	NLO	NNLO	Outlook	
000	0000000	000000000	0	

Local analytic sector subtraction: the Torino scheme

Chiara Signorile-Signorile

Università degli Studi di Torino

Hyderabad, 28.01.2020

in collaboration with:

L. Magnea, E. Maina, G. Pelliccioli, P. Torrielli and S. Uccirati

based on: Magnea et al., arXiv:1806.09570, arXiv:1809.05444

Introduction	NLO	NNLO	Outlook	
000	0000000	000000000		
Motivations				

- Small deviations from Standard Model predictions can provide important tests for New Physics models.
- Hunting for such deviations requires **high precision predictions** to compare with high precision experiments.
- Next-to-next-to-leading (NNLO) in QCD is the current accuracy standard.
- The automation of QCD computations needs a **fully general** and efficient **treatment of the IR singularities**.

Introduction	NLO	NNLO	Outlook	
000	0000000	000000000		

Schemes and tricks to deal with the IR

Few scheme available at NLO:

- Slicing: [Giele, Glover]
- Subtraction: dipole[Catani, Seymour 9602277], FKS [Frixione et al. 9512328], NS [Nagy, Soper 0308127]

Many schemes available at NNLO:

- Slicing: q_ [Catani, Grazzini 0703012], N-Jettiness [Boughezal et al. 1505.03893, Gaunt et al. 1505.04794]
- Subtraction: Antenna [Gehrmann-DeRidder et al. 0505111], ColorfullNNLO [Del Duca et al. 1603.08927], Nested soft-collinear [Caola et al. 1702.01352], Geometric IR subtraction [Herzog 1804.07949], ε-prescription [Frixione, Grazzini 0411399], Sector decomposition [Bonoth et al. 0402265, Anastasiou et al. 0311311], residue subtraction [Czakon 1005.0274]
- New stategies: Unsubtraction [Sborlini et al. 1608.01584], FDR [Pittau 1208.5457]
- \rightarrow Many options, but still there is room for improvement!!!

The procedure is implemented at NLO and NNLO

NLO	NNLO	Outlook	
0000000	000000000		

Torino Subtraction scheme at NLO

Subtraction	nattern			
000	•0000000	000000000		
	NLO	NNLO	Outlook	

Given a generic amplitude with n massless particles in the final state [partons in the final state only]

$$\mathcal{A}_n(p_i) = \mathcal{A}_n^{(0)}(p_i) + \mathcal{A}_n^{(1)}(p_i) + \mathcal{A}_n^{(2)}(p_i) + \dots$$

An IR-safe observable X receives contribution at NLO according to

$$\frac{d\sigma^{\rm NLO}}{dX} = \lim_{d\to 4} \left\{ \int d\Phi_n \ V_n \,\delta_n + \int d\Phi_{n+1} \ R_{n+1} \ \delta_{n+1} \right\}$$

where $\delta_i = \delta(X - X_i)$, X_i the *i*-particle configuration, and

$$V_n = 2 \mathbf{Re} \Big[\mathcal{A}_n^{(0)*} \mathcal{A}_n^{(1)} \Big] \qquad R_{n+1} = \Big| \mathcal{A}_{n+1}^{(0)} \Big|^2.$$

Problem

Numerical implementation requires to handle finite quantities \rightarrow radiation IR poles have to be subtracted before performing the phase space integration.

Subtraction	pattorp			
000	●0000000	000000000		
	NLO	NNLO	Outlook	

Given a generic amplitude with n massless particles in the final state [partons in the final state only]

$$\mathcal{A}_n(p_i) = \mathcal{A}_n^{(0)}(p_i) + \mathcal{A}_n^{(1)}(p_i) + \mathcal{A}_n^{(2)}(p_i) + \dots$$

An IR-safe observable X receives contribution at NLO according to

$$\frac{d\sigma^{\rm NLO}}{dX} = \lim_{d\to 4} \left\{ \int d\Phi_n \ V_n \,\delta_n + \int d\Phi_{n+1} \ R_{n+1} \ \delta_{n+1} \right\}$$

where $\delta_i = \delta(X - X_i)$, X_i the *i*-particle configuration, and

$$V_n = 2\mathbf{Re}\left[\mathcal{A}_n^{(0)*}\mathcal{A}_n^{(1)}\right] \qquad R_{n+1} = \left|\mathcal{A}_{n+1}^{(0)}\right|^2.$$

Problem

Numerical implementation requires to handle finite quantities \rightarrow radiation IR poles have to be subtracted before performing the phase space integration.

Subtraction idea

make the real contribution finite before performing the PS integration by adding and subtracting a counterterm.

Chiara Signorile-Signorile

	NLO	NNLO	Outlook	
000	0000000	000000000		
Subtraction	pattern			

Subtraction idea

make the real contribution finite before performing the PS integration by **adding and subtracting a counterterm**, which

- has the same singular limits as R, locally in phase space
- is analytically integrable in d dim

$$\frac{d\sigma_{ct}^{\rm NLO}}{dX} = \int \Phi_{n+1} K_{n+1}, \quad I_n = \int d\Phi_{\rm rad} K_{n+1}$$
$$\frac{d\sigma^{\rm NLO}}{dX} = \int \underbrace{d\Phi_n \left(V_n + I_n\right) \delta_n}_{\text{finite in } d=4} + \int \underbrace{d\Phi_{n+1} \left(R_{n+1} \delta_{n+1} - K_{n+1} \delta_n\right)}_{\text{finite in } d=4}$$

Introduction	NLO	NNLO	Outlook	Backup
000	0000000	0000000000	0	
Subtraction	nattern			

Subtraction idea

make the real contribution finite before performing the PS integration by adding and subtracting a counterterm, which

- has the same singular limits as R, locally in phase space
- is analytically integrable in d dim

$$\begin{aligned} \frac{d\sigma_{ct}^{\mathrm{NLO}}}{dX} &= \int \Phi_{n+1} \, K_{n+1} \,, \quad I_n = \int d\Phi_{\mathrm{rad}} \, K_{n+1} \\ \frac{d\sigma^{\mathrm{NLO}}}{dX} &= \int d\Phi_n \left(V - I \right)^{(4)} \delta_n + \int d\Phi_{n+1}^{(4)} \left(R^{(4)} \delta_{n+1} - K^{(4)} \, \delta_n \right) \end{aligned}$$

	NLO	NNLO	Outlook	
000	0000000	000000000		
Implementation o	f the Subtraction r	method: the main in	gredients	

Ingredients of our method:

• Fundamental limits S_i , C_{ij} selecting the leading behaviour in terms of invariants $s_{ab} = 2k_a \cdot k_b$

	NLO	NNLO	Outlook	
000	0000000	000000000	0	

Ingredients of our method:

• Fundamental limits S_i , C_{ij} selecting the leading behaviour in terms of invariants $s_{ab} = 2k_a \cdot k_b$

	NLO	NNLO	Outlook	
000	0000000	000000000	0	

Ingredients of our method:

• Fundamental limits S_i , C_{ij} selecting the leading behaviour in terms of invariants $s_{ab} = 2k_a \cdot k_b$

$$\begin{aligned} \mathbf{S}_{i} \mathcal{X}(\{k_{n}\}) &\Rightarrow \lim_{\substack{k_{i}^{\mu} \to 0}} \mathcal{X}(\{k_{n}\}) \Big|_{\text{leading terms}} & \underbrace{k_{i}}_{k_{j}} &$$

where the singular structure of \boldsymbol{R} factorises

- universal soft and collinear NLO kernels
- Born matrix element

	NLO	NNLO	Outlook	
000	0000000	000000000	0	

Ingredients of our method:

• Fundamental limits S_i , C_{ij} selecting the leading behaviour in terms of invariants $s_{ab} = 2k_a \cdot k_b$

$$\begin{aligned} \mathbf{S}_{i} \mathcal{X}(\{k_{n}\}) &\Rightarrow \lim_{\substack{k_{i}^{\mu} \to 0}} \mathcal{X}(\{k_{n}\}) \Big|_{\text{leading terms}} & \underbrace{k_{i}}_{k_{j}} &$$

where the singular structure of \boldsymbol{R} factorises

- universal soft and collinear NLO kernels
- Born matrix element

$$\begin{aligned} \mathbf{S}_{i}R(\{k\}) &= -\mathcal{N}\sum_{c,d} \delta_{f_{i}g} \frac{s_{cd}}{s_{ic} s_{id}} B_{cd}(\{k\}_{f}) \\ \mathbf{C}_{ij}R(\{k\}) &= \mathcal{N} \frac{1}{s_{ij}} P_{ij}^{\mu\nu}(s_{ir}, s_{jr}) B_{\mu\nu}(\{k\}_{ff}, k) \\ \mathbf{S}_{i}\mathbf{C}_{ij}R(\{k\}) &= 2\mathcal{N} C_{f_{j}} \delta_{f_{i}g} \frac{s_{jr}}{s_{ij} s_{ir}} B(\{k\}_{f}) \end{aligned}$$

 B_{cd} =color-correlated Born, $B_{\mu\nu}$ =spin-correlated Born.

Born kinem.: mass-shell condition and momenta conservation just in the limits.

	NLO	NNLO	Outlook	
000	0000000	000000000		
Implementation o	f the Subtraction i	method: the main in	gredients	

• partition of the phase space Φ_{n+1} with sector functions \mathcal{W}_{ij} , that satisfy two

requirements [Frixione, Kunszt, Signer 9512328]:

	NLO	NNLO	Outlook	
000	0000000	000000000		

- partition of the phase space Φ_{n+1} with sector functions W_{ij}, that satisfy two requirements [Frikione, Kunszt, Signer 9512328]:
 - select the minimum number of singularities
 - $\mathbf{S}_i \mathcal{W}_{ab} = 0$, $\forall i \neq a$ $\mathbf{C}_{ij} \mathcal{W}_{ab} = 0$, $\forall a, b \notin \pi(i, j)$

 \rightarrow at most one soft and/or two collinear partons in a given sector.

- partition of the phase space Φ_{n+1} with sector functions W_{ij}, that satisfy two requirements [Frixione, Kunszt, Signer 9512328]:
 - select the minimum number of singularities

 $\mathbf{S}_i \mathcal{W}_{ab} = 0$, $\forall i \neq a$ $\mathbf{C}_{ij} \mathcal{W}_{ab} = 0$, $\forall a, b \notin \pi(i, j)$

 \rightarrow at most one soft and/or two collinear partons in a given sector.

- sum to unity

$$\sum_{i,j \neq i} \mathcal{W}_{ij} = 1 \;, \quad \textbf{S}_i \sum_{j \neq i} \mathcal{W}_{ij} = 1 \;, \quad \textbf{C}_{ij} \sum_{a,b \in \text{perm}(ij)} \mathcal{W}_{ab} = 1$$

 Introduction
 NLO
 Outlook
 Backup

 000
 00000000
 00
 00

Implementation of the Subtraction method: the main ingredients

- partition of the phase space Φ_{n+1} with sector functions W_{ij}, that satisfy two requirements [Frixione, Kunszt, Signer 9512328]:
 - select the minimum number of singularities

 $\mathbf{S}_i \mathcal{W}_{ab} = 0$, $\forall i \neq a$ $\mathbf{C}_{ij} \mathcal{W}_{ab} = 0$, $\forall a, b \notin \pi(i, j)$

 \rightarrow at most one soft and/or two collinear partons in a given sector.

- sum to unity

$$\sum_{i,j \neq i} \mathcal{W}_{ij} = 1 \;, \quad \textbf{S}_i \sum_{j \neq i} \mathcal{W}_{ij} = 1 \;, \quad \textbf{C}_{ij} \sum_{a,b \in \text{perm}(ij)} \mathcal{W}_{ab} = 1$$

- explicit form

$$\mathsf{CM} \ q^{\mu} = (\sqrt{s}, \vec{0}), \qquad e_i = \frac{s_{qi}}{s} \qquad \omega_{ij} = \frac{s_{sij}}{s_{qi}s_{qj}}$$
$$\boxed{\mathcal{W}_{ij} = \frac{\sigma_{ij}}{\sum_{k,l \neq k} \sigma_{kl}}, \qquad \sigma_{ij} = \frac{1}{e_i \ \omega_{ij}}}$$
$$i\mathcal{W}_{ab} = \delta_{ia} \frac{1/\omega_{ab}}{\sigma_{ab}} \qquad \mathbf{C}_{ii}\mathcal{W}_{ab} = (\delta_{ia}\delta_{ib} + \delta_{ib}\delta_{ia}) \frac{e_b}{\sigma_{ab}}$$

$$\mathbf{S}_{i}\mathcal{W}_{ab} = \delta_{ia} \frac{1/\omega_{ab}}{\sum_{c \neq a} 1/\omega_{ac}} \qquad \mathbf{C}_{ij}\mathcal{W}_{ab} = (\delta_{ia}\delta_{jb} + \delta_{ib}\delta_{ja}) \frac{e_{b}}{e_{a} + e_{b}}$$

 Introduction
 NLO
 Outlook
 Backup

 000
 00000000
 000000000
 0

Implementation of the Subtraction method: the main ingredients

- partition of the phase space Φ_{n+1} with sector functions W_{ij} , that satisfy two requirements [Frixione, Kunszt, Signer 9512328]:
 - select the minimum number of singularities

 $\mathbf{S}_i \mathcal{W}_{ab} = \mathbf{0} , \quad \forall i \neq a \qquad \qquad \mathbf{C}_{ij} \mathcal{W}_{ab} = \mathbf{0} , \quad \forall a, b \notin \pi(i, j)$

 \rightarrow at most one soft and/or two collinear partons in a given sector.

- sum to unity

$$\sum_{i,j\neq i} \mathcal{W}_{ij} = 1 , \quad \mathsf{S}_i \sum_{j\neq i} \mathcal{W}_{ij} = 1 , \quad \mathsf{C}_{ij} \sum_{a,b \in \mathsf{perm}(ij)} \mathcal{W}_{ab} = 1$$

- momentum mapping: $\{k_1, \ldots, k_{n+1}\} \rightarrow \{\bar{k}_1, \ldots, \bar{k}_n\}$ [Catani, Seymour 9605323]:
 - phase space factorisation $d\Phi_{n+1} = d\bar{\Phi}_n \, d\bar{\Phi}_{\mathsf{rad}}$
 - n on-shell particles conserving momentum.

$$\{\bar{k}\}^{(abc)} = \left\{\{k\}_{\neq b \neq c}, \bar{k}_{b}^{(abc)}, \bar{k}_{c}^{(abc)}\right\}$$
$$\bar{k}_{b}^{(abc)} + \bar{k}_{c}^{(abc)} = k_{a} + k_{b} + k_{c}$$

 Introduction
 NLO
 Outlook
 Backup

 000
 00000000
 0
 0
 0

Implementation of the Subtraction method: counterterm construction

Definition of the counterterm

Sector: $W_{ij} \rightarrow \text{minimal singularity structure} \quad \mathbf{S}_i, \mathbf{C}_{ij}$

Candidate counterterm: $K_{ij} = \begin{bmatrix} S_i + C_{ij}(1 - S_i) \end{bmatrix} R W_{ij}$

 $\label{eq:states} \begin{array}{l} \rightarrow {\bf S}_i, {\bf C}_{ij} \text{ commute both on R and on sector function} \\ \rightarrow {\bf overlap \ between \ } {\bf S}_i, {\bf C}_{ij} \text{ taken into account} \end{array}$

Mapping $\{k_{n+1}\} \rightarrow \{k_n\}^{(abc)}$: local counterterm in the remapped kinematic

$$\overline{K}_{ij} \equiv (\overline{\mathbf{S}}_i + \overline{\mathbf{C}}_{ij} - \overline{\mathbf{S}}_i \overline{\mathbf{C}}_{ij}) \, R \, \mathcal{W}_{ij}$$

Barred limits have to fulfil the consistency relations

$$\begin{array}{rcl} \mathbf{S}_{i} \, \mathbf{S}_{i} \, R &=& \mathbf{S}_{i} \, RR \\ \mathbf{C}_{ij} \, \overline{\mathbf{C}}_{ij} \, R &=& \mathbf{C}_{ij} \, RR \\ \mathbf{C}_{ij} \, \overline{\mathbf{S}}_{i} \, \overline{\mathbf{C}}_{ij} \, R &=& \mathbf{C}_{ij} \, \overline{\mathbf{S}}_{i} \, \overline{\mathbf{C}}_{ij} \, R \\ \end{array}$$

Such that

$$R\mathcal{W}_{ij} - \overline{K}_{ij} = finite$$

NLO	NNLO	Outlook	
00000000			

Mapping $\{k_{n+1}\} \rightarrow \{k_n\}^{(abc)}$ (abc) chosen according to the invariants in the kernels

$$\begin{split} \overline{\mathbf{S}}_{i}R(\{k\}) &= -\mathcal{N}_{c,d\neq i} \delta_{f_{ig}} \frac{s_{cd}}{s_{ic} s_{id}} B_{cd}(\{\overline{k}\}^{(icd)}) \\ \overline{\mathbf{C}}_{ij}R(\{k\}) &= \mathcal{N} \frac{1}{s_{ij}} P_{ij}^{\mu\nu}(s_{ir}, s_{jr}) B_{\mu\nu}(\{\overline{k}\}^{(ijr)}) \\ \overline{\mathbf{S}}_{i}\overline{\mathbf{C}}_{ij}R(\{k\}) &= 2\mathcal{N} C_{f_{j}} \delta_{f_{ig}} \frac{s_{jr}}{s_{ij} s_{jr}} B(\{\overline{k}\}^{(ijr)}) \end{split}$$

$$P_{ij}^{\mu\nu}(s_{ir}, s_{jr})B_{\mu\nu} = P_{ij}(s_{ir}, s_{jr})B + Q_{ij}^{\mu\nu}(s_{ir}, s_{jr})B_{\mu\nu}$$
$$\equiv P_{ij}(x_i, x_j)B + Q_{ij}^{\mu\nu}(x_i, x_j)B_{\mu\nu}$$

$$x_i = \frac{s_{ir}}{s_{ir} + s_{jr}}$$
 $x_j = \frac{s_{jr}}{s_{ir} + s_{jr}}$

- <u>Collinear limit</u>: single mapping \rightarrow *dipole=(ijr)*
- <u>Soft limit</u>: different mapping for each contribution to $S_iR(\{k\}) \rightarrow dipole=(icd)$

Introduction	NLO	NNLO	Outlook	Backup
Implementation of	f the Subtraction (method: countertern	o construction	

Sector function sum rules \rightarrow summing over sectors \overline{K} becomes independent of \mathcal{W}_{ii}

$$\overline{K} = \sum_{i,j\neq i} \overline{K}_{ij} = \sum_{i} \left(\overline{\mathbf{S}}_{i} R \right) \left[\overbrace{\mathbf{S}_{i}}^{=1} \underbrace{\mathcal{W}_{ij}}_{j\neq i} \right] + \sum_{i,j>i} \left(\mathbf{C}_{ij} R \right) \left[\overbrace{\mathbf{C}_{ij} \left(\mathcal{W}_{ij} + \mathcal{W}_{ji} \right)}^{=1} \right] \\ - \sum_{i,j\neq i} \left(\overline{\mathbf{S}}_{i} \mathbf{C}_{ij} R \right) \left[\underbrace{\mathbf{S}_{i} \mathbf{C}_{ij} \mathcal{W}_{ij}}_{=1} \right] \\ = \sum_{i} \overline{\mathbf{S}}_{i} R + \sum_{i,j>i} \overline{\mathbf{C}}_{ij} \left(1 - \overline{\mathbf{S}}_{i} - \overline{\mathbf{S}}_{j} \right) R$$

Remarks

- the integrated counterterm has to match the poles of V, which is not split into sectors.
- the sector functions would have made the integration much more involved.

 \rightarrow this way analytic integration is feasible with standard techniques.

 Introduction
 NLO
 Outlook
 Backup

 000
 00000000
 000000000
 0

Implementation of the Subtraction method: counterterm integration

• Parametrisation of the phase space [Catani, Seymour 9605323]

$$d\Phi_{n+1} = d\Phi_n^{(abc)} d\Phi_{\rm rad}^{(abc)} \equiv d\Phi_n^{(abc)} \times d\Phi_{\rm rad} \left(s_{bc}^{(abc)}; y, z, \phi \right)$$

$$d\Phi_{n}^{(abc)} \propto \left(s_{bc}^{(abc)}\right)^{1-\epsilon} \int_{0}^{\pi} d\phi \sin^{-2\epsilon} \phi \int_{0}^{1} dy \int_{0}^{1} dz (1-y) \left[(1-y)^{2} y(1-z)z\right]^{-\epsilon}$$

$$s_{bc}^{(abc)} = s_{abc}, \quad s_{ab} = y s_{bc}^{(abc)}, \quad s_{ac} = z(1-y) s_{bc}^{(abc)}, \quad s_{bc} = (1-z)(1-y) s_{bc}^{(abc)}$$

Integration

- 1 we choose different parametrisation for the soft and the hard-collinear contr.
- 2 soft kernel is parametrised differently for each term of the sum.

$$I^{s} = -\mathcal{N} \frac{\varsigma_{n+1}}{\varsigma_{n}} \sum_{i} \delta_{f_{i}g} \sum_{c,d\neq i} \int d\Phi_{\mathrm{rad}} \left(s_{cd}^{(icd)}; y, z, \phi \right) \frac{s_{cd}}{s_{ic} s_{id}} B_{cd} \left(\{ \bar{k} \}^{(icd)} \right)$$
$$= -\mathcal{N} \frac{\varsigma_{n+1}}{\varsigma_{n}} \sum_{i} \delta_{f_{i}g} \sum_{c,d\neq i} B_{cd} \left(\{ \bar{k} \}^{(icd)} \right) \left(s_{cd}^{(icd)} \right)^{-\epsilon} \frac{(4\pi)^{\epsilon-2} \Gamma(1-\epsilon) \Gamma(2-\epsilon)}{\epsilon^{2} \Gamma(2-3\epsilon)}$$

Remark:

- freedom to adapt the parametrisation to the invariants appearing in the kernels.
- integrated counterterm exact in ϵ .

NLO	NNLO	Outlook	
0000000	000000000		

NNLO Subt	raction pattern			
000	0000000	00000000		
Introduction	NLO	NNLO	Outlook	Backup

• more configurations contribute

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \ VV_n \,\delta_n(X) + \int d\Phi_{n+1} \ RV_{n+1} \ \delta_{n+1}(X) + \int d\Phi_{n+2} \ RR_{n+2} \ \delta_{n+2}(X)$$
$$RR_{n+2} = \left|\mathcal{A}_{n+2}^{(0)}\right|^2 \quad VV_n = \left|\mathcal{A}_n^{(1)}\right|^2 + 2\operatorname{Re}\left[\mathcal{A}_n^{(0)\dagger}\mathcal{A}_n^{(2)}\right] \quad RV_{n+1} = 2\operatorname{Re}\left[\mathcal{A}_{n+1}^{(0)\dagger}\mathcal{A}_{n+1}^{(1)}\right]$$

• more counterterms to add and subtract

$$\int d\Phi_{n+2} \ \mathcal{K}^{(1)} \ \delta_{n+1} : \qquad \mathcal{K}^{(1)} \rightarrow \text{ same 1-unr. singularities as RR}$$

$$\int d\Phi_{n+2} \left(\mathcal{K}^{(2)} - \mathcal{K}^{(12)} \right) \delta_n : \qquad \mathcal{K}^{(2)} - \mathcal{K}^{(12)} \rightarrow \text{ same 2-unr. singularities as RR.}$$

$$[1-\text{unr.}(2-\text{unr.}), \text{ pure 2-unr.}]$$

 $\int \, d\Phi_{n+1} \; {\cal K}^{({\sf RV})} \; \delta_n \; : \qquad {\cal K}^{({\sf RV})} \quad \rightarrow \quad {\sf same 1-unr. \ singularities \ as \ {\sf RV}}$

and integrate in the radiative phase space

$$I^{(i)} = \int d\Phi_{\mathsf{rad},i} \, K^{(i)} \,, \quad I^{(12)} = \int d\Phi_{\mathsf{rad},1} \, K^{(12)} \,, \quad I^{(\mathsf{RV})} = \int d\Phi_{\mathsf{rad}} \, K^{(\mathsf{RV})} \,,$$

Chiara Signorile-Signorile

NLO	NNLO	Outlook	
0000000	00000000		

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \left[\underbrace{VV_n}_{\text{singular in } d=4, \text{ finite in } \Phi_n} \right] \delta_n$$

$$+ \int d\Phi_{n+1} \left[\underbrace{(RV_{n+1})}_{\text{singular in } d=4, \text{ singular in } \Phi_{n+1}} \right]$$

$$+ \int d\Phi_{n+2} \left[\underbrace{RR_{n+2}}_{\text{finite in } d=4, \text{ singular in } \Phi_{n+2}} \right]$$

NLO	NNLO	Outlook	
0000000	00000000		

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \left[\underbrace{\bigvee_{\text{singular in } d=4}}_{\text{singular in } d=4}, \text{ finite in } \Phi_n}\right] \delta_n$$

$$+ \int d\Phi_{n+1} \left[\underbrace{(RV_{n+1})}_{\text{singular in } d=4, \text{ singular in } \Phi_{n+1}}\right]$$

$$+ \int d\Phi_{n+2} \left[\underbrace{RR_{n+2} \, \delta_{n+2} - K^{(1)} \delta_{n+1} - (K^{(2)} - K^{(12)}) \delta_n}_{\text{finite in } d=4 \text{ and in } \Phi_{n+2}}\right]$$

NLO	NNLO	Outlook	
0000000	00000000		

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \left[\underbrace{\bigvee_{n}}_{\text{singular in } d=4, \text{ finite in } \Phi_n} \right] \delta_n$$

$$+ \int d\Phi_{n+1} \left[\underbrace{\left(RV_{n+1} \right) \delta_{n+1} - \left(K^{(RV)} \right) \delta_n}_{\text{singular in } d=4, \text{ finite in } \Phi_{n+1}} \right]$$

$$+ \int d\Phi_{n+2} \left[\underbrace{RR_{n+2} \delta_{n+2} - K^{(1)} \delta_{n+1} - \left(K^{(2)} - K^{(12)} \right) \delta_n}_{\text{finite in } d=4 \text{ and in } \Phi_{n+2}} \right]$$

NLO	NNLO	Outlook	
0000000	00000000		

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \left[\underbrace{VV_n}_{\text{singular in d=4, finite in } \Phi_n}\right] \delta_n$$

$$+ \int d\Phi_{n+1} \left[\underbrace{(RV_{n+1} + I^{(1)})}_{\text{finite in d=4, singular in } \Phi_{n+1}} \delta_{n+1} - \underbrace{(K^{(RV)} + I^{(12)})}_{\text{finite in d=4, singular in } \Phi_{n+1}} \delta_n\right]$$

$$+ \int d\Phi_{n+2} \left[\underbrace{RR_{n+2} \ \delta_{n+2} - K^{(1)} \delta_{n+1} - (K^{(2)} - K^{(12)}) \delta_n}_{\text{finite in d=4 and in } \Phi_{n+2}}\right]$$

NLO	NNLO	Outlook	
0000000	00000000		

$$\frac{d\sigma^{\text{NNLO}}}{dX} = \int d\Phi_n \left[\underbrace{\frac{VV_n + I^{(2)} + I^{(\text{RV})}}{\text{finite in d=4 and in } \Phi_n}}_{\text{finite in d=4, singular in } \Phi_{n+1}} \right] \delta_n$$

$$+ \int d\Phi_{n+1} \left[\underbrace{\frac{\left(\frac{RV_{n+1} + I^{(1)}}{\text{finite in d=4, singular in } \Phi_{n+1}} \right)}_{\text{finite in d=4 and in } \Phi_{n+1}} \right]$$

$$+ \int d\Phi_{n+2} \left[\underbrace{\frac{RR_{n+2} \delta_{n+2} - K^{(1)} \delta_{n+1} - \left(K^{(2)} - K^{(12)}\right) \delta_n}_{\text{finite in d=4 and in } \Phi_{n+2}} \right]$$

 Introduction
 NLO
 NNLO
 Outbook
 Backup

 000
 00000000
 00000000
 0
 Backup

 Subtraction algorithm at NNLO: ingredients
 0
 0
 0
 0

Ingredients of our method:

- new singular configurations of RR:
 - ${f S}_{ij}
 ightarrow ij$ soft ${f C}_{ijkl}
 ightarrow (ij), (kl)$ indep. collinear
- ${f C}_{ijk} o ijk$ collinear ${f SC}_{ijk} o i$ soft, jk collinear

• partition of
$$\Phi_{n+2}$$
:

$$\mathcal{W}_{ijkl} \qquad \begin{cases} i, k \to soft \\ ij, kl \to collinear \end{cases} \qquad \qquad \begin{cases} sum rules \\ \sum_{i,j\neq i} \sum_{\substack{k\neq i \\ l\neq i,k}} \mathcal{W}_{ijkl} = 1 \end{cases}$$

different topologies to select the minimum number of singularities:

\mathcal{W}_{ijjk}	:	S _i	C _{ij}	S _{ij}	C _{ijk}	SC _{ijk}	
\mathcal{W}_{ijkj}	:	\mathbf{S}_i	C _{ij}	S _{ik}	C _{ijk}	SC _{ijk}	SC _{kij}
\mathcal{W}_{ijkl}	:	S <i>i</i>	C _{ij}	S _{ik}	C _{ijkl}	SC _{ikl}	SC _{ki}

single unresolved limits

factorisation into NLO sector function under single-unresolved limits

$$\mathbf{S}_{i}\mathcal{W}_{ijkl} = \mathcal{W}_{kl}\,\mathbf{S}_{i}\tilde{\mathcal{W}}_{ij} \quad \mathbf{C}_{ij}\mathcal{W}_{ijkl} = \mathcal{W}_{kl}\,\mathbf{C}_{ij}\tilde{\mathcal{W}}_{ij} \quad \mathbf{S}_{i}\mathbf{C}_{ij}\mathcal{W}_{ijkl} = \mathcal{W}_{kl}\,\mathbf{S}_{i}\mathbf{C}_{ij}\tilde{\mathcal{W}}_{ij}$$

 Introduction
 NLO
 NNLO
 Outlook
 Backup

 000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Subtraction algorithm at NNLO: ingredients

• counterterm identification [sector W_{ijjk}]

$$\underbrace{(1 - \mathbf{S}_{i})(1 - \mathbf{C}_{i})}_{1 - \mathbf{L}_{ij}^{(1)}} \underbrace{(1 - \mathbf{S}_{ij})(1 - \mathbf{C}_{ijk})(1 - \mathbf{S}\mathbf{C}_{ijk})}_{1 - \mathbf{L}_{ijk}^{(2)}} RR \mathcal{W}_{ijjk} = \text{finite}$$

$$\left(1 - \mathbf{L}_{ij}^{(1)} - \mathbf{L}_{ijjk}^{(2)} + \mathbf{L}_{ij}^{(1)}\mathbf{L}_{ijjk}^{(2)}\right) RR \mathcal{W}_{ijjk} = \text{finite}$$

according to the number of unresolved partons we define

$$RR \mathcal{W}_{ijjk} - K^{(1)}_{ijjk} - K^{(2)}_{ijjk} + K^{(12)}_{ijjk} = finite$$

 $^{(1)}$ = one unres. , $^{(2)}$ = two unres. democratic , $^{(12)}$ = two unres. hierarchical

$$\begin{split} \mathcal{K}_{ijjk}^{(1)} &= \left[\mathbf{S}_{i} + \mathbf{C}_{ij} \left(1 - \mathbf{S}_{i} \right) \right] RR \, \mathcal{W}_{ijjk} \\ \mathcal{K}_{ijjk}^{(2)} &= \left[\mathbf{S}_{ij} + \mathbf{C}_{ijk} \left(1 - \mathbf{S}_{ij} \right) + \mathbf{S}\mathbf{C}_{ijk} \left(1 - \mathbf{S}_{ij} \right) \left(1 - \mathbf{C}_{ijk} \right) \right] RR \, \mathcal{W}_{ijjk} \\ \mathcal{K}_{ijjk}^{(12)} &= \left\{ \left[\mathbf{S}_{i} + \mathbf{C}_{ij} \left(1 - \mathbf{S}_{i} \right) \right] \left[\mathbf{S}_{ij} + \mathbf{C}_{ijk} \left(1 - \mathbf{S}_{ij} \right) \\ &+ \mathbf{S}\mathbf{C}_{ijk} \left(1 - \mathbf{S}_{ij} \right) \left(1 - \mathbf{C}_{ijk} \right) \right] \right\} RR \, \mathcal{W}_{ijjk} \end{split}$$

Remarks:

- $S_i, C_{ij}, S_{ij}, C_{ijk}, SC_{ijk}$ commute

Introduction	NLO	NNLO	Outlook	Backup
000	00000000	000000000		
Subtraction	algorithm at NNL	O: ingredients		

• Singular structure of RR under the fundamental limits

- universal kernel [Catani, Grazzini 9903516, 9810389] [Campbell, Glover 9710255]
- Born matrix element

$$\begin{split} \mathbf{S}_{ij} RR(\{k\}) &\propto \sum_{c,d \neq i,j} \left[\sum_{e,f \neq i,j} \mathcal{I}_{cd}^{(j)} \mathcal{I}_{ef}^{(j)} B_{cdef}(\{k\}_{ff}) + \mathcal{I}_{cd}^{(ij)} B_{cd}(\{k\}_{ff}) \right] \\ \mathbf{C}_{ijk} RR(\{k\}) &\propto \frac{1}{s_{ijk}^2} P_{ijk}^{\mu\nu}(s_{ir}, s_{jr}, s_{kr}) B_{\mu\nu}(\{k\}_{ffk}, k_{ijk}) \\ \mathbf{C}_{ijkl} RR(\{k\}) &\propto \frac{1}{s_{ij} s_{kl}} P_{ij}^{\mu\nu}(s_{ir}, s_{jr}) P_{kl}^{\rho\sigma}(s_{kr'}, s_{lr'}) B_{\mu\nu\rho\sigma}(\{k\}_{ffkf}, k_{ij}, k_{kl}) \\ \mathbf{SC}_{ijk} RR(\{k\}) &= \mathbf{CS}_{jki} RR(\{k\}) \propto \frac{1}{s_{jjk}} \sum_{c,d \neq i} P_{jk}^{\mu\nu} \mathcal{I}_{cd}^{(i)} B_{\mu\nu}^{cd}(\{k\}_{ffk}, k_{jk}) \end{split}$$

 $\mathcal{I}_{cd}^{(i)} = \text{single eikonal current}, \ \mathcal{I}_{cd}^{(ij)} = \text{double eikonal current}. \ \mathcal{P}_{jik}^{\mu\nu}(s_{ir}, s_{jr}, s_{kr}) = \text{triple splitting function.}$

 $\frac{\text{Born kinem.}}{\mathcal{K}_{ijjk}^{(1)}, \mathcal{K}_{ijjk}^{(2)}, \mathcal{K}_{ijjk}^{(2)}} \text{ do not satisfy mass-shell condition and momenta conservation} \\ \implies \text{momentum mapping needed!}$

Cubturgetion almost	the st NINI Or in	ared i o n to		
000	0000000	000000000		
Introduction	NLO	NNLO	Outlook	Backup

Subtraction algorithm at NNLO: ingredients

• double momentum mapping: $\{k_1, \ldots, k_{n+2}\} \rightarrow \{\overline{k}_1, \ldots, \overline{k}_n\}.$

two kind of mapping to treat different kernels and simplify the integration.

1) two-steps mapping

$$\begin{split} \bar{k}_{n}^{(acd, bef)} &= \bar{k}_{n}^{(acd)} , \quad n \neq a, b, e, f \\ \bar{k}_{e}^{(acd, bef)} &= \bar{k}_{b}^{(acd)} + \bar{k}_{e}^{(acd)} - \frac{\bar{s}_{be}^{(acd)}}{\bar{s}_{bf}^{(acd)} + \bar{s}_{ef}^{(acd)}} \bar{k}_{f}^{(acd)} \qquad \bar{k}_{f}^{(acd, bef)} = \frac{\bar{s}_{bef}^{(acd)}}{\bar{s}_{bf}^{(acd)} + \bar{s}_{ef}^{(acd)}} \bar{k}_{f}^{(acd)} \end{split}$$

$$\underline{\mathsf{PS} \text{ fact.}}: \ d\Phi_{n+2} = d\Phi_n^{(\mathit{acd},\mathit{bef})} \cdot d\Phi_{\mathrm{rad},1}(\bar{s}_{\mathit{bef}}^{(\mathit{acd})};y',z',\phi') \cdot d\Phi_{\mathrm{rad},1}(s_{\mathit{acd}};y,z,\phi)$$

2) one-step mapping

$$\bar{k}_{n}^{(abcd)} = k_{n}, \quad n \neq a, b, c, d$$

$$\bar{k}_{c}^{(abcd)} = k_{a} + k_{b} + k_{c} - \frac{s_{abc}}{s_{ad} + s_{bd} + s_{cd}} k_{d}$$

$$\bar{k}_{d}^{(abcd)} = \frac{s_{abcd}}{s_{ad} + s_{bd} + s_{cd}} k_{d}$$

$$\frac{PS \text{ fact.: } d\Phi_{n+2} = d\Phi_{n}^{(abcd)} \cdot d\Phi_{rad,2}(\bar{s}_{cd}^{(abcd)}; y, z, \phi, y', z', x').$$

	NLO	NNLO	Outlook	
000	0000000	0000000000		
From the ingredi	ents to the recipe			

Example: double unresolved counterterm and its integral

Applying the sum rules to the sector functions we end up with

$$\begin{split} \overline{\mathcal{K}}^{(2)} &= \sum_{i} \left\{ \sum_{j>i} \overline{\mathbf{S}}_{ij} + \sum_{j>i} \sum_{k>j} \overline{\mathbf{C}}_{ijk} \left(1 - \overline{\mathbf{S}}_{ij} - \overline{\mathbf{S}}_{ik} - \overline{\mathbf{S}}_{jk} \right) \right. \\ &+ \sum_{j>i} \sum_{\substack{k>i \\ k \neq j}} \sum_{\substack{l>k \\ l \neq j}} \overline{\mathbf{C}}_{ijkl} \left(1 - \overline{\mathbf{S}}_{ik} - \overline{\mathbf{S}}_{jk} - \overline{\mathbf{S}}_{il} - \overline{\mathbf{S}}_{jl} \right) + \dots \right\} RR \,, \end{split}$$

- No sector functions left as needed for matching the VV poles.
- Full freedom in defining the mapped terms.

	NLO	NNLO	Outlook	
000	0000000	0000000000		
From the ingredi	ents to the recipe			

Example: double unresolved counterterm and its integral

Applying the sum rules to the sector functions we end up with

$$\begin{split} \overline{\mathcal{K}}^{(2)} &= \sum_{i} \left\{ \sum_{j>i} \overline{\mathbf{S}}_{ij} + \sum_{j>i} \sum_{k>j} \overline{\mathbf{C}}_{ijk} \left(1 - \overline{\mathbf{S}}_{ij} - \overline{\mathbf{S}}_{ik} - \overline{\mathbf{S}}_{jk} \right) \right. \\ &+ \sum_{j>i} \sum_{\substack{k>i \ l>k} \atop k \neq j} \sum_{\substack{l>k \ l\neq j}} \overline{\mathbf{C}}_{ijkl} \left(1 - \overline{\mathbf{S}}_{ik} - \overline{\mathbf{S}}_{jk} - \overline{\mathbf{S}}_{jl} - \overline{\mathbf{S}}_{jl} \right) + \dots \right\} RR \,, \end{split}$$

- No sector functions left as needed for matching the VV poles.
- Full freedom in defining the mapped terms.

NLO	NNLO	Outlook	
	0000000000		

Starting from the limit

$$\mathbf{S}_{ij} RR(\{k\}) \propto \sum_{c,d\neq i,j} \left[\sum_{e,f\neq i,j} \mathcal{I}_{cd}^{(i)} \mathcal{I}_{ef}^{(j)} B_{cdef}\left(\{k\}_{ff}\right) + \mathcal{I}_{cd}^{(ij)} B_{cd}\left(\{k\}_{ff}\right) \right]$$

we are free to map each term separately, adapting the choice to the invariants appearing in the kernel

$$\begin{split} \bar{\mathbf{S}}_{ij} RR \propto \sum_{\substack{c \neq i, j \\ d \neq i, j, c}} \left[\sum_{\substack{e \neq i, j, c, d \\ f \neq i, j, c}} \mathcal{I}_{cd}^{(i)} \overline{\mathcal{I}}_{ef}^{(j)(icd)} B_{cdef}\left(\{\bar{k}\}^{(icd, jef)}\right) \\ &+ 4 \sum_{e \neq i, j, c, d} \mathcal{I}_{cd}^{(i)} \overline{\mathcal{I}}_{ed}^{(j)(icd)} B_{cded}\left(\{\bar{k}\}^{(icd, jed)}\right) \\ &+ 2 \mathcal{I}_{cd}^{(i)} \mathcal{I}_{cd}^{(j)} B_{cdcd}\left(\{\bar{k}\}^{(ijcd)}\right) + \left(\mathcal{I}_{cd}^{(ij)} - \frac{1}{2} \mathcal{I}_{cd}^{(ij)}\right) B_{cd}\left(\{\bar{k}\}^{(ijcd)}\right) \right] \end{split}$$

The PS parametrisation follows the mapping structure to simplify the integral

NLO	NNLO	Outlook	
	0000000000		

Starting from the limit

$$\mathbf{S}_{ij} RR(\{k\}) \propto \sum_{c,d\neq i,j} \left[\sum_{e,f\neq i,j} \mathcal{I}_{cd}^{(i)} \mathcal{I}_{ef}^{(j)} B_{cdef}\left(\{k\}_{ff}\right) + \mathcal{I}_{cd}^{(ij)} B_{cd}\left(\{k\}_{ff}\right) \right]$$

we are free to map each term separately, adapting the choice to the invariants appearing in the kernel

$$\begin{split} \overline{\mathbf{S}}_{ij} RR \propto \sum_{\substack{c \neq i, j \\ d \neq i, j, c}} \left[\sum_{\substack{e \neq i, j, c, d \\ f \neq i, j, c}} \mathcal{I}_{cd}^{(i)} \overline{\mathcal{I}}_{ef}^{(j)(icd)} B_{cdef}\left(\{\overline{k}\}^{(icd, jef)}\right) \\ &+ 4 \sum_{e \neq i, j, c, d} \mathcal{I}_{cd}^{(i)} \overline{\mathcal{I}}_{ed}^{(j)(icd)} B_{cded}\left(\{\overline{k}\}^{(icd, jed)}\right) \\ &+ 2 \mathcal{I}_{cd}^{(i)} \mathcal{I}_{cd}^{(j)} B_{cdcd}\left(\{\overline{k}\}^{(ijcd)}\right) + \left(\mathcal{I}_{cd}^{(ij)} - \frac{1}{2} \mathcal{I}_{cc}^{(ij)} - \frac{1}{2} \mathcal{I}_{dd}^{(ij)}\right) B_{cd}\left(\{\overline{k}\}^{(ijcd)}\right) \right] \end{split}$$

The PS parametrisation follows the mapping structure to simplify the integral

$$\begin{split} I^{(2)}_{\mathrm{SS},cdef} &= \int d\Phi_{\mathrm{rad},2} \, \mathcal{I}^{(i)}_{cd} \, \overline{\mathcal{I}}^{(j),(icd)}_{ef} = \int d\overline{\Phi}^{(icd,jef)}_{\mathrm{rad}} \, \overline{\mathcal{I}}^{(j),(icd)}_{ef} \int d\Phi^{(icd)}_{\mathrm{rad}} \, \mathcal{I}^{(i)}_{cd} \\ &= \delta_{f_{i}g} \delta_{f_{j}g} \left[\frac{(4\pi)^{\epsilon-2}}{(\overline{\mathsf{s}}^{(icd,jef)}_{cd})^{\epsilon}} \, \frac{\Gamma(1-\epsilon)\Gamma(2-\epsilon)}{\epsilon^2 \, \Gamma(2-3\epsilon)} \right] \left[\frac{(4\pi)^{\epsilon-2}}{(\overline{\mathsf{s}}^{(icd,jef)}_{ef})^{\epsilon}} \, \frac{\Gamma(1-\epsilon)\Gamma(2-\epsilon)}{\epsilon^2 \, \Gamma(2-3\epsilon)} \right] \end{split}$$

Introduction 000	NLO 0000000	NNLO ○0000000●0	Outlook O	
All the	e contributions to $\overline{K}^{(2)}$ have b	een integrated		
	$I^{(2)} = \left(rac{lpha_s}{4\pi} ight)^2 \Big[$	$I_{\rm ss}^{(2)} + I_{\rm hcc}^{(2)} + I_{\rm cc4}^{(2)} + I_{\rm sc2}^{(2)}$	3]	
and or	ganised according to the diffe	rent colour structures		
$I_{\rm ss}^{(2)} =$	$= \left[2 \left(\sum_{a,b} C_{f_a} C_{f_b} \right) I_{C_f C_f}^{ss} + 8 \right($	$\sum_{a} C_{f_a}^2 \Big) I_{C_f^2}^{ss}$		
	$-\bigg(\sum_{a}C_{f_{a}}\bigg)\bigg(N_{f}\ T_{R}\ I_{C_{f}T_{R}}^{ss}$	$-\frac{C_A}{2}I_{C_fC_A}^{\rm ss}\bigg)\bigg]B(\{\bar{k}\}\bigg]$)	
	$+2\sum_{c,d\neq c}\left[-2\left(\sum_{a}C_{f_{a}}\right)I_{C}^{s}\right]$	$S_{fB_{cd}}^{ss} - 2C_{f_d}I_{C_dB_{cd}}^{ss} + N$	${}_{f}T_{R}I_{T_{R}B_{cd}}^{ss}-\frac{C_{A}}{2}I_{C_{A}B_{cd}}^{ss}$	$B_{cd}(\{\bar{k}\})$
	$+2\sum_{c,d\neq c}I_{B_{cdcd}}^{ss}B_{cdcd}(\{\bar{k}\})-$	$+4\sum_{\substack{c,d\neq c\\e\neq d}}I_{B_{cded}}^{ss}B_{cded}(\{$	₹})	
	$+ \sum_{\substack{c,d \neq c \\ e,f \neq e}} I^{ss}_{B_{cdef}} B_{cdef}(\{\bar{k}\}) +$	$\mathcal{O}(\epsilon)$.		

<u>Remark</u>: $I_{cc4}^{(2)}, I_{sc3}^{(2)}$ feature a NLO×NLO complexity.

Chiara Signorile-Signorile

Introduction 000		NLO 00000000	NNLO ○00000000●	Outlook O	
$I_{C_f C_f}^{ss}$	=	$\frac{1}{\epsilon^4} + \frac{4}{\epsilon^3} + (16 - \frac{7}{6} \pi^2) \frac{1}{\epsilon^2} +$	$-(60-\frac{14}{3}\pi^2-\frac{50}{3}\zeta(3))\frac{1}{\epsilon}+216-\frac{5}{2}$	$\frac{56}{3} \pi^2 - \frac{200}{3} \zeta(3) + \frac{29}{120} \pi^4$	
$I_{C_f^2}^{ss}$	=	$\left(1 - \frac{\pi^2}{6}\right) \frac{1}{\epsilon^2} + \left(10 - \frac{2}{3}\pi^2\right)$	$-6 \zeta(3) \frac{1}{\epsilon} + 68 - 4 \pi^2 - 24 \zeta(3) - \frac{1}{\epsilon}$	$\frac{7}{72} \pi^4$	
$I_{C_f T_R}^{ss}$	=	$\frac{2}{3} \frac{1}{\epsilon^3} + \frac{34}{9} \frac{1}{\epsilon^2} + \left(\frac{464}{27} - \frac{7}{9}\tau\right)$	$(\pi^2) \frac{1}{\epsilon} + \frac{5896}{81} - \frac{131}{27} \pi^2 - \frac{76}{9} \zeta(3)$		
$I_{C_f C_A}^{ss}$	=	$\frac{2}{\epsilon^4} + \frac{35}{3} \frac{1}{\epsilon^3} + \left(\frac{487}{9} - \frac{8}{3} \pi^2\right)$	$)\frac{1}{\epsilon^2} + \left(\frac{6248}{27} - \frac{269}{18} \pi^2 - \frac{154}{3} \zeta(3)\right)$	$\frac{1}{\epsilon} + \frac{77404}{81} - \frac{3829}{54} \pi^2 - \frac{2050}{9} \zeta$	$\zeta(3) - \frac{23}{60} \pi^4$
$I_{C_f B_{cd}}^{ss}$	=	$\ln \frac{\bar{s}_{cd}}{\mu^2} \left[-\frac{1}{\epsilon^3} - \frac{4}{\epsilon^2} - \left(16 - \frac{1}{\epsilon^3} - \frac{4}{\epsilon^2} - \frac{1}{\epsilon^2} \right) \right]$	$\frac{7}{6} \pi^2 \left(\frac{1}{\epsilon} - 60 + \frac{14}{3} \pi^2 + \frac{50}{3} \zeta(3) \right)$		
		$+ \frac{1}{2} \ln \frac{\overline{s}_{cd}}{\mu^2} \left(\frac{1}{\epsilon^2} + \frac{4}{\epsilon} + \frac{1}{\epsilon} \right)$	$+16-\frac{7}{6}\pi^2\Big)-\frac{1}{6}\ln^2\frac{\bar{s}_{cd}}{\mu^2}(\frac{1}{\epsilon}+4)+$	$+\frac{1}{24}\ln^3\frac{\overline{s}_{cd}}{\mu^2}$	
$I_{C_d B_{cd}}^{ss}$	=	$4\ln\frac{\bar{\mathfrak{s}}_{cd}}{\mu^2}\left[-\left(1\!-\!\frac{\pi^2}{6}\right)\frac{1}{\epsilon}-\right.$	$10 + \frac{2}{3} \pi^2 + 6 \zeta(3) + \frac{1}{2} \ln \frac{\bar{s}_{cd}}{\mu^2} \left(1 - \frac{2}{3}\right)$	$\left[\frac{\tau^2}{6}\right]$	
$I_{T_RB_{cd}}^{ss}$	=	$\ln \frac{\bar{s}_{cd}}{\mu^2} \left[-\frac{2}{3} \frac{1}{\epsilon^2} - \frac{34}{9} \frac{1}{\epsilon} - \frac{4}{2} \right]$	$\frac{164}{27} + \frac{7}{9} \pi^2 + \ln \frac{\bar{s}_{cd}}{\mu^2} \left(\frac{2}{3} \frac{1}{\epsilon} + \frac{34}{9}\right) - \frac{4}{9}$	$\ln^2 \frac{\overline{s}_{cd}}{\mu^2}$	
$I_{C_A B_{cd}}^{ss}$	=	$\ln \frac{\bar{s}_{cd}}{\mu^2} \left[-\frac{2}{\epsilon^3} - \frac{35}{3} \frac{1}{\epsilon^2} - \left(\frac{4}{\epsilon^3} - \frac{4}{\epsilon^2} - \frac{4}{\epsilon^2} \right) \right]$	$\left(\frac{187}{9} - \frac{8}{3} \pi^2\right) \frac{1}{\epsilon} - \frac{6248}{27} + \frac{269}{18} \pi^2 + \frac{15}{3}$	4 ζ(3)	
		+ $\ln \frac{\overline{s}_{cd}}{\mu^2} \left(\frac{2}{\epsilon^2} + \frac{35}{3} \right)^2$	$\left[\frac{1}{\epsilon} + \frac{487}{9} - \frac{8}{3} \pi^2\right) - \frac{2}{3} \ln^2 \frac{\bar{s}_{cd}}{\mu^2} \left(\frac{2}{\epsilon} + \frac{1}{2}\right)$	$\left(\frac{35}{3}\right) + \frac{2}{3} \ln^3 \frac{\bar{s}_{cd}}{\mu^2}$	
$I_{B_{cdcd}}^{ss}$	=	$-4(1-\zeta(3))\Big(rac{1}{\epsilon}-2\lnrac{ar{s}_{cd}}{\mu^2}\Big)$	$\left(\frac{d}{2}\right) - 40 - \frac{\pi^2}{3} + 12\zeta(3) + \frac{13}{36}\pi^4$		
$I_{B_{cded}}^{ss}$	=	$\ln \frac{\bar{\mathbf{s}}_{cd}}{\mu^2} \ln \frac{\bar{\mathbf{s}}_{ed}}{\mu^2} \left(1\!-\!\frac{\pi^2}{6}\right)$			
$I_{B_{cdef}}^{ss}$	=	$\ln \frac{\bar{s}_{cd}}{\mu^2} \ln \frac{\bar{s}_{ef}}{\mu^2} \left[\frac{1}{\epsilon^2} + \frac{4}{\epsilon} + 16 - \frac{1}{\epsilon^2} \right]$	$-\frac{7}{6} \pi^2 - \frac{1}{2} \left(\ln \frac{\bar{s}_{cd}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \frac{1}{2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \frac{1}{2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \left(\frac{1}{\epsilon} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} + \ln \frac{\bar{s}_{ef}}{\mu^2} \right) \right)$	$4) + \frac{1}{6} \left(\ln^2 \frac{\overline{s}_{cd}}{\mu^2} + \ln^2 \frac{\overline{s}_{ef}}{\mu^2} \right) +$	$\frac{1}{4} \ln \frac{\bar{s}_{cd}}{\mu^2} \ln \frac{\bar{s}_{ef}}{\mu^2} \right]$

NLO	NNLO	Outlook	

Outlook

	NLO	NNLO	Outlook	
000	0000000	000000000	•	
Outlook				

Some work is done:

- General structure of a local, analytic sector subtraction has been proposed.
- All the integrals needed for $K^{(2)}$ and $K^{(RV)}$ are done.

Some work is in progress:

Combining the results to check the cancellation of the IR poles for a generic process.

A lot of work remains to be done:

- Implementation in a differential code.
- Generalisation to initial state radiation.
- Extension to massive particles.

NLO	NNLO	Outlook	Backup

Backup

NLO	NNLO	Outlook	Backup

Example: one unresolved counterterm and its integral

$$\mathcal{K}^{(1)} = \sum_{i,j \neq i} \left[\mathbf{S}_i + \mathbf{C}_{ij}(1 - \mathbf{S}_i) \right] RR \sum_{k \neq i,j} \left(\mathcal{W}_{ijjk} + \mathcal{W}_{ijkj} + \sum_{l \neq i,j,k} \mathcal{W}_{ijkl} \right)$$

NNLO sectors factorise into NLO sectors and mapping is applied

$$\overline{K} = \sum_{i,j\neq i} \sum_{\substack{k\neq i \\ l\neq i,k}} \left[\left(\mathbf{S}_{i} \mathcal{W}_{ij}^{(\alpha\beta)} \right) (\overline{\mathbf{S}}_{i} RR) \overline{\mathcal{W}}_{kl} + \left(\mathbf{C}_{ij} \mathcal{W}_{ij}^{(\alpha\beta)} \right) (\overline{\mathbf{C}}_{ij} RR) \overline{\mathcal{W}}_{kl} - \left(\mathbf{S}_{i} \mathbf{C}_{ij} \mathcal{W}_{ij}^{(\alpha\beta)} \right) (\overline{\mathbf{S}}_{i} \overline{\mathbf{C}}_{ij} RR) \overline{\mathcal{W}}_{kl} \right]$$

$$= \sum_{\substack{k\neq i \\ l\neq i,k}} \overline{\mathcal{W}}_{kl} \left[\sum_{i} \overline{\mathbf{S}}_{i} RR + \sum_{i,j>i} \overline{\mathbf{C}}_{ij} (1 - \overline{\mathbf{S}}_{i} - \overline{\mathbf{S}}_{j}) RR \right]$$

$$= \sum_{\substack{k\neq i \\ l\neq i,k}} \overline{\mathcal{W}}_{kl} \left[\sum_{i} \overline{\mathbf{S}}_{i} RR + \sum_{i,j>i} \overline{\mathbf{C}}_{ij} (1 - \overline{\mathbf{S}}_{i} - \overline{\mathbf{S}}_{j}) RR \right]$$

Kinematic mapping of sector functions allows to factorise the structure of NLO sectors out of the radiation phase space, and integrate only single-unresolved kernels.

$$\mathcal{I}^{(1)} \propto \sum_{k,l} \overline{\mathcal{W}}_{kl} \left[\sum_{i,j>i} \int d\Phi^{(ijr)}_{\mathrm{rad},1} \, \overline{\mathsf{C}}_{ij}(1-\overline{\mathsf{S}}_i-\overline{\mathsf{S}}_j) \, \mathcal{RR}(\{k\}) + \sum_i \int d\Phi_{\mathrm{rad},1} \, \overline{\mathsf{S}}_i \, \mathcal{RR}(\{k\}) \right]$$

	NLO	NNLO	Outlook	Backup
000	0000000	000000000		
The tripoles	mistery			

$$\int d\Phi_n \underbrace{\left[VV_n + I^{(2)} + I^{(\mathrm{RV})} \right]}_{\text{finite in d=4 and in } \Phi_n} \delta_n$$

VV: Infrared structure of gauge amplitudes

$$\mathcal{A}\left(\frac{p_i}{\mu},\alpha_s,\epsilon\right) = \mathbf{Z}\left(\frac{p_i}{\mu},\alpha_s,\epsilon\right)\mathcal{H}\left(\frac{p_i}{\mu},\alpha_s,\epsilon\right)$$

 ${\cal H}$ finite for $\epsilon \rightarrow$ 0, ${\bf Z}$ color operator with universal form

$$\mathbf{Z}\left(\frac{p_{i}}{\mu},\alpha_{s},\epsilon\right)=\mathcal{P}\exp\left[\int_{0}^{\mu}\frac{d\lambda}{\lambda}\,\Gamma\left(\frac{p_{i}}{\lambda},\alpha_{s},\epsilon\right)\right]$$

 $\Gamma =$ anomalous dimension matrix \rightarrow Dipole formula

$$\Gamma\left(\frac{p_i}{\lambda},\alpha_s,\epsilon\right) = \frac{1}{2}\hat{\gamma}_{\mathcal{K}}\left(\alpha_s(\lambda,\epsilon)\right)\sum_{i,j>i}\ln\left(\frac{2p_i\cdot p_je^{i\pi\sigma_{ij}}}{\lambda^2}\right)\mathbf{T}_i\cdot\mathbf{T}_j - \sum_i\gamma_i\left(\alpha_s(\lambda,\epsilon)\right)$$

Chiara Signorile-Signorile

NLO	NNLO	Outlook	Backup

RV: Collinear, soft and soft-collinear limits [Bern et al. 9903516] [Catani, Grazzini 0007142]

$$\begin{split} \mathbf{C}_{ij} RV &= \frac{1}{s_{ij}} \left[a_c P_{ij}^{\mu\nu} V_{\mu\nu} + b_c P_{ij}^{(1)\mu\nu} B_{\mu\nu} \right] \\ \mathbf{S}_i RV &= \sum_{k,l} \left[a_s \mathcal{I}_{kl}^{(i)} V_{kl} + \left(\frac{b_s}{\epsilon^2} \left(\mathcal{I}_{kl}^{(i)} \right)^{1+\epsilon} + \frac{c_s}{\epsilon} \mathcal{I}_{kl}^{(i)} \right) B_{kl} + \frac{d_s}{\epsilon} \sum_{p \neq k,l} \mathcal{I}_{kl}^{(i)} \left(\mathcal{I}_{lp}^{(i)} \right)^{\epsilon} B_{klp} \right] \\ \mathbf{S}_i \mathbf{C}_{ij} RV &= a_{sc} \mathcal{I}_{jr}^{(i)} V - \left(\frac{b_{sc}}{\epsilon^2} \left(\mathcal{I}_{jr}^{(i)} \right)^{1+\epsilon} + \frac{c_{sc}}{\epsilon} \mathcal{I}_{jr}^{(i)} \right) B \end{split}$$

$$\{a_i\}, \{b_i\}, \{c_i\}, d_s \text{ coefficients}$$

$$B_{klp} = \sum_{a, b, c} f_{abc} \langle \mathcal{M}_B | T_k^a T_l^b T_p^c | \mathcal{M}_B \rangle \rightarrow \text{tripole}$$

$$V_{\mu\nu} = \frac{\alpha_s}{\pi} \left[-\frac{1}{2\epsilon^2} \left(\sum_i C_{f_i} \right) B_{\mu\nu} + \frac{1}{\epsilon} \left(\sum_i \gamma_i^{(1)} \right) B_{\mu\nu} - \frac{1}{2\epsilon} \sum_{i,j \neq i} \ln \frac{s_{ij}}{\mu^2} B_{\mu\nu,ij} + H_{\mu\nu} \right]$$

<u>Remark</u>: $S_i C_{ij} RV$ is independent of tripoles thank to the symmetry properties of B_{klp} .

Question: Does the mapping procedure modify this structure?

YES!

consistency relations:

000	00000000	000000000	0	Васкир
Double virtual p	oles			
$VV \bigg _{1/\epsilon} = \bigg(\frac{\alpha_s}{\pi}\bigg)$	$\bigg)^2 \bigg\{ -\frac{1}{\epsilon^4} \frac{1}{8} \bigg(\sum_i$	$\left(C_{f_i} \right)^2 B$		
	$+rac{1}{\epsilon^3} rac{1}{4} \Big(\sum_i$	$\int C_{f_i} \bigg) \bigg[\bigg(\frac{3}{8} b_0 + 2 \sum_i \gamma_i^{(i)} \bigg) \bigg] $	$^{1)}\Big) B - \sum_{i,j \neq i} \ln \frac{s_{ij}}{\mu^2} B_{ij}\Big]$	
	$+rac{1}{\epsilon^2}rac{1}{4}\bigg[\bigg(-$	$-rac{b_0}{2}\sum_i \gamma_i^{(1)} - rac{\widehat{\gamma}_K^{(2)}}{4}\sum_i \sum_i e^{-i \lambda_i \lambda_i}$	$C_{f_i} - 2\left(\sum_i \gamma_i^{(1)}\right)^2$	В
	$+\left(\frac{b_0}{4}\right)$	$\left(1 + 2\sum_{i}\gamma_{i}^{(1)}\right)\sum_{i,j\neq i}\lnrac{s_{ij}}{\mu^{2}}$	$\frac{1}{2}B_{ij} - rac{1}{4}\sum_{\substack{i,j \neq i \ k \ l \neq k}} \ln rac{s_{ij}}{\mu^2} \ln rac{s_{ij}}{\mu^2}$	$\left[n \frac{s_{kl}}{\mu^2} B_{ijkl}\right]$
	$+\frac{1}{\epsilon}\frac{1}{8}\left[4\sum_{i}$	$\sum \gamma_i^{(2)} B - \widehat{\gamma}_K^{(2)} \sum_{i,j \neq i} \ln \frac{s_{ij}}{\mu^2}$	$\left[\frac{i}{2} B_{ij}\right]$	
+	$\left(\frac{\alpha_s}{\pi}\right)\left\{-\frac{1}{\epsilon^2}\frac{1}{2}\right.$	$\left(\sum_{i} C_{f_i}\right) V + \frac{1}{\epsilon} \left(\sum_{i} \gamma\right)$	$V_i^{(1)} V - \frac{1}{\epsilon} \frac{1}{2} \sum_{i,j \neq i} \ln \frac{\epsilon}{\mu}$	$\left\{ \frac{\delta ij}{\iota^2} V_{ij} \right\}.$
$b_0 = \frac{11C_A - 4T_R N_f}{3},$	$\hat{\gamma}_{K}^{(1)} = 2, \gamma_{q}^{(1)} = -\frac{3}{4}$	$c_F, \gamma_g^{(1)} = -\frac{1}{4}b_0, \hat{\gamma}_K^{(2)} = (\frac{6}{1})^{-1}$	$\frac{57}{18} - \zeta(2) C_A - \frac{5}{9} N_f$	
$\gamma_q^{(2)} = \left(-\frac{3}{32} + \frac{3}{4}\zeta(2)\right)$	$-\frac{3}{2}\zeta(3)$ $C_{F}^{2}+\left(-\frac{961}{864}-\right)$	$-\frac{11}{16}\zeta(2)+\frac{13}{8}\zeta(3)$ $C_A C_F+\left(\frac{65}{432}+\right)$	$+\frac{1}{8}\zeta(2))N_fC_F$	
$\gamma_g^{(2)} = \left(-\frac{173}{108} + \frac{11}{48}\zeta\right)$	$(2) + \frac{1}{8}\zeta(3))C_A^2 + (\frac{8}{27} -$	$\frac{1}{24}\zeta(2)\big)N_fC_A+\frac{1}{8}N_fC_F$		

 Introduction
 NLO
 NNLO
 Outlook
 Backup

 000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Cancellation of poles proportional to V

$$VV \Big|_{1/\epsilon}^{V} = -\left(\frac{\alpha_s}{\pi}\right) \left\{ \frac{1}{2\epsilon^2} \left(\sum_{i} C_{f_i}\right) V + \frac{1}{\epsilon} \sum_{i} \left[\delta_{f_i \{q,\bar{q}\}} \frac{3}{4} C_F + \delta_{f_i g} \frac{11C_A - 4 T_R N_f}{12} \right] V + \frac{1}{2\epsilon} \sum_{i,j \neq i} \ln \frac{s_{ij}}{\mu^2} V_{ij} \right\}.$$

The hard-collinear and the soft contributions to $I^{(RV)}$ are

$$I_{\rm HC}^{(\mathbf{RV})}\Big|_{1/\epsilon}^{V} = \left[I_{\rm C}^{(\mathbf{RV})} - I_{\rm SC}^{(\mathbf{RV})}\right]\Big|_{1/\epsilon}^{V} = -\left(\frac{\alpha_{s}}{\pi}\right)\sum_{p}\left\{\delta_{f_{p}g}\frac{C_{A} + 4T_{R}N_{f}}{12}\frac{1}{\epsilon} + \delta_{f_{p}\{q,\bar{q}\}}\frac{C_{F}}{4}\frac{1}{\epsilon}\right\}V$$
$$I_{\rm S}^{(\mathbf{RV})}\Big|_{1/\epsilon}^{V} = \left(\frac{\alpha_{s}}{\pi}\right)\left[\left(\frac{1}{2\epsilon^{2}} + \frac{1}{\epsilon}\right)\sum_{p}\left(\delta_{f_{p}\{q,\bar{q}\}}C_{F} + \delta_{f_{p}g}C_{A}\right)V + \frac{1}{2\epsilon}\sum_{k,\,l\neq k}\log\frac{s_{kl}}{\mu^{2}}V_{kl}\right]$$

The contribution $\left[I_{\rm HC}^{(\rm RV)} - I_{\rm S}^{(\rm RV)}\right]\Big|_{1/\epsilon}^{V}$ cancels all the poles of VV proportional to V.

 \rightarrow VV + I^(RV): only "finite \times V" coming from the finite part of I^(RV).