Highlights of QCD measurements at the LHC Precision QCD @ 2020; IIT Hyderabad

Kajari Mazumdar

Tata Institute of Fundamental Research, Mumbai.

February 3, 2020

Kajari Mazumdar **[Precision QCD @ 2020](#page-22-0)** February 3, 2020 1/23

The Large Hadron Collider (LHC) at CERN

• Marvel of technology.

Operates at the very boundaries of scientific knowledge.

- Collides proton-on-proton (p-p), heavy ions (p-Pb, Pb-Pb, Xe-Xe) at 4 collision points.
- ATLAS and CMS are the major multipurpose experiments.
- India participates in ALICE & CMS experiments.
- The performance of the experiments have crossed the design expectations. They also demand high precision theoretical predictions.
- Measurement of precision observables based on Standard Model (SM) can shed light into possible BSM physics.
- Will cover only few results from pp collision with bias towards CMS. QQ

- **Standard Model**
- Direct and indirect signatures of physics beyond SM
- **•** Heavy flavour
- Low-x and forward physics
- Quark-gluon plasma

• Humongous effort by theory and experiment communities

What we measure at LHC

• Total cross section at $\sqrt{s}=7$ TeV $\sigma_{\rm inel}({\rm mb}) = 73.2^{+2.0}_{-4.6}({\rm mod.}) \pm 2.6({\rm lumi})$

 \bullet at $\sqrt{s}=13$ TeV, the relative increase in rates is more for gluon initiated processes.

LHC Kinematics

• Reach: x up to $\sim 10^{-6}$

4 **D F**

Þ

 299

No phenomenon is a phenomenon, until it is observed!

Standard Model cross sections, summary

Hard scattering cross section

$$
\begin{aligned} \sum_{a,b}\int dx_1 dx_2 d\Phi_{\rm FS}\,f_a(x_1,\mu_F) f_b(x_2,\mu_F)\,\hat{\sigma}_{ab\to X}(\hat{s},\mu_F,\mu_R) \\ &\underset{\text{integral}}{\text{Phase-space}} \hspace{150pt} \text{Parton density} \hspace{150pt} \text{Parton-level cross} \\ \hat{\sigma} = \sigma^{\rm Born} \bigg(1 + \frac{\alpha_s}{2\pi}\sigma^{(1)} + \Big(\frac{\alpha_s}{2\pi}\Big)^2\sigma^{(2)} + \Big(\frac{\alpha_s}{2\pi}\Big)^3\sigma^{(3)} + \dots \bigg) \end{aligned}
$$

- This factorisation picture can be improved systematically, until the power-sppressed contributions become quantitatively relevant.
- Subprocess cross section: depends on the process, calculable with perturbative QCD; short-distance coefficients as an expansion in $\alpha_{\sf s}$.
- Parton density functions (PDFs): non-perturbative. \Rightarrow Fit from experimental data and theoretical evolution with DGLAP eqns $(Q^2$ -ordered).
- Final state hadronization ($q \to \pi, K, p, D, B$) or bound state formation use universal form factors extract[ed](#page-5-0) [fr](#page-7-0)[o](#page-5-0)[m](#page-6-0) [d](#page-7-0)[at](#page-0-0)[a](#page-22-0) [+](#page-0-0) [DG](#page-22-0)[L](#page-0-0)[AP](#page-22-0).

LHC event: simulation, visualization, display

• Reconstructed jets in data are from hadrons; theory predictions are for parton level jets.

Test of perturbative QCD predictions

- There is discrepancy with CMS data at higb p_T , using large radius jet. \bullet Use of $p_{\mathcal{T}}^{\mathrm{jet}}$ $\tau^{\text{\tiny{jet}}}_{\tau}$ as the QCD scale brings better agreement of CMS 13 TeV results with prediction including nonperturbative QCD and Electroweak corrections.
- Non-perturbative corrections account for parton shower, hadronization and multiparton interactions.

4 **D F**

Jet measurements & fixed order calculations

- Data matches batter with NLO predictions matched to parton shower (POWHEG+ PYTHIA8)
- Fixed-order NLO prediction combined with non-perturbative and electroweak corrections $(NLOJet++)$ does not account for parton shower and resummation contributions \implies overestimates cross section for $R = 0.4$.

• CMS dijet data reduces uncertainty in gluon [PD](#page-8-0)[F a](#page-10-0)[t](#page-8-0) [hi](#page-9-0)[g](#page-10-0)[h](#page-0-0) \times Ω

 $Z+$ jets at 13 TeV

- \bullet Z+X cross sections compared to generators & corrections for NP effects.
- \bullet Measurements are in good agreement with NLO+PS mutli-parton calculations including kinematic variables sensiti[ve](#page-9-0) [to](#page-11-0) [s](#page-9-0)[of](#page-10-0)[t-](#page-11-0)[gl](#page-0-0)[uo](#page-22-0)[n r](#page-0-0)[ad](#page-22-0)[ia](#page-0-0)[tion](#page-22-0). Ω

Non-perturbative corrections

• Dependence of correction on reconstructed jet parameter.

- \implies based on Monte Carlo predictions from hadronization models & tunes for multi-parton interactions (MPI) in parton shower.
- hadronization correction is larger for jets of smaller size.
- MPI correction has significant size for large je[t ra](#page-10-0)[di](#page-12-0)[u](#page-10-0)[s.](#page-11-0)

Dependence of correction on reconstructed jet parameter

Measurements using different anti- k_T distance parameter: R=0.2, 0.8

Ratio of data to next-to-leading-order (NLO) with CUETP8M1 tune for underlying events

QCD analysis with top-pair events in CMS at 13 TeV

- triple differential cross section: N_{iet} , $M(t\bar{t})$, $y(t\bar{t})$
- $N_{\text{jet}} \rightarrow$ jets are not part of $t\bar{t}$ system.
- \bullet Use fixed order NLO calculation to extract $\alpha_{\bm{s}}$ & m_t , constrain gluon PDF.

 $\alpha_S(m_Z) = 0.1135 \pm 0.0016(\text{fit}) \, \frac{+0.0002}{-0.0004}(\text{model}) \, \frac{+0.0008}{-0.0001}(\text{param}) \, \frac{+0.0011}{-0.0005}(\text{scale}) = 0.1135 \, \frac{+0.0021}{-0.0017}(\text{total})$ $m_t^{\rm pole} = 170.5 \pm 0.7 {\rm (fit)} \pm 0.1 {\rm (model)} {}^{+0.0}_{-0.1} {\rm (param)} \pm 0.3 {\rm (scale)} \, {\rm GeV} = 170.5 \pm 0.8 {\rm (total)} \, {\rm GeV}.$

Parton distribution functions

- **•** Precision on PDF determines the accuracy of current knowledge SM in most cases and hence the sensitivity for beyond SM.
- The limiting factor for predictions of some the SM input parameters: ${\rm m_W}$, ${\rm sin}^2\theta_{\rm w}$, ${\rm m_t}$
- \bullet At N³LO, the theoretical accuracy in the prediction for cross section of $gg \to H + X$ is limited by PDF.

 \leftarrow \Box

- LHC data potentially disentangles the flavour composition in sea PDF, determine gluon PDF and improve valnce PDF.
- Different measurements constrain PDFs of various partons

 200

Heavy quark PDFs

Challenging measurements with small production rates and difficulties in

identification of heavy flavour jets. • Estimation of strange quark PDF improves with $W + c$ data.

• $Z + c/b$ measurements test the perturbative and intrinsic parton components in hadrons

cMS
comes
s_{35.7 fb⁻¹(13 TeV)}

Jet substructure in top physics & electroweak physics

• Mesurement of jet mass in boosted top quark decays using fat jet of $p_T > 400$ GeV

- Using substructure in search for anomalous gauge coupling. Hadronic decays of boosted W, Z results in a single fat jet, to be identified with τ_{21} and soft drop mass.
- Constrain parameters of Effective Field Theory Lagrangian as well as anomalous triple gauge and anomalous quartic gauge couplings.

Impact of QCD precision on Higgs physics

- The discovery of the Higgs boson in 2012 has brought Higgs physics of age. Precision predictions from theory made the discovery possible within a very short time of LHC start-up.
- Higgs characterization is the current mandate of the community.
	- \rightarrow being carried out via multiple measurements \Rightarrow crucially depends on accurate theoretical prediction of the observables.
- QCD plays a very significant role. Any deviation from prediction would indicate beyond SM effect.

Production of charged hadrons inside a jet

- Typically central and mid rapidity jets are mostly gluon jets.
- Study for forward jets provides opportunity to study production of light quark vs. gluon jets
- LHCb measurement probes: hadronization dynamics, jet properties,...

LHC timeline

- Long term facility, has delivered till now only a few % of total data volume expected.
- High luminosity phase of LHC (HL-LHC) is the only approved HEP collider facility for future as of today.
- Design/nominal instantaneous luminosity: 10^{34} /cm²/s At HL-LHC: 7.5×10^{34} /cm²/s

Kajari Mazumdar **[Precision QCD @ 2020](#page-0-0)** February 3, 2020 21/23

イロト イ押ト イヨト イヨト

 QQ

э

- LHC experiments demand high precision predictions.
- Precision observables can shed light onto possible BSM physics.
- Jet physics becomes even more interesting with the availablity of predictions of NNLO accuracy, new variables useful for experiment (like subjettiness), new identifiers/taggers (like TopTagger), as well as ample applications of Machine Learning.
- Recent improvements in theoretical techniques will provide, within small time scale, predictions at N^3LO or at higher accuracy for the most important Standard Model processes.
- These, when combined with better parton density functions (eg., highly desired N^3LO PDF), will be the match for the statistical accuracy achievable with high luminosity LHC.

THANK YOU!

重

 2990

イロト イ部 トイモ トイモト