

Studies of prompt photon background for the analysis of $t\bar{t}$ + photon events with the ATLAS experiment

Tomke Schröer Supervisor: Prof. Dr. Arnulf Quadt

II. Physikalisches Institut, Georg-August-Universität Göttingen 19th July 2019

Bundesministerium für Bildung und Forschung

- heaviest elementary particle
- discovery 1995 at Tevatron (CDF, D0)
- $t\bar{t}$ production via quark antiquark annihilation and gluon fusion
- $t\bar{t}\gamma$: measurement of the top-photon-coupling
- SM: coupling proportional to Q_t^2

$t\bar{t}$ production

Figure: $t\bar{t}$ production via quark antiquark annihilation and gluon fusion

- Background processes:
 - W+jets+ γ
 - $Z+jets+\gamma$
 - other $t\overline{t}$ background + γ
 - fakes
- discrepancies between data and simulations of the processes \rightarrow due to simulations of $W\gamma$ and $Z\gamma$?

Extraction and validation of corrections

Preselection

- primary vertex
- ullet \geq 1 lepton trigger matched
- good run list
- one photon with $p_{\mathsf{T}}(\gamma) \geq 20 \, \mathsf{GeV}$
- ullet \geq 1 jet
- *l*+jets regions: exactly one electron (muon) and no muon (electron)
- $\ell\ell$ regions: exactly two electrons (muons) and no muons (electrons), charges with opposite sign, $m(\ell, \ell) \ge 15 \text{ GeV}$

Regions with light flavour jets

Definition of the control region for $Z\gamma$

Figure: Distribution of $p_{T}(\gamma)$ in the control region.

Extraction and validation of the corrections for $Z\gamma$

Figure: Distribution of $p_T(\gamma)$ with a constant correction for $Z\gamma$ of 1.256 \pm 0.007

Definition of regions for $W\gamma$

Figure: Distribution of $p_{T}(\gamma)$ in the control region.

Extraction and validation of the correction for $W\gamma$

GEORG-AUGUST-UNIVERSITÄT Göttingen

Figure: Distribution of $p_{T}(\gamma)$ with a linear correction for $W\gamma$ as a function of $p_{T}(\gamma)$ $(-8 \pm 1) \cdot 10^{-4} \text{ GeV}^{-1} \cdot p_{T}(\gamma) + (1.18 \pm 0.01)$ and the correction for $Z\gamma$ in the $W\gamma$ regions.

Regions with heavy flavour jets

Definition of regions for $Z\gamma$

Figure: Distribution of $p_{T}(\gamma)$ in the control region with the applied cuts.

 \rightarrow no correction for $Z\gamma$ needed in heavy flavour regions!

Validation of light flavour correction in $W\gamma$ regions

Figure: Distribution of $p_T(\gamma)$ in the $W\gamma$ regions with no correction for $Z\gamma$ and the light flavour correction for $W\gamma$.

Applying corrections in SR

Figure: Distribution of $p_{T}(\gamma)$ with and without correction

Table: Correction of the simulations of $Z\gamma$ and $W\gamma$ in the light and heavy flavour jet regions

Simulation	Correction in the light flavour region
$Z\gamma$	1.256 ± 0.007
$W\gamma$	$(-8\pm1)\cdot10^{-4}{ m GeV}^{-1}\cdot p_{{ m T}}(\gamma)+(1.18\pm0.01)$

Simulation	Correction in the heavy flavour region (incl. SR)
$Z\gamma$	1
$W\gamma$	$(-8\pm1)\cdot10^{-4}{ m GeV}^{-1}\cdot ho_{\sf T}(\gamma)+(1.18\pm0.01)$

Backup

Signal regions

- $n_{\mathrm{b-jets}}(85\%) \geq 1$
- $n_{\rm jets} \ge 4$

Figure: Distribution of $p_T(\gamma)$ in the μ +jets SR (left) and e+jets SR (right).

Definition of the regions for $Z\gamma$

Figure: Distribution of $p_{T}(\gamma)$ in the control region (left) and the validation region (right) without any cuts.

Definition of regions for $W\gamma$

Figure: Distribution of $p_T(\gamma)$ in the control region (left) without any cuts and the validation region (middle) with a veto on the invariant mass $m(\gamma, \ell)$ (right) of 91.2 ± 15 GeV.

Definition of regions for $Z\gamma$

Figure: Distribution of the variables used for the cuts in the region $Z\gamma \ \mu\mu$. Applied cuts: $E_{\rm T}^{\rm miss} < 40 \,{\rm GeV}$, $m(\ell, \ell) < 110 \,{\rm GeV}$ and $n_{\rm jets} \le 2$.

Definition of regions for $Z\gamma$

Figure: Distribution of $p_T(\gamma)$ in the control region (left) with the applied cuts and the validation region (right) without any cuts.

 \rightarrow no correction for $Z\gamma$ needed in heavy flavour regions!

Definition of regions for $W\gamma$

Figure: Distribution of the variables used for the cuts in the region $W\gamma \mu$ +jets, applied cuts: $E_{\rm T}^{\rm miss} > 30 \,{\rm GeV}$ and $n_{\rm jets} = 1$.

Definition of regions for $W\gamma$

Figure: Distribution of $p_{T}(\gamma)$ in the control region with the applied cuts.

Validation of light flavour correction in $W\gamma$ regions

Figure: Distribution of $p_T(\gamma)$ in the $W\gamma$ regions with no correction for $Z\gamma$ and the light flavour correction for $W\gamma$ $(-8 \pm 1) \cdot 10^{-4} \text{ GeV}^{-1} \cdot p_T(\gamma) + (1.18 \pm 0.01)$.