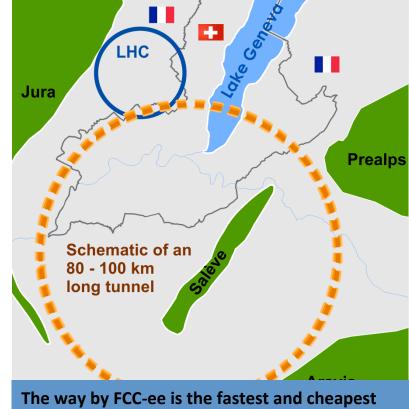


Right-Handed neutrino searches at FCC-(ee)

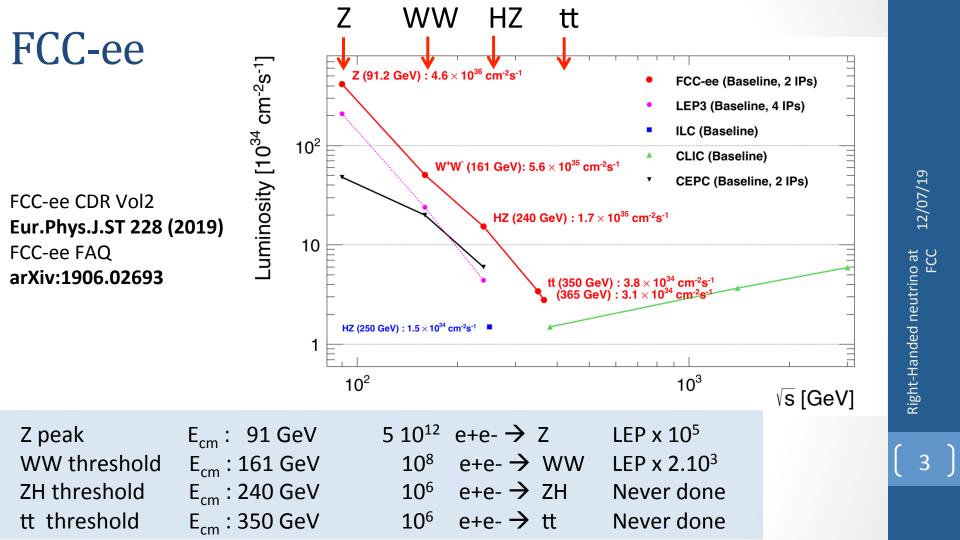
Clement Helsens, CERN-EP


EPS 2019, Genft

On behalf of the FCC-ee physics group

Thanks to Alain Blondel and Oliver Fisher for the input

The FCC


- International collaboration to Study Colliders fitting in a new ~100 km infrastructure, fitting in the Geneva area
- Ultimate goal: ≥100 TeV pp-collider (FCC-hh)
 - → defining infrastructure requirements
 - Two possible first steps:
- e⁺e⁻ collider (FCC-ee)
 High Lumi, E_{CM} =90-400 GeV
- HE-LHC 16T ⇒ 27 TeV in LEP/LHC tunnel
 - Possible addition:
 - p-e (FCC-he) option
- This is the center of discussions for the European Strategy Update

The way by FCC-ee is the fastest and cheapest way to 100 TeV, also produces the most physics. Preferred scenario presented in the CDR. https://cerncourier.com/cern-thinks-bigger/

Its also a good start for a μμC!

2

FCC-ee running scenario

From FCC CDR Volume 2

Table 2.1: Run plan for FCC-ee in its baseline configuration with two experiments. The number of WW events is given for the entirety of the FCC-ee running at and above the WW threshold.

Phase	Run duration	Center-of-mass	Integrated	Event
	(years)	Energies (GeV)	Luminosity (ab ⁻¹)	Statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
FCC-ee-W	2	158-162	12	10 ⁸ WW events
FCC-ee-H	3	240	5	10 ⁶ ZH events
FCC-ee-tt	5	345-365	1.5	$10^6 \mathrm{t\overline{t}} \mathrm{events}$

FCC-ee discovery potential

Today we do not know how nature will surprise us. A few things that FCC-ee could discover

EXPLORE

- 10-100 TeV energy scale (and beyond) with Precision Measurements
- ~20-50 (stat 400...) fold improved precision on many EW quantities eq. x 5-7 in mass m_{Z_p} m_W , m_{top} , $\sin^2\theta_w^{eff}$, R_b , α_{OFD} (m_z) α_s $(m_z m_W m_z)$, top quark couplings
- Model-independent Higgs width and couplings measurements at percent-permil level
- ~3σ of effect of Higgs self-coupling from Vertex corrections (also maybe directly with FCC-ee 500GeV)
- Only machine with possible investigation of Hee coupling at $\sqrt{s} = m_H$

DISCOVER

- violation of flavour conservation or universality and unitarity of PMNS @10⁻⁵
- FCNC (Z --> $\mu\tau$, $e\tau$) in 5 10^{12} Z decays and τ BR in 2 10^{11} Z $\rightarrow \tau\tau$
- flavour physics with 10^{12} bb events (B \rightarrow s $\tau \tau$ etc..)
- dark matter as «invisible decay» of H or Z (or in LHC loopholes)

DIRECT DISCOVERY

- very weakly coupled particle in 5-100 GeV energy scale such as: Right-Handed neutrinos, Dark Photons etc...
- Not only a «Higgs Factory», «Z factory» and «top» are important for 'discovery potential' (also QCD)

Electroweak eigenstates

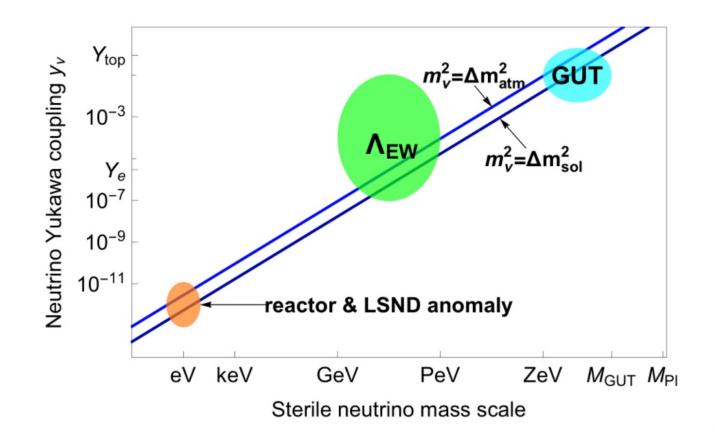
$$\begin{pmatrix} e \\ v_e \end{pmatrix}_L \begin{pmatrix} \mu \\ v_{\mu} \end{pmatrix}_L \begin{pmatrix} \tau \\ v_{\tau} \end{pmatrix}_L$$

$$\begin{pmatrix} (e)_R (\mu)_R (\tau)_R \\ (v_e)_R (v_{\mu})_R (v_{\tau})_R \\ |= 0 \end{pmatrix}$$

$$Q = -1$$

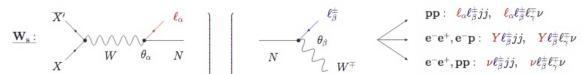
$$\begin{pmatrix} v_e \\ |_{E=0} \end{pmatrix}_R \begin{pmatrix} v_{\mu} \\ v_{\mu} \end{pmatrix}_R \begin{pmatrix} v_{\tau} \\ v_{\tau} \end{pmatrix}_R$$

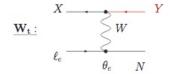
$$Q = 0$$

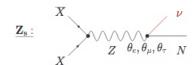

- We measure neutrino parameters, but:
 - No right-handed neutrinos in the SM
 - No mass matrix, no mixing of the neutrino flavour states
- ⇒ Neutrino oscillations are evidence for physics beyond the SM.

- Right handed neutrinos are singlets,
 - No weak interaction
 - No EM interaction
 - No strong interation
- Can't produce them, Can't detect them
 - So why bother? (also called Sterile)

The Seesaw mechanism with RH neutrinos

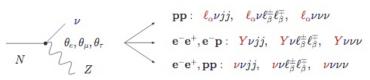

- Economic extension by adding a number of Fermionic singlets
 - "Right-handed" or "sterile" neutrinos.
- Two mass-differences ⇒ at least two sterile neutrinos.
- New mass scale, a priori unrelated to the known ones.
- Many constraints from experiments on all energy scales.
- May be connected to e.g. Dark Matter and Baryogenesis

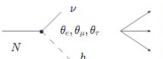

The Big Picture



Searches at FCC

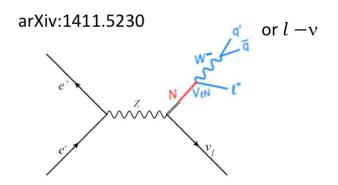
Production





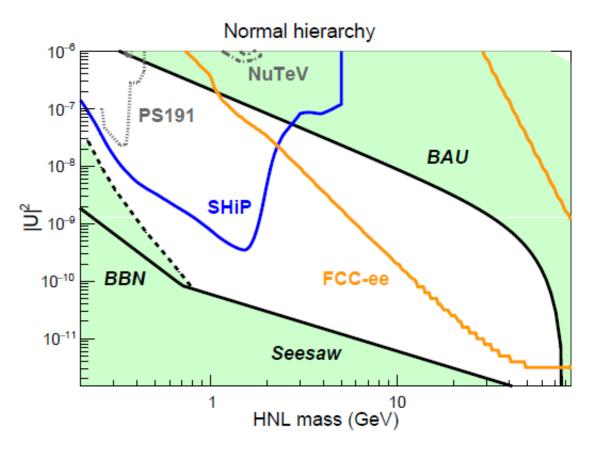
Decay

Final States



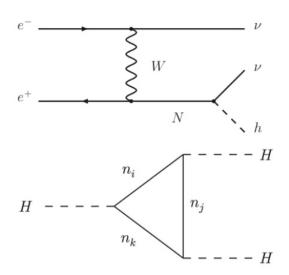
Displaced vertex searches at FCC-ee

- Ratios of θ_{α} measurable with high accuracy
- Test minimal type I seesaw hypothesis.
- Together with ΔM also tests the compatibility with leptogenesis
- Long life time → detached vertex for ~<MZ
- Backgrounds: four fermions
 - Ee->W*W*, ee->Z*(nunu)(Z/gamma)*



Antusch et al. JHEP 1809 (2018) 124

NO, FCC-ee at
$$\sqrt{s} = 90 \,\mathrm{GeV}$$



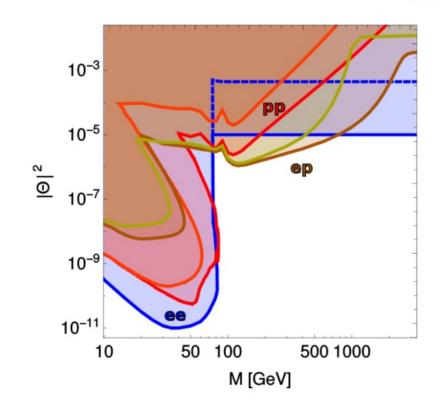
With 5 10¹² Z

(a) Decay length $500 \mu m$ to 2 m

Indirect searches in EWPO

Indirect searches in Higgs properties

- Additional mono-Higgs production mechanism.
- New Higgs decay channels:
 - Modification of Higgs branching ratios;
 - New exotic decay channels: h → vN, N → SM; New invisible decay channels.
- N contribution to the triple Higgs coupling.


Outlook for FCC-hh

- Z factory like FCC-ee offers a clean method for detection of Heavy Right-Handed neutrinos
- Ws are less abundant at the lepton colliders
- At the 100 TeV FCC-hh W is the dominant particle: Expect 10¹³ real W's
- There is a lot of pile-up/backgrounds/lifetime/trigger issues which need to be investigated
- BUT.... in the regime of long lived HNLs the simultaneous presence of
 - the initial lepton from W decays
 - the detached vertex with kinematically constrained decay
- Would allow for a significant background reduction
- Could also served as a characterization both in flavour and charge of the produced neutrino
 - information of the flavour sensitive mixing angles
 - test of the fermion violating nature of the intermediate (Majorana) particle

Overview of sensitivities

ep and pp at parton leve

- At one-sigma confidence level
- ep and pp at par level

Synergy and complementarity

- FCC-ee
 - Highest sensitivity for M<m_w; low mass regime
 - test model predictions (seesaw, leptogenesis).
 - SM precision tests have high sensitivity; mass independent
 - Test heavy neutrinos up to ~60TeV
 - Not sensitive to the model details
- FCC-hh and he
 - Direct test of lepton-flavor and number) violation
 - Number of heavy neutrino generations and their masses
 - Indirect test via measurement of Higgs potential
 - Sensitive to high mass regime

Conclusion

- The FCC design study is establishing the feasibility or the path to feasibility
 of an ambitious set of colliders after LEP/LHC, at the cutting edge of
 knowledge and technology.
- Both FCC-ee and FCC-hh have outstanding physics cases
 - each in their own right
 - the sequential implementation of FCC-ee, FCC-hh, would maximise the physics reach
- FCC has unique prospects of testing model predictions.
- Attractive scenarios of staging and implementation (budget!) cover more than 50 years of exploratory physics, taking full advantage of the synergies and complementarities
- Neutrino mass physics should be a benchmark for future collider studies!

A 100km circular collider as next the step

27km tunnel

The FCC design study is establishing the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Both FCC-ee and FCC-hh have outstanding physics cases We are ready to move to the next step, as soon as possible 18

Bonus

Manifestation of Right-Handed neutrinos

One see saw family $\theta \approx (m_D/M)$ $v = vL\cos\theta - N^c_R \sin\theta$ $m_v \approx m_D^2/M$ $N = N_R \cos\theta + v_L^c \sin\theta$ $|U|^2 \propto \theta^2 \approx m_v/m_N$

What is produced is W,Z decays is:

 $v_L = v \cos\theta + N \sin\theta$

v = light mass eigenstate

N=heavy mass eigentstate

≠ v_L active neutrino which couples to weak

inter

 \neq N_R which does not

- mixing with active neutrinos leads to various observable consequences
 - if very light (eV), possible effect on neutrino oscillations
 - if in keV region (dark matter), monochromatic photons from galaxies with E=mN/2
- possibly measurable effects at High Energy
 - If N is heavy it will decay in the detector (not invisible)
 - PMNS matrix unitarity violation and deficit in Z «invisible» width
 - Higgs, Z, W visible exotic decays H→ viNi and Z→ viNi, W-> li Ni
 - also in K, charm and b decays via W*-> $|i \pm N|$, $N \rightarrow |i \pm N|$ with any of six sign and lepton flavour combination
 - violation of unitarity and lepton universality in Z, W or $\boldsymbol{\tau}$ decays
- Couplings are very small (m_v / m_N) (but who knows?) and generally seem out of reach at high energy colliders.

(indirect) Effect of RH v on EW precision obs.

- The relationship $|U|^2 \propto \theta^2 \approx m_v / m_N$ is valid for one family see-saw
- For two or three families the mixing can be larger
- Shaposhnikov, Antush and Fisher, have shown that a slight # in Majorana mass can generate larger mixing between the left- and right-handed neutrinos
- $(vL = v \cos\theta + N \sin\theta) \rightarrow (\cos\theta)^2$ becomes parametrized as 1+ $\varepsilon_{\alpha\beta}$ ($\varepsilon_{\alpha\alpha}$ is negative) the coupling to light 'normal' neutrinos is typically reduced.
- In the G_F , $M_7 \alpha_{OFD}$ scheme, G_F (extracted from $\mu \rightarrow e \nu_e \nu_\mu$) and g should be increased.
- This leads to correlated variations of all predictions upon e or μ neutrino mixing.
- Only the 'number of neutrinos' (R_{inv} and σ_{had}^{peak}) and the tau specific CC observables (tau decays) are sensitive to the tau-neutrino mixing.

Prediction in MUV	Prediction in the SM	Experiment
$[R_{\ell}]_{\mathrm{SM}} (1 - 0.15(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	20.744(11)	20.767(25)
$[R_b]_{\mathrm{SM}} (1 + 0.03(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	0.21577(4)	0.21629(66)
$[R_c]_{\mathrm{SM}} (1 - 0.06(\varepsilon_{ee} + \varepsilon_{\mu\mu}))$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM}\left(1-0.25(\varepsilon_{ee}+\varepsilon_{\mu\mu})-0.27\varepsilon_{ au}\right)$	41.470(15) nb	41.541(37) nb
$[R_{inv}]_{\rm SM} (1 + 0.75(\varepsilon_{ee} + \varepsilon_{\mu\mu}) + 0.67\varepsilon_{\tau})$	5.9723(10)	5.942(16)
$[M_W]_{\mathrm{SM}}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))$	80.359(11) GeV	80.385(15) GeV
$[\Gamma_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))$	83.966(12) MeV	83.984(86) MeV
$[(s_{W,\text{eff}}^{\ell,\text{lep}})^2]_{\text{SM}}(1+0.71(\varepsilon_{ee}+\varepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\text{eff}}^{\ell,\text{had}})^2]_{\text{SM}}(1+0.71(\varepsilon_{ee}+\varepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

From arXiv:1407.6607

Table 1: Experimental results and SM predictions for the EWPO, and the modification in the MUV scheme, to first order in the parameters $\varepsilon_{\alpha\beta}$. The theoretical predictions and experimental values are taken from Ref. [16]. The values of $(s_{W,eff}^{\ell,lep})^2$ and $(s_{W,eff}^{\ell,led})^2$ are taken from Ref. [17].