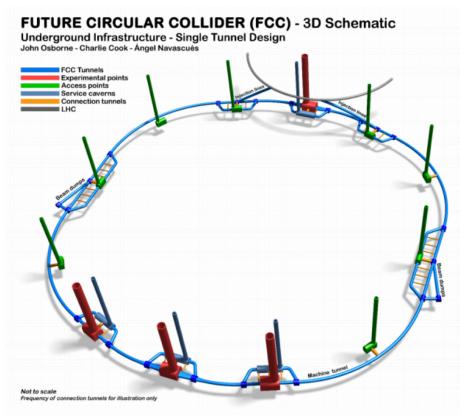


EFT FITS FOR HIGGS AND EW @FCC-ee

AYAN PAUL

DESY, HAMBURG & HUMBOLDT UNIVERSITÄT ZU BERLIN

two paths to the throne: -find a new degree of freedom -find a modified coupling



OVERVIEW

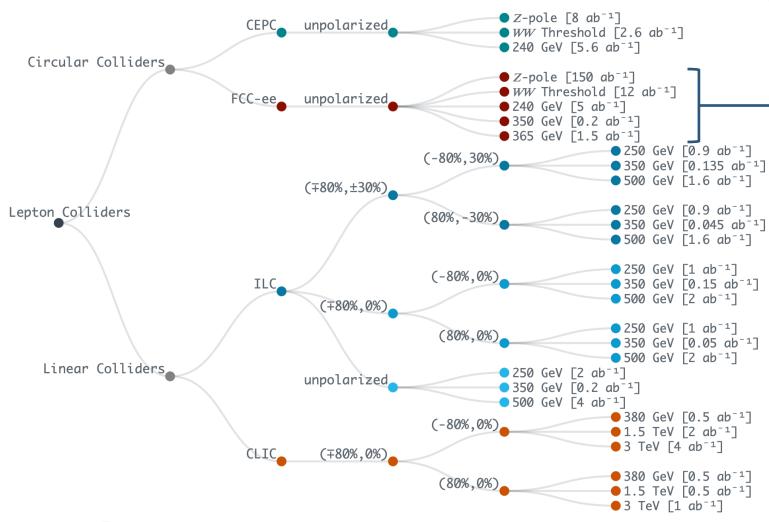
FCC-ee projections

- -- FCC-ee run configurations
- -- primary physics processes probed
 - -- the precision of Electroweak Precision Observables at FCC-ee
- -- aTGC and trilinear measurements

FCC-ee CDR vols. 1 & 2

EFT fits

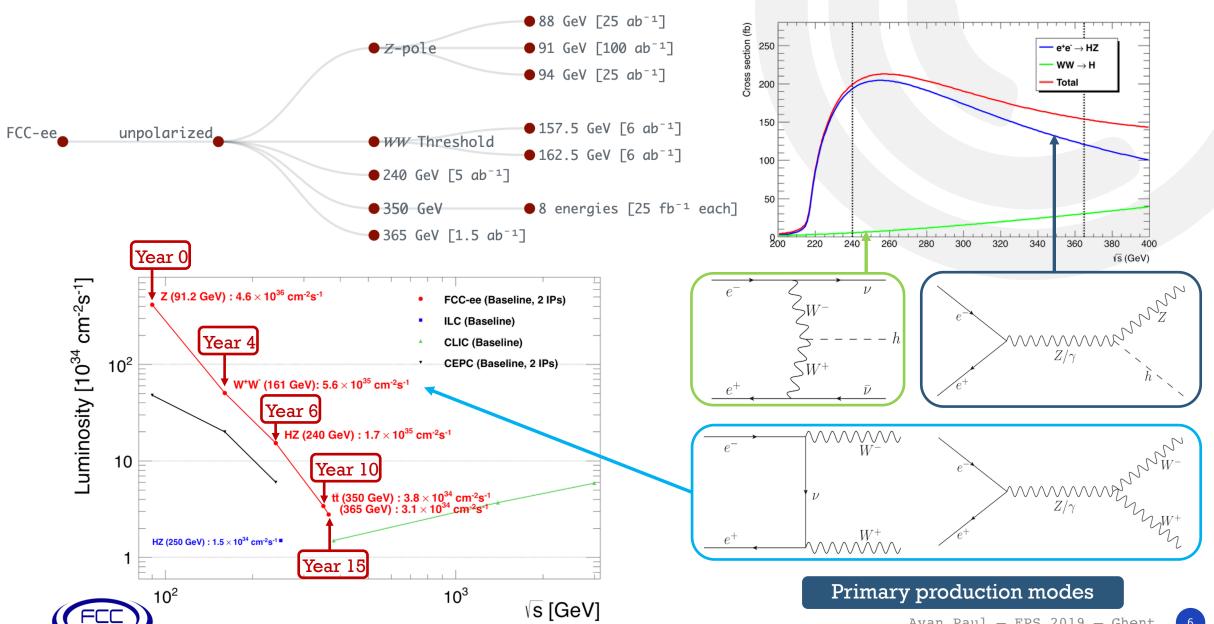
- -- defining the EFT bases
- -- fits in the EFT framework
- -- correlations between the EW and Higgs sectors
- -- comparison with other proposed colliders


THE COLLIDER

Operating energies, luminosities and physics goals.

RUN CONFIGURATIONS

Comparison between the different proposed collider and runs


- The FCC-ee has a very comprehensive program at several energies to probe EW, Higgs and top physics.
- Z-pole run is, by far, of the highest luminosity: improvements over LEP/SLD measurements by several orders of magnitude.
- Higgs program at several energies: possible to make measurement of the trilinear coupling.

Particle production @ FCC-ee

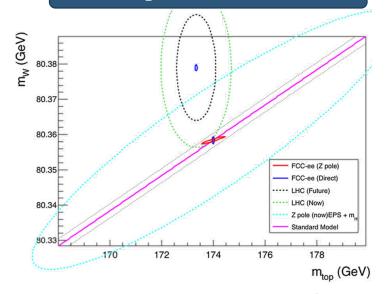
Phase	Run duratio	on (years) Event statistics
FCC-ee-Z	4	3×10^{12} visible Z decays
FCC-ee-W	2	10 ⁸ WW events
FCC-ee-H	3	10 ⁶ ZH events
FCC-ee-tt(1)	1	tt threshold scan
FCC-ee-tt(2)	4	$10^6 \text{ t\bar{t}}$ events

RUN CONFIGURATIONS

EWPO MEASUREMENTS

Observable	present value ± error	FCC-ee stat.	FCC-ee syst.	Comment and dominant exp. error
m _Z (keV)	91186700±2200	5	100	Z line shape scan; beam energy calibration
$\Gamma_{\rm Z}$ (keV)	2495200±2300	8	100	Z line shape scan; beam energy calibration
$R_l^Z $ (×10 ³)	20767±25	0.06	0.2-1.0	ratio hadrons / leptons, lepton acceptance
α_s (mz) (×104)	1196±30	0.1	0.4-1.6	from R_l^Z above
$R_b \ (\times 10^6)$	216290±660	0.3	<60	ratio bb/hadrons, stat. extrapol. from SLD
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	41541±37	0.1	4	peak hadronic cross section, luminosity meas.
N_{ν} (×10 ³)	2991±7	0.005	1	Z peak cross sections, luminosity measurement
$\sin^2 \theta_W^{eff} (\times 10^6)$	231480±160	3	2-5	from $A_{FB}^{\mu\mu}$ at Z peak, beam energy calibration
$1/\alpha_{\rm QED}(m_{\rm Z})~(\times 10^3)$	128952±14	4	Small	from $A_{FB}^{\mu\mu}$ off peak
$A_{\rm FB}^{b,0}~(\times 10^4)$	992±16	0.02	1-3	b-quark asymmetry at Z pole, from jet charge
$A_{\rm FB}^{{\rm pol},\tau}$ (×104)	1498±49	0.15	<2	τ polarisation, charge asymmetry, τ decay physics
m _W (MeV)	80350±15	0.6	0.3	WW threshold scan; beam energy calibration
Γ _W (MeV)	2085±42	1.5	0.3	WW threshold scan; beam energy calibration
α_s (mw) (×104)	1170±420	3	Small	from R_l^W
$N_{\nu}(\times 10^3)$	2920±50	0.8	Small	ratio invisible to leptonic in radiative Z returns
m _{top} (MeV)	172740±500	20	Small	tt̄ threshold scan; QCD errors dominate
Γ _{top} (MeV)	1410±190	40	Small	tt̄ threshold scan; QCD errors dominate
$\lambda_{\mathrm{top}}/\lambda_{\mathrm{top}}^{\mathrm{SM}}$	1.2±0.3	0.08	Small	tt̄ threshold scan; QCD errors dominate
ttZ couplings	±30%	0.5 - 1.5%	Small	from $E_{CM} = 365 \text{GeV} \text{run}$

List of EWPO measurements and sensitivities projected for FCC-ee

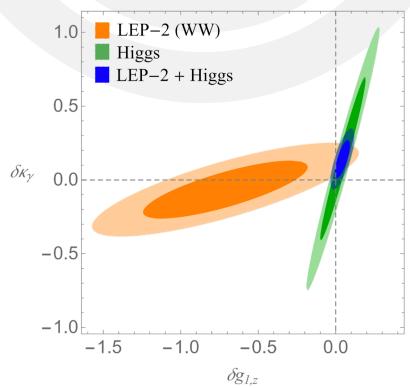

FCC-ee will redefine "precision" for Electroweak Precision
Observables!

systematics dominated

pole

statistics dominated

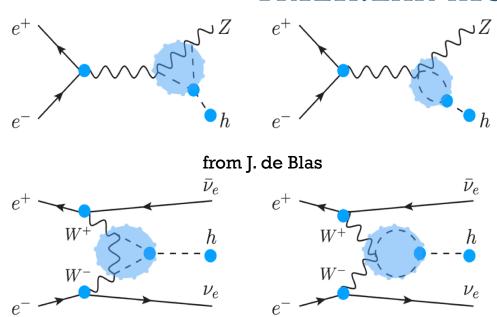
W and top mass measurements



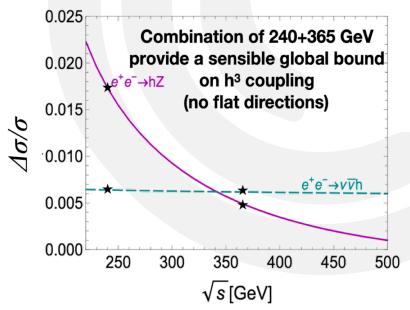
DIBOSON MEASUREMENTS

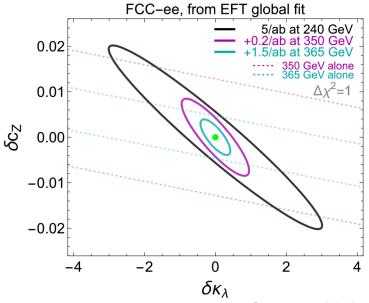
Decay mode relative precision	$B(W \to e\nu)$	$B(W \to \mu\nu)$	$B(W \to \tau \nu)$	$B(W \to qq)$
LEP2	1.5%	1.4%	1.8%	0.4%
FCC-ee	3.10^{-4}	3.10^{-4}	4.10^{-4}	1.10^{-4}

	FCC-ee $e^+e^- \rightarrow WW$ semileptonic channel all angles									
	240	0 GeV o	365 GeV only							
	uncertainty	corre	lation n	natrix	uncertainty correlation n			natrix		
		$\delta g_{1,Z}$	$\delta \kappa_{\gamma}$	λ_Z		$\delta g_{1,Z}$	$\delta \kappa_{\gamma}$	λ_Z		
$\delta g_{1,Z}$	$ \begin{array}{c c} 11.2 \times 10^{-4} \\ 8.6 \times 10^{-4} \\ 12.3 \times 10^{-4} \end{array} $	1	0.08	-0.90	13.9×10^{-4}	1	-0.57	-0.80		
$\delta \kappa_{\gamma}$	8.6×10^{-4}		1	-0.42	$\begin{array}{ c c c c c } 8.3 \times 10^{-4} \\ 11.9 \times 10^{-4} \end{array}$		1	0.10		
λ_Z	12.3×10^{-4}			1	11.9×10^{-4}			1		


	240/3	350/365	GeV	161/240/350/365 GeV					
	uncertainty	corre	lation n	natrix	uncertainty	corre	correlation matrix		
		$\delta g_{1,Z}$	$\delta \kappa_{\gamma}$	λ_Z		$\delta g_{1,Z}$	$\delta \kappa_{\gamma}$	λ_Z	
$\delta g_{1,Z}$	8.1×10^{-4}	1	-0.28	-0.87	8.1×10^{-4}	1	-0.28	-0.87	
$\delta \kappa_{\gamma}$	5.2×10^{-4}		1	-0.12	5.2×10^{-4}		1	-0.12	
λ_Z	7.9×10^{-4}			1	7.9×10^{-4}			1	

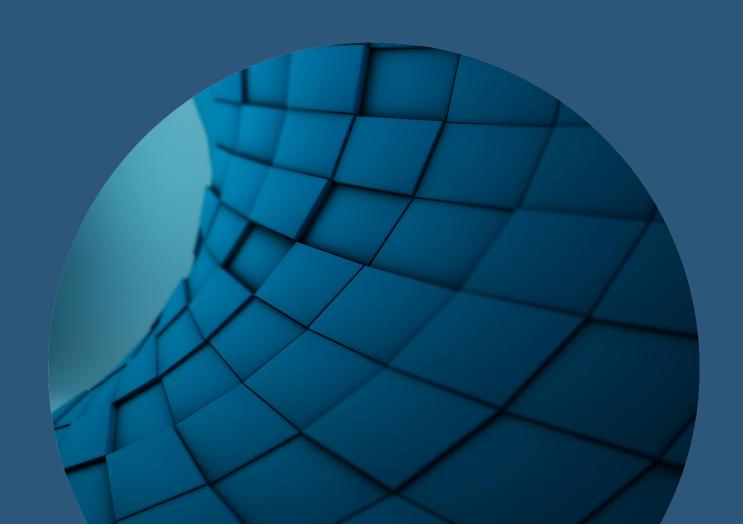
A. Falkowski et. al. arXiv:1508.00518




TRILINEAR HIGGS COUPLING

FCC-ee can measure the trilinear using two energies.

Bounds competitive with those from higher energies at linear colliders



EFT FITS

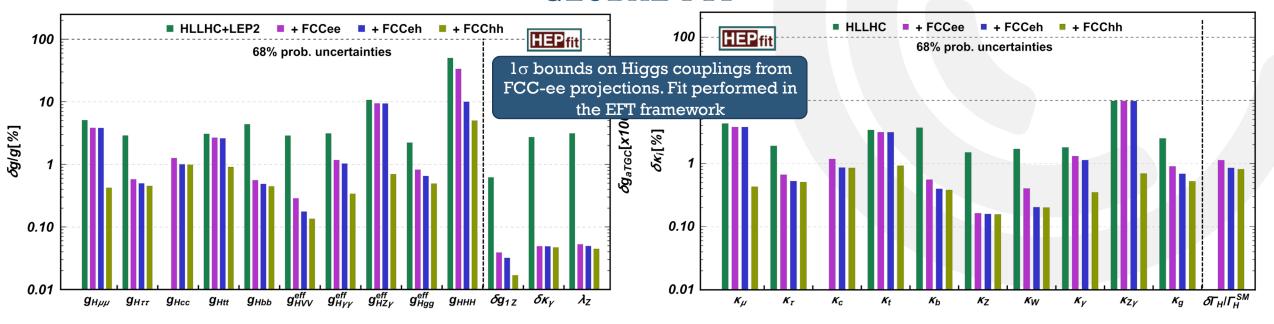
Blending EW, diboson and Higgs precision physics.



EFT BASIS

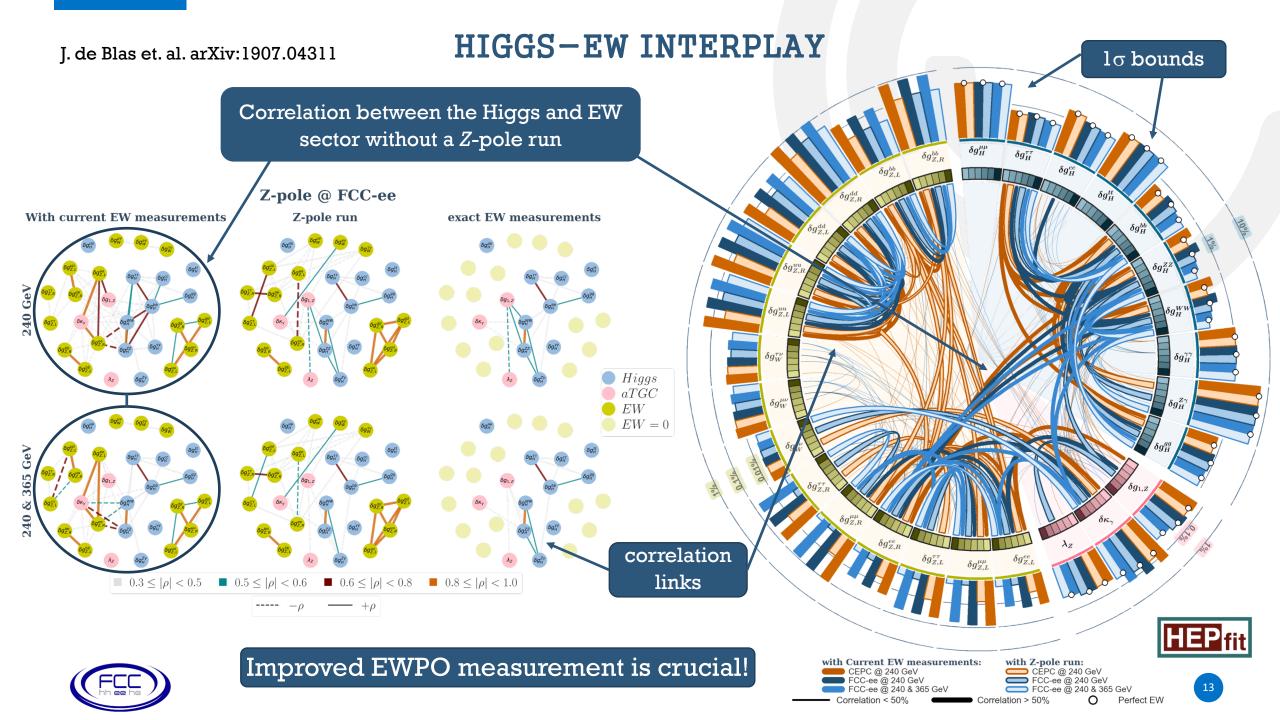
Basis of operators in an EFT

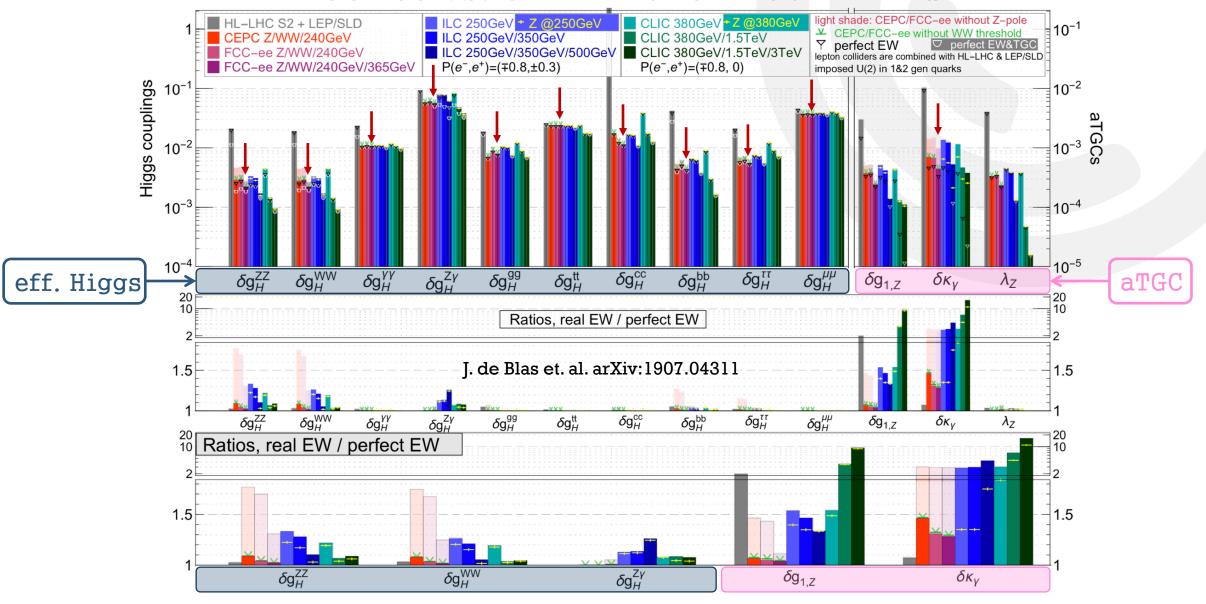
_		
-	$\mathcal{O}_H = rac{1}{2} (\partial_\mu H^2)^2$	$\mathcal{O}_{GG} = g_s^2 H ^2 G_{\mu\nu}^A G^{A,\mu\nu}$
Ä	$\mathcal{O}_{WW} = g^2 H ^2 W^a_{\mu\nu} W^{a,\mu u}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
	$\mathcal{O}_{BB}=g'^2 H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
*	$\mathcal{C}\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \bar{l}_L H e_R + \text{h.c.} (e \to \tau, \mu)$
*	$\mathcal{C}\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a \nu}_{\mu} W^{b}_{\nu \rho} W^{c \rho \mu}$
	$\mathcal{O}_W = \frac{ig}{2} (H^{\dagger} \sigma^a \overleftrightarrow{D_{\mu}} H) D^{\nu} W^a_{\mu\nu}$	$\mathcal{O}_B = \frac{ig'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu} $
) A	$\mathcal{O}_{WB} = gg'H^{\dagger}\sigma^{a}HW^{a}_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{H\ell}=iH^\dagger \overleftrightarrow{D_\mu} H ar{\ell}_L \gamma^\mu \ell_L ot\!\!\!/ rac{1}{2} rac{1} rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} rac{1}{2} rac{1}$
	$\mathcal{O}_T = \frac{1}{2} (H^\dagger \overrightarrow{D_\mu} H)^2$	$\mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a} \stackrel{\longleftarrow}{D_{\mu}} H \bar{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L} \stackrel{\longleftarrow}{\not k} \stackrel{\bullet}{\not k}$
	$\mathcal{O}_{\ell\ell} = (ar{\ell}_L \gamma^\mu \ell_L) (ar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = iH^{\dagger} \overrightarrow{D_{\mu}} H \bar{e}_R \gamma^{\mu} e_R$
-	$\mathcal{O}_{Hq} = iH^{\dagger} \overleftrightarrow{D}_{\mu} H \bar{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{u}_R \gamma^{\mu} u_R$
_	$\mathcal{O}'_{Hq} = iH^{\dagger}\sigma^a \overrightarrow{D_{\mu}} H \bar{q}_L \sigma^a \gamma^{\mu} q_L$	$\mathcal{O}_{Hd} = iH^{\dagger} \overrightarrow{D_{\mu}} H \bar{d}_R \gamma^{\mu} d_R$

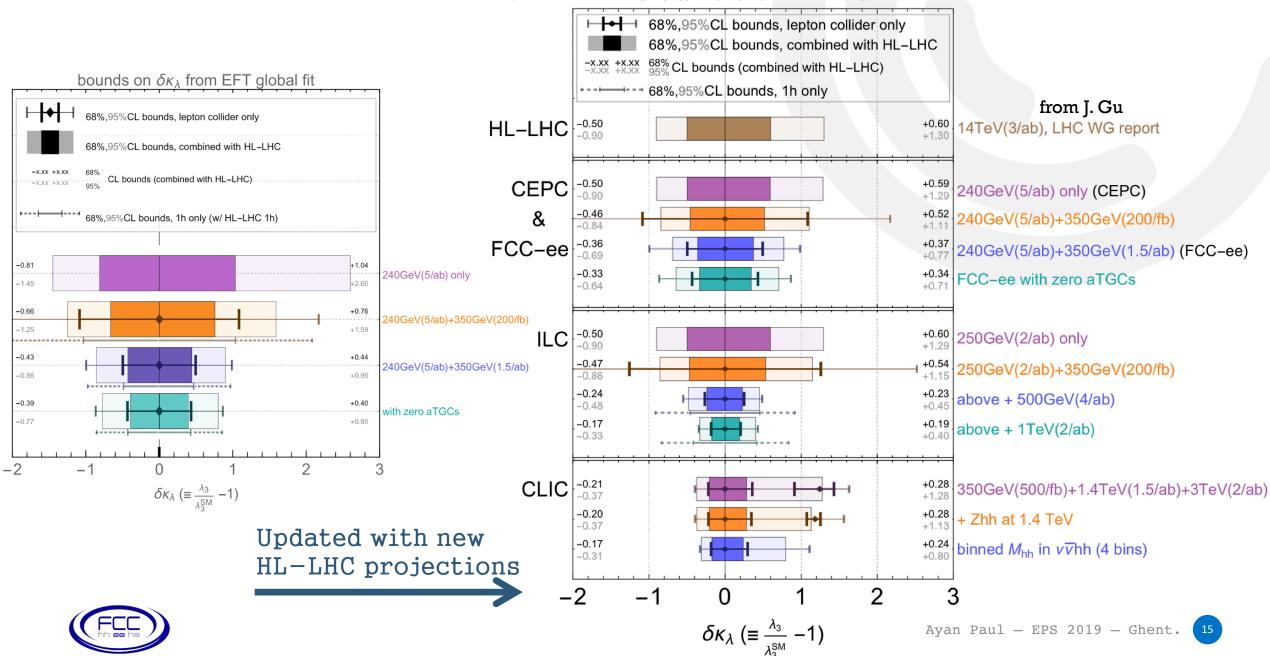


* not present in the Warsaw basis

- Any theoretical framework comes with some assumptions and an EFT is not an exception!
- However, it is a consistent framework to relate physics in at different scales for different productions and decays.
- In the absence of a coherent UV-completion, an EFT framework can miss the correlations between different operators in any basis
- An EFT is an attempt to minimize "model assumptions", not to completely remove it.
- A global fit has to be able to incorporate measurements in different sectors, like the Higgs and EW, simultaneously.
- An EFT fit and a "κ" fit should present the same physics results if the Higgs and EW sectors are decoupled (as it is with current measurement).


GLOBAL FIT


Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	LEP3 ₂₄₀	CEPC ₂₅₀	FCC-ee ₂₄₀₊₃₆₅			
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}			
Years	25	15	8	6	7	3	+4		
$\delta\Gamma_{ m H}/\Gamma_{ m H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1	
$\delta g_{ m HZZ}/g_{ m HZZ}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16	
$\delta g_{ m HWW}/g_{ m HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40	
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56	
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18	
$\delta g_{ m Hgg}/g_{ m Hgg}~(\%)$	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90	
$\delta g_{ m HTT}/g_{ m HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67	
$\delta g_{ m H}$ μμ $/g_{ m H}$ μμ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8	
$\delta g_{\mathrm{H}\Upsilon\Upsilon}/g_{\mathrm{H}\Upsilon\Upsilon}$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3	
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	_	_	_	_	_	_	3.1	
BR _{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0	



FCC-ee vs. OTHER FUTURE COLLIDERS

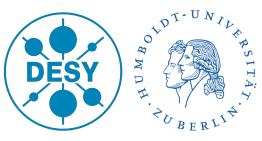
TRILINEAR HIGGS COUPLING

SUMMARY

MEASUREMENTS

- FCC-ee will take Higgs measurements to the precision regime.
- One order of magnitude or more enhanced precision compared to HL-LHC in several Higgs couplings.
- Orders of magnitude better precision for EWPO compared to LEP/SLD.
- Measurements made at several energies from the Z-pole to above the top pair production threshold

- Precision measurement of both the Higgs and EWPO interlock the two sectors.
- A global fit is necessary for a complete picture of the constraints on all the Higgs couplings.
- Higher precision from a Z-pole run can reduce the cross-talk between the Higgs and EW sectors.
- Ideally, all Higgs, EWPO and Diboson measurements should be considered in a consistent EFT framework.



GLOBAL FITS

THANK YOU

APAUL2@ALUMNI.ND.EDU

HTTPS://FCC-CDR.WEB.CERN.CH

