Highlights of QCD measurements at the LHC Precision QCD @ 2020; IIT Hyderabad

Kajari Mazumdar

Tata Institute of Fundamental Research, Mumbai.

February 3, 2020

The Large Hadron Collider (LHC) at CERN

Marvel of technology.

Operates at the very boundaries of scientific knowledge.

- Collides proton-on-proton (p-p), heavy ions (p-Pb, Pb-Pb, Xe-Xe) at 4 collision points.
- ATLAS and CMS are the major multipurpose experiments.
- India participates in ALICE & CMS experiments.
- The performance of the experiments have crossed the design expectations.

They also demand high precision theoretical predictions.

- Measurement of precision observables based on Standard Model (SM) can shed light into possible BSM physics.
- Will cover only few results from pp collision with bias towards CMS.

collision	collision	integrated
system	energy	luminosity
рр	13 TeV	150/fb
	8 TeV	20/fb
	7 TeV	5/fb
	2.76 TeV	5/pb
p-Pb	8 TeV/nucl.	180 /nb
	5 TeV/nucl.	35 /nb
Pb-Pb	5 TeV /nucl.	25 /nb
	2.76 TeV/nucl.	$150~/\mu b$
Xe-Xe	5.44 TeV/nucleon	13 /mb

- Standard Model
- Direct and indirect signatures of physics beyond SM
- Heavy flavour
- Low-x and forward physics
- Quark-gluon plasma

• Humongous effort by theory and experiment communities

What we measure at LHC

• Total cross section at $\sqrt{s} = 7$ TeV $\sigma_{\text{inel}}(\text{mb}) = 73.2^{+2.0}_{-4.6}(\text{mod.}) \pm 2.6(\text{lumi})$

Rates at $L=10^{34}/{ m cm^2/s}$,	$\sqrt{s} = 8 \text{ TeV}$
inelastic reaction	10 ⁹ /s
bb pairs	$5 imes 10^6/s$
$t \overline{t}$ pairs	8/s
W ightarrow e u	150/s
$Z ightarrow e^+ e^-$	15/s
Higgs (125 GeV)	0.2 /s
Gluino, squark (1TeV)	0.03/s

• at $\sqrt{s} = 13$ TeV, the relative increase in rates is more for gluon initiated processes.

LHC Kinematics

• Reach: x up to $\sim 10^{-6}$

No phenomenon is a phenomenon, until it is observed!

Standard Model cross sections, summary

Hard scattering cross section

- This factorisation picture can be improved systematically, until the power-sppressed contributions become quantitatively relevant.
- Subprocess cross section: depends on the process, calculable with perturbative QCD; short-distance coefficients as an expansion in α_s .
- Parton density functions (PDFs): non-perturbative.
 ⇒ Fit from experimental data and theoretical evolution with DGLAP eqns (Q²-ordered).
- Final state hadronization (q → π, K, p, D, B) or bound state formation use universal form factors extracted from data + DGLAP.

Kajari Mazumdar

Precision QCD @ 2020

LHC event: simulation, visualization, display

• Reconstructed jets in data are from hadrons; theory predictions are for parton level jets.

Test of perturbative QCD predictions

- There is discrepancy with CMS data at higb p_T , using large radius jet. • Use of p_T^{jet} as the QCD scale brings better agreement of CMS 13 TeV results with prediction including nonperturbative QCD and Electroweak corrections.
- Non-perturbative corrections account for parton shower, hadronization and multiparton interactions.

Jet measurements & fixed order calculations

- Data matches batter with NLO predictions matched to parton shower (POWHEG+ PYTHIA8)
- Fixed-order NLO prediction combined with non-perturbative and electroweak corrections (NLOJet++) does not account for parton shower and resummation contributions \implies overestimates cross section for R = 0.4.

Precision QCD @ 2020

February 3, 2020

10 / 23

• CMS dijet data reduces uncertainty in gluon PDE at high x

Kajari Mazumdar

Z+jets at 13 TeV

- Z+X cross sections compared to generators & corrections for NP effects.
- Measurements are in good agreement with NLO+PS mutli-parton calculations including kinematic variables sensitive to soft-gluon radiation.

Kajari Mazumdar

Precision QCD @ 2020

Non-perturbative corrections

• Dependence of correction on reconstructed jet parameter.

- \implies based on Monte Carlo predictions from hadronization models & tunes for multi-parton interactions (MPI) in parton shower.
- hadronization correction is larger for jets of smaller size.
- MPI correction has significant size for large jet radius.

Dependence of correction on reconstructed jet parameter

Measurements using different anti- $k_{\rm T}$ distance parameter: R=0.2, 0.8

Ratio of data to next-to-leading-order (NLO) with CUETP8M1 tune for underlying events

QCD analysis with top-pair events in CMS at 13 TeV

- \bullet triple differential cross section: ${\rm N}_{\rm jet},~\textit{M}({\rm t\bar{t}}),\textit{y}({\rm t\bar{t}})$
- $N_{jet} \rightarrow$ jets are not part of $t\bar{t}$ system.
- Use fixed order NLO calculation to extract $\alpha_s \& m_t$, constrain gluon PDF.

$$\begin{split} &\alpha_S(m_Z) = 0.1135 \pm 0.0016(\text{fit}) ^{+0.0002}_{-0.0004}(\text{model}) ^{+0.0008}_{-0.0001}(\text{param}) ^{+0.0011}_{-0.0005}(\text{scale}) = 0.1135 ^{+0.0021}_{-0.0017}(\text{total}). \\ &m_t^{\text{pole}} = 170.5 \pm 0.7(\text{fit}) \pm 0.1(\text{model}) ^{+0.0}_{-0.1}(\text{param}) \pm 0.3(\text{scale}) \text{ GeV} = 170.5 \pm 0.8(\text{total}) \text{ GeV}. \end{split}$$

Parton distribution functions

- Precision on PDF determines the accuracy of current knowledge SM in most cases and hence the sensitivity for beyond SM.
- The limiting factor for predictions of some the SM input parameters: m_W , $sin^2\theta_w$, m_t
- At N³LO, the theoretical accuracy in the prediction for cross section of $gg \rightarrow H + X$ is limited by PDF.

- LHC data potentially disentangles the flavour composition in sea PDF, determine gluon PDF and improve valuce PDF.
- Different measurements constrain PDFs of various partons

Heavy quark PDFs

Challenging measurements with small production rates and difficulties in identification of heavy flavour jets.

- Estimation of strange quark PDF improves with W + c data.
- $\bullet~Z~+~c/b$ measurements test the perturbative and intrinsic parton components in hadrons

Kajari Mazumdar

Precision QCD @ 2020

Jet substructure in top physics & electroweak physics

• Mesurement of jet mass in boosted top quark decays using fat jet of $p_T > 400 \text{ GeV}$

- Using substructure in search for anomalous gauge coupling. Hadronic decays of boosted W, Z results in a single fat jet, to be identified with τ₂₁ and soft drop mass.
- Constrain parameters of Effective Field Theory Lagrangian as well as anomalous triple gauge and anomalous quartic gauge couplings.

Impact of QCD precision on Higgs physics

• The discovery of the Higgs boson in 2012 has brought Higgs physics of age.

Precision predictions from theory made the discovery possible within a very short time of LHC start-up.

• Higgs characterization is the current mandate of the community.

 \rightarrow being carried out via multiple measurements \Rightarrow crucially depends on accurate theoretical prediction of the observables.

• QCD plays a very significant role. Any deviation from prediction would indicate beyond SM effect.

Kajari Mazumdar

February 3, 2020 18 / 23

Production of charged hadrons inside a jet

- Typically central and mid rapidity jets are mostly gluon jets.
- Study for forward jets provides opportunity to study production of light quark vs. gluon jets
- LHCb measurement probes: hadronization dynamics, jet properties,...

LHC timeline

- Long term facility, has delivered till now only a few % of total data volume expected.
- High luminosity phase of LHC (HL-LHC) is the only approved HEP collider facility for future as of today.
- \bullet Design/nominal instantaneous luminosity: 10^{34} /cm²/s At HL-LHC: 7.5 \times 10^{34} /cm²/s

Precision QCD @ 2020

February 3, 2020 21 / 23

э

< □ > < □ > < □ > < □ > < □ > < □ >

- LHC experiments demand high precision predictions.
- Precision observables can shed light onto possible BSM physics.
- Jet physics becomes even more interesting with the availablity of predictions of NNLO accuracy, new variables useful for experiment (like subjettiness), new identifiers/taggers (like TopTagger), as well as ample applications of Machine Learning.
- Recent improvements in theoretical techniques will provide, within small time scale, predictions at N³LO or at higher accuracy for the most important Standard Model processes.
- These, when combined with better parton density functions (eg., highly desired N³LO PDF), will be the match for the statistical accuracy achievable with high luminosity LHC.

THANK YOU!

Kajari Mazumdar

Precision QCD @ 2020

February 3, 2020 23 / 23

3

イロト イヨト イヨト イヨト