusively from its presence as a recoil to the Z in the process e⁺e⁻→ ZH

$$m^{\mathbf{2}}_{\rm recoil} = (\sqrt{s} - E_{\mathbf{Z}})^{\mathbf{2}} - p^{\mathbf{2}}_{\mathbf{Z}}$$

✓ Absolute measurement of the g_{HZZ} → Γ_H → other couplings g_{ZXX} (X = b, c, τ, μ, g, γ,...)

- ✓ The couplings of the 3rd and 2nd generation fermions accessible (most with sub-percent precision)
- √ This precision yields the New Physics (NP) sensitivity ~10 TeV
- ✓ A possible pattern of deviations can discriminate between different BSM models
- ✓ See the talks: Higgs measurements at the FCC-ee (abstract 280)

 Global EFT fits from Higgs at the FCC-ee (abstract 283)

4	
Luminosity [ab ⁻¹]	6.5
No. of years	7
$\delta \Gamma_H / \Gamma_H$ [%]	1.6
$\delta g_{HZZ}/g_{HZZ}$ [%]	0.22
$\delta g_{HWW}/g_{HWW}$ [%]	0.47
$\delta g_{Hbar{b}}/g_{Hbar{b}}$ [%]	0.68
$\delta g_{Hc\overline{c}}/g_{Hc\overline{c}}$ [%]	1.23
$\delta g_{Hgg}/g_{Hgg}$ [%]	1.03
$\delta g_{H\tau\tau}/g_{H\tau\tau}$ [%]	0.80
$\delta g_{H\mu\mu}/g_{H\mu\mu}$ [%]	8.6
$\delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$ [%]	3.8

FCC-ee Electroweak Physics at the Z Pole

 $N_Z = 1.7 \times 10^7$

FCC-ee $N_Z \sim 5 \times 10^{12}$

Extreme precision of EW observables

- Z pole scan
- Beam energy calibration is crucial
- Precision limited by beam energy calibration and theoretical uncertainties

Observable	present value	FCC – ee	FCC – ee	Improvement
	±error	Stat.	Syst.	factor
m_Z [keV/c ²]	91186700 ± 2200	5	100	22
$Γ_Z$ [keV]	2495200 ± 2300	8	100	23
R_l^Z [×10 ³]	20767 ± 25	0.06	0.2 - 1	125 – 25
$\alpha_S(m_Z)$ [×10 ⁴]	1196 ± 30	0.1	0.4 - 1.6	75 – 19
$R_b \ [\times 10^6]$	216290 ± 660	0.3	< 60	11
$N_{\nu} \ [\times 10^3]$	2991 ± 7	0.005	1	7
$\sin^2 \theta_W^{\rm eff}$ [×10 ⁶]	231480 ± 160	3	2 - 5	44 – 28
$1/\alpha_{\text{QED}}(m_Z)$ [×10 ³]	128952 ± 14	4	small	3.5
$A_{\rm FB,0}^b \ [\times 10^4]$	992 ± 16	0.02	1 – 3	16 – 5
$A_{FB}^{pol,\tau}$ [×10 ⁴]	1498 ± 49	0.15	< 2	25

$$egin{aligned} \mathbf{R_l} &= rac{\Gamma_{ ext{had}}}{\Gamma_{ ext{l}ar{ ext{l}}}} egin{aligned} \mathbf{N_{
u}} &= \left(rac{\Gamma_{ ext{l}}}{\Gamma_{
u}}
ight)_{ ext{SM}} \cdot \left(\sqrt{rac{12\pi R_l}{\mathbf{M_Z^2}\sigma_{ ext{had}}^{ ext{peak},0}}} - \mathbf{R_l} - \mathbf{3}
ight) \ \mathcal{A}_{ ext{f}} &= rac{2\mathbf{g_V^f}\mathbf{g_A^f}}{(\mathbf{g_V^f})^2 + (\mathbf{g_A^f})^2} \ \mathbf{A_{FB}^f} &= rac{\sigma_{ ext{F}} - \sigma_{ ext{B}}}{\sigma_{ ext{F}} + \sigma_{ ext{B}}} = rac{\mathbf{3}}{4}\mathcal{A}_{ ext{e}}\mathcal{A}_{ ext{f}} \end{array} egin{aligned} &= \frac{1}{4}\left(1 - rac{\mathbf{g_V^f}}{\mathbf{g_A^f}}
ight) \end{aligned}$$

- The direct measurement of $\alpha_{QED}(m_Z^2)$ from the muon FB asymmetry just below and just above the Z pole (as part of Z resonance scan – no need of extrapolation from $\alpha_{OFD}(0)$)
- See the talk "Electroweak physics at FCC-ee" (abstract 281)

10 T.Lesiak 11. July 2019 **Physics at FCC-ee EPS 2019**

FCC-ee Top and W Physics

The WW threshold scan

LEP

 $N_{WW} = 1.1 \times \times 10^4$

FCC-ee

 $N_{WW} \sim 3 \times 10^7$

Observable	present value	FCC – ee	FCC – ee	Improvement	
	±error	Stat.	Syst.	factor	
m_W [MeV/c ²]	80379 ± 12	0.6	0.3	18	
Γ_W [MeV]	2085 ± 42	1.5	0.3	27	

See the talk " Electroweak physics at FCC-ee" (abstract 281)

The t-tbar threshold never studied in e⁺e⁻

FCC-ee

 $N_{t\bar{t}} \sim 10^6$

Observable	present va	alue	FCC – ee	FCC – ee	Improvement
	±error		Stat.	Syst.	factor
m_t [MeV/c ²]	172900 ± 4	400	20	small	20
Γ_t [MeV]	1420 ± 19	90	40	small	5

See the talk "Top quark physics at the FCC-ee" (abstract 284)

Assets of QCD Studies in e⁺e⁻ Collisions

- Extremely clean environment
- ✓ Fully controlled QED initial-state with known kinematics
- ✓ Controlled QCD radiation only from the final state
- ✓ Well defined quark, gluon and heavy-quark jets.
- ✓ Relatively small non-perturbative QCD uncertainties (lack of QCD underlying event, no PDFs....)
- ✓ Fragmentation and hadronization direct and clean
- ✓ Large statistical samples
- ✓ Studies of γ-γ SM and BSM collisions (in Equivalent Photon Approximation (EPA))
- **√** ...

Reminder: QCD Studies at LEP

- ✓ The successful running of LEP yielded a crucial impact on the understanding of QCD (~240 publications)
- ✓ The QCD highlights from LEP:
 - Studies of hadronic event shapes
 - Measurements of α_s
 - Determinations of QCD colour factors and tests of the non-Abelian gauge structure of QCD
 - Studies of differences between quark and gluon jets
 - Tests of Monte Carlo shower and hadronization models
 - Studies of QCD with heavy quarks
 - Advances in two-photon scattering processes
 - □ ..

No. of hadronic events	LEP	FCC-ee
$\sqrt{ m s}\sim 91~{ m GeV}$	10 ⁷	10 ¹²
$\sqrt{ m s}\sim 160{ m GeV}$	10 ⁴	10 ⁷
$\sqrt{ m s}\sim 240{ m GeV}$	-	10 ⁵

The QCD Objectives of FCC-ee

- \checkmark High precision α_s determination (with the accuracy at the % level), from
 - hadronic τ decays
 - Jet rates, event shapes
 - hadronic Z decays
 - hadronic W decays
- ✓ High precision studies of perturbative parton radiation including:
 - jet rates and event shapes
 - jet substructure,
 - quark/gluon/heavy-quark discrimination
 - q,g,b,c parton-to-hadron fragmentation functions
- ✓ High precision non-perturbative QCD studies including:
 - colour reconnection
 - final-state multiparticle correlations
- ✓ High precision hadronization studies
 - very rare hadron production and decays

The QCD Coupling Constant α_s at FCC-ee \P

- The α_s determines the strength of the strong interaction at a given scale
- The unique free parameter of QCD in the limit $m_a \rightarrow 0$
- The α_s is the least precisely measured of all four couplings of fundamental interactions:

$$\Delta \alpha \sim 10^{-10}$$

$$\Delta G_F \sim 10^{-7}$$

$$\Delta G \sim 10^{-5}$$

$$\Delta \alpha_S \sim 10^{-2}$$

- √ huge statistics of hadronic
 - τ, W and Z decays
 - N³L0 perturbative QCD calculations

$$\Delta \alpha_S \sim 10^{-3}$$

- The α_s is determined by comparing now 6 groups of experimental observables to pQCD NNLO and N³LO predictions
- ✓ The global average is provided at the Z pole

The QCD Coupling Constant α_s at FCC-ee

τ decays: The relevant quantity:

$$\mathbf{R}_{\tau} = \frac{\mathbf{\Gamma}(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\mathbf{\Gamma}(\tau^{-} \to \nu_{\tau} \mathbf{e}^{-} \bar{\nu}_{\mathbf{e}})}$$

$$\mathbf{R}_{\tau} = \frac{\mathbf{\Gamma}(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\mathbf{\Gamma}(\tau^{-} \to \nu_{\tau} \mathbf{e}^{-} \bar{\nu}_{\mathbf{e}})} \qquad \mathbf{R}_{\tau} = \mathbf{S}_{\mathrm{EW}} \mathbf{N}_{\mathbf{C}} \left(\mathbf{1} + \sum_{\mathbf{n}=1}^{\mathbf{4}} \mathbf{c}_{\mathbf{n}} (\frac{\alpha_{\mathbf{S}}}{\pi})^{\mathbf{n}} + \mathcal{O}(\alpha_{\mathbf{S}}^{\mathbf{5}}) + \delta_{\mathrm{np}} \right)$$

✓ The current experimental value:

$$\mathbf{R}_{ au, \mathrm{exp}} = \mathbf{3.4697} \pm \mathbf{0.0080} \ \ (\pm \mathbf{0.23\%})$$

✓ The current determination of the α_s :

$$\alpha_{\mathbf{S}}(\mathbf{m_{Z}}) = \mathbf{0.1192} \pm \mathbf{0.0018} \ \ (\pm 1.5\%)$$

$$N(Z \to \tau^+ \tau^-) \sim 10^{11}$$

FCC-ee $N(Z o au^+ au^-) \sim 10^{11}$ & theoretical progress $\delta \alpha_{f S}({f m_Z})/\alpha_{f S}({f m_Z}) < 1\%$

The event shapes, like e.g. thrust (T), C-parameter...

$$T = \max_{\vec{n}} \left(\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| \right) / \left(\sum_{i=1}^{n} |\vec{p_i}| \right) \quad C = \frac{3}{2} \frac{\sum_{i,j=1}^{n} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_{i=1}^{n} |\vec{p_i}|)^2}$$

$$C = \frac{3}{2} \frac{\sum_{i,j=1}^{n} |\vec{p}_i| |\vec{p}_j| \sin^2 \theta_{ij}}{(\sum_{i=1}^{n} |\vec{p}_i|)^2}$$

and N jet cross sections are computed at N^{2,3}LO+N²LL accuracy

✓ The current combination of LEP results yields

$$\delta lpha_{\mathbf{S}}(\mathbf{m_Z})/lpha_{\mathbf{S}}(\mathbf{m_Z}) < \mathbf{2.9}\%$$

FCC-ee
$$N(Z \to \text{hadrons}) \sim 10^{12}$$

EPS 2019

$$\delta \alpha_{\mathbf{S}}(\mathbf{m_Z})/\alpha_{\mathbf{S}}(\mathbf{m_Z}) < 1\%$$

11. July 2019

& theoretical progress

The QCD Coupling Constant α_s at FCC-ee

Hadronic Z decays:

 \checkmark at LEP, the α_S was extracted from the fits to the three Z-peak observables

$$\sigma_l^0 = rac{12\pi}{m_Z} rac{\Gamma_l^2}{\Gamma_Z^2}$$
 $\sigma_{
m had}^0 = rac{12\pi}{m_Z} rac{\Gamma_e \Gamma_{
m had}}{\Gamma_Z^2}$
 $R_l^0 = rac{\Gamma(Z o {
m had})}{\Gamma(Z o l)} = rac{\Gamma_{
m had}}{\Gamma_l}$

 \checkmark computable at N³LO:

$$R_l^0 = R_Z^{\text{EW}} N_C \left(1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_S}{\pi}\right)^n + \mathcal{O}(\alpha_S^5) + \delta_{\text{m}} + \delta_{\text{np}}\right)$$

✓ The current α_S value:

$$\alpha_{\mathbf{S}}(\mathbf{m_{Z}}) = \mathbf{0.1196} \pm \mathbf{0.0030} \ (\pm 2.5\%)$$

FCC-ee $N_Z \sim 5 \times 10^{12}$

and theoretical progress

The QCD Coupling Constant α_s at FCC-ee

Hadronic W decays:

✓ The observable: ratio of hadronic to leptonic W decay widths

$$R_W = \frac{\Gamma_{\text{had}}^W}{\Gamma_l^W}$$

$$\Gamma_{W,\text{had}} = \frac{\sqrt{2}}{4\pi} G_F m_W^3 \sum_{\text{quarks i,j}} |V_{i,j}|^2 \left[1 + \sum_{k=1}^4 \left(\frac{\alpha_S}{\pi} \right)^k + \delta_{\text{EW}}(\alpha_{\text{QED}}) + \delta_{\text{mixed}}(\alpha_{\text{QED}}\alpha_S) \right]$$
[EWK: -0.35%]

✓ computable at $N^{2,3}LO$:

 \checkmark The LEP $\alpha_{\rm S}$ value: $\alpha_{\rm S}({f m_Z})=0.117\pm0.040~(\pm35\%)$

FCC-ee
$$N_{WW}\sim 3 imes 10^7$$
 $\delta lpha_{f S}({f m_Z})/lpha_{f S}({f m_Z})<{f 0.3}\%$

and theoretical progress

The precision on α_S influences all QCD cross-sections

and decays ...

Quantity	FCC-ee	future param.unc. Ma	in source	
Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$	
R_b [10 ⁻⁵]	6	< 1	$\delta lpha_s$	
R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$	
David d'Enterria FCC Phys. Workshop, CERN, Jan 2018				

High Precision Studies of Perturbative Parton Radiation – Jet Rates and Event Shapes

 \checkmark Jet rates are expected to be measured with the accuracy 10^{-6} (at the Z pole), including

Rate of	up to k _T [GeV]	In(y)
4-jet events	~30	~2
5-jet-events	~20	~3
6-jet events	~12	~4
7-jet events	~7.5	~5

jet resolution parameter: $y = \frac{k_T^2}{s}$

Comparison with theoretical calculations with accuracy beyond the NNLO+NNLL ($\rightarrow \alpha_s$ extraction)

- ✓ Event shapes are affected by logarithmic enhancements (resummed up to N³LL: pQCD,SCET) and hadronization corrections (estimated from MC generators)
- ✓ The FCC-ee operating at different CM energies will provide much tighter control on resummation and hadronization effects in event shape distributions

$$\sqrt{s} = 91.2 \text{ GeV}$$

non-perturbative uncertainties reduced from 9% to 2%

High Precision Studies of Perturbative Parton Radiation – Jet Substructure and Parton Flavour Studies

- ✓ **Goal:** parton flavour discrimination (PFD): quark gluon; (u,d,s) c b
- ✓ Such separation crucial for precision SM measurements and BSM searches
- ✓ The PFD is based on the comparison of jet substructure properties to MC predictions
- $m{\checkmark}$ Quark-gluon PFD at LEP: studies of ${f Z}
 ightarrow {f b} ar{f q}$ (statistically limited)
- ✓ FCC-ee: 10⁵ more Zs
 - a unique sample of 10 $^4~H
 ightarrow gg$ events FCC-ee as a "pure gluon" factory
- ✓ The current level of discrepacies between MC generators (hadron level distributions):

The generalized angularities:

$$\lambda_{eta}^{\kappa} = \sum_{\mathbf{i} \in \mathcal{I}} \mathbf{Z}_{\mathbf{i}}^{\kappa} \mathbf{ heta}_{\mathbf{i}}^{eta}$$

Z_i – the momentum fraction of particle i

• the angular fraction of particle i w.r.t. the jet radius

Significant variations between generators for gluon distributions

FCC-ee: large samples of top, W, Z, H decays to b and c quarks ${f g} o {f b} {f b} ({f cc})$ important progress in heavy-quark fragmentation and in gluon fragmentation

High Precision Non-Perturbative QCD Colour Reconnection

- ✓ The uncertainties due to non-perturbative QCD effects (colour reconnection, hadronization, final state interactions...) impact many high-precision SM studies
- ✓ e⁺e⁻ collisions offer favourable conditions to control them
- ✓ Colour Reconnection (CR): strong interaction (colour flow) between colour singlet parton systems of different origin w^+ q_1 w^+
- ✓ LEP2: exclusion (99.5% CL) of the no-CR null hypothesis

- \checkmark FCC-ee: $\Delta m_W \sim 1~{
 m MeV}$ (threshold scan) & the 3x10³ gain in the number of WW pairs
- ✓ The shift in the reconstructed m(W) expected from different PYTHIA 8 CR models:

small (S): maximal (L): medium size (M:

$E_{\rm cm}$	$\langle \delta \overline{m}_{\rm W} \rangle ({\rm MeV})$							
(GeV)	I	II	II'	GM-I	GM-II	GM-III	CS	
170	+18	-14	-6	-41	+49	+2	+7	
240	+95	+29	+25	-74	+400	+104	+9	
350	+72	+18	+16	-50	+369	+60	+4	

High Precision Non-Perturbative QCD — Parton Hadronization

- ✓ Parton Hadronization (PH) phenomenological models MC generators
- The understanding of many aspects of PH like
 - baryon production
 - strangeness production
 - final state correlations
 - colour string dynamics
 - ____
- can profit significantly from the FCC-ee (hadronic) data samples:
 - large statistics
 - excellent tracking and calorimetry
 - efficient hadron identification
 - **-** ...

Summary

- ✓ The FCC-ee project aims at collection of huge data samples at the four relevant working points: Z-pole, ZH, WW and ttbar thresholds
- ✓ The uncertainties of the most important electroweak observables are expected to be improved by a factor of at least 10
- ✓ The QCD program of the FCC-ee encompasses
 - High precision α_s determination
 - High precision studies of perturbative parton radiation
 - High precision non-perturbative QCD studies
 - High precision hadronization studies

BACKUP

EU H2020 Design Study EuroCirCol

European Union Horizon 2020 program:

UNIVERSITY OF TWENTE. INFN

UNIVERSITÄT DARMSTADT

EuroCirCol consortium, federating 16 partners, 1 from Japan and 1 IEIO

- 3 MEURO co-funding
- Started June 2015, ends in Dec 2019
- 15 European beneficiaries & KEK & associated FNAL, BNL, LBL, NHFML

Covers FCC-hh key work packages:

- Optics design (arc & IR)
- Cryogenic beam vacuum system design including beam tests at ANKA
- 16 T dipole design, construction folder for demonstrator magnets

EU H2020 Marie Curie ITN EASITrain

European Advanced Superconductivity Innovation and Training Network Funding 15 Early Stage Researchers over 3 years & training in key areas

- SC wires at low temperatures for magnets (Nb₃Sn, MgB₂, HTS)
- Superconducting thin films for RF and beam screen (Nb₃Sn, TI)
- **Electrohydraulic forming for RF structures**
- **Turbocompressor for Nelium refrigeration**
- Magnet cooling architectures
- started 1 October 2017

13 **Beneficiaries**

12 Partners

instruments

BILFINGER

Results of FCC Conceptual Design Study

Study Documentation:

4 CDR volumes submitted to EPJ in December 2018.

- FCC Physics Opportunities
- •FCC-ee
- •FCC-hh
- •HE-LHC
- Preprints available since 15 January 2019
 http://fcc-cdr.web.cern.ch/

CDR presentation during welcome event this evening.

Paper copies can be requested at

http://get-fcc-cdr.web.cern.ch

FCC Study input for EPPSU

Future Circular Collider

4 ten-page strategy documents + addenda submitted to ESG in December 2018.

- •The FCC integrated program
- Individual documents for FCC-ee and FC C-hh and HE-LHC
- Preprints available since15 January 2019 on
- http://fcc-cdr.web.cern.ch/

FCC-ee basic design choices

double ring e⁺e⁻ collider ~100 km

follows footprint of FCC-hh, except around IPs

asymmetric IR layout & optics to limit synchrotron radiation towards the detector

presently 2 IPs (alternative layouts with 3 or 4 IPs under study), large horizontal crossing angle 30 mrad, crab-waist optics

50 MW/beam at all beam energies; tapering of arc magnet strengths to match local energy

top-up injection scheme; requires booster synchrotron in collider tunnel

K. Oide et al.

parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45	80	120	182.5
beam current [mA]	1390	147	29	5.4
no. bunches/beam	16640	2000	393	48
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.3
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.1	0.44	2.0	10.9
long. damping time [turns]	1281	235	70	20
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	1.6
horiz. geometric emittance [nm]	0.27	0.28	0.63	1.46
vert. geom. emittance [pm]	1.0	1.7	1.3	2.9
bunch length with SR / BS [mm]	3.5 / 12.1	3.0 / 6.0	3.3 / 5.3	2.0 / 2.5
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	230	28	8.5	1.55
beam lifetime rad Bhabha / BS [min]	68 / >200	49 / >1000	38 / 18	40 / 18

FCC-ee luminosity versus energy

luminosity [10³⁴ cm⁻²s⁻¹] (2 IPs)

c.m. energy [GeV]

FCC-ee luminosity in perspective

c.m. energy [GeV]

figure of merit for lepton colliders

FCC-ee: a sustainable accelerator

luminosity per wall plug power [10³⁴ cm⁻²s⁻¹/ 100 MW]

electricity cost ~200 euro per Higgs boson

Tunnel integration in arcs

FCC-ee – EW factory: performance

FCC-ee reaches highest luminosities & energies by combining ingredients and well-proven concepts of several recent colliders:

B-factories: KEKB & PEP-II: double-ring lepton colliders, high beam currents, top-up injection

DAFNE: crab waist, double ring

Super B-fact., S-KEKB: low β_v^*

LEP high energy, SR effects

VEPP-4M, **LEP**: precision E calibration

KEKB: e⁺ source

HERA, LEP, RHIC: spin gymnastics

FCC integrated project technical schedule

- FCC integrated project plan is fully integrated with HL-LHC exploitation
- provides for seamless further continuation of HEP in Europe.

FCC integrated project cost estimate

Construction cost phase1 (FCC-ee) is 11,6 BCHF

- 5,4 BCHF for civil engineering (47%)
- 2,2 BCHF for technical infrastructure (19%)
- 4,0 BCHF accelerator and injector (34%)

Construction cost phase 2 (FCC-hh) is 17,0 BCHF.

- 13,6 BCHF accelerator and injector (57%)
 - Major part for4,700 Nb₃Sn 16 T main dipole magnets, totalling 9,4 BCHF, targeting 2 MCHF/magnet.
- CE and TI from FCC-ee re-used,
 0,6 BCHF for adaptation
- 2,8 BCHF for additional TI, driven by cryogenics (Cost FCC-hh stand alone would be 24,0 BCHF.)

Civil Engineering 600 MCHF, 4%
Machine & injector 13600 MCHF, 80%

Technical Infrastructure 2800 MCHF,16%