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Multi-differential Higgs distributions

I Kinematic distributions of Higgs and QCD radiation in gluon fusion sensitive to potential BSM
effects.

I Higgs transverse momentum may be used to constrain models with heavy states such as top
partners [Banfi, Martin, Sanz, 1308.4771], modifications to light Yukawa couplings [Bishara, et al.,

1606.09253], ...

I Experimental prospects for precise measurements of Higgs distributions in different jet bins.
0-jet bin defined through a veto on the pt of QCD radiation.

I Theoretical control required at the multi-differential level (Higgs and QCD jets).
Focus on Higgs transverse momentum with a veto on pt of accompanying jets.
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Fixed-order vs resummation

I Fixed-order prediction for cumulative cross section Σ for observable V (V = 0 at Born).

Σ(V < ν) =

∫ ν

0
dV

dσ
dV
∼ αb

S

[
O(1)︸ ︷︷ ︸

LO

+ O(αS)︸ ︷︷ ︸
NLO

+ O(α2
S)︸ ︷︷ ︸

NNLO

+ ...
]
.

I In regions dominated by soft/collinear radiation, fixed order spoiled by large logarithms

dσ
dν
∼ 1

ν
αn

SLm, m ≤ 2n − 1, L = ln(1/ν).

I Enhanced logarithmic contributions to be resummed at all orders.

I Logarithmic accuracy defined on the logarithm of Σ:

ln Σ(V < ν) ∼ O(αn
SLn+1)︸ ︷︷ ︸
LL

+ O(αn
SLn)︸ ︷︷ ︸

NLL

+ O(αn
SLn−1)︸ ︷︷ ︸

NNLL

+ O(αn
SLn−2)︸ ︷︷ ︸

N3LL

+ ...
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Conjugate- vs direct-space resummation

Σ(V < ν) ∼
∑

n

∫
dΦrad,n |M(k1, ..., kn)|2 Θ(ν − V (k1, ..., kn)) .

I Traditional approach to resummation of V : find a conjugate space where observable
V (k1, ..., kn) factorises, and resum there.

I Often complicated/impossible, but not necessary. V resummable if recursive IRC (rIRC) safe
[Banfi, Salam, Zanderighi, 0112156, 0304148, 0407286], allowing exponentiation of leading logarithms.

* Same soft/collinear scaling properties for any number of emissions.

* The more soft/collinear the emission, the less it contributes to the value of V .

I ‘CAESAR/ARES’ approach follows [Banfi et al., 1412.2126, 1607.03111, 1807.11487]: resummation of
many rIRC observables in direct space.

I CAESAR/ARES cannot predict rIRC-safe observables with azimuthal cancellations, as pH
t in

gluon fusion → included in the RadISH direct-space resummation [Monni, Re, PT, 1604.02191],

[Bizon, Monni, Re, Rottoli, PT, 1705.09127].
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Higgs in gluon fusion at small pt
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I Left. Commensurate emissions’ transverse momenta kti : mH � max(kti ) ≡ kt1 ∼ pH
t .

Exponential Sudakov suppression of Σ(pH
t < pHV

t ) at small pHV
t .

I Right. Large azimuthal cancellations: mH � kt1 � pH
t .

Power law Σ(pH
t < pHV

t ) ∼ (pHV
t )2 at small pHV

t [Parisi, Petronzio, 1979] dominates over Sudakov.

LHC Electroweak WG meeting, 2 July, CERN

Transverse momentum resummation

Resummation of transverse momentum is particularly delicate because pt is a vectorial quantity

Two concurring mechanisms leading to a system with small pt

n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

pt ~0 far from the Sudakov limit

p2
t ∼ k2

t,i ≪ M2

Exponential 
suppression Power suppression

Dominant at small pt 

6

‣ Two concurring mechanisms drive the pT —> 0 limit of the system [both improvable in pert. theory]:
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Higgs in gluon fusion at small pt
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I Left. Commensurate emissions’ transverse momenta kti : mH � max(kti ) ≡ kt1 ∼ pH
t .

Exponential Sudakov suppression of Σ(pH
t < pHV

t ) at small pHV
t .

I Right. Large azimuthal cancellations: mH � kt1 � pH
t .

Power law Σ(pH
t < pHV

t ) ∼ (pHV
t )2 at small pHV

t [Parisi, Petronzio, 1979] dominates over Sudakov.

I All configurations accounted for in direct space in the RadISH approach: pH
t up to N3LL.

I Method applicable to generic colour singlet, not only Higgs, [Bizon et al., 1805.05916, 1905.05171] and
all transverse observables (pJ

t , φ∗η , Et , ...), and extendible to more complicated ones.
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Resummation in direct space: virtual and real radiation

Σ(V < ν) =

∫
dΦB V(ΦB)

∞∑

n=0

∫ n∏

i=1

[dki ]|M(k1, ..., kn)|2 Θ(ν − V (k1, ..., kn))

I V(ΦB) = all-order virtual form factor (see [Dixon, Magnea, Sterman, 0805.3515]).

H

H

H

H

H

H

H

H

H

++ +   . . .

2
H

H

2

I |M(k1, ..., kn)|2 = all-order real matrix element.
Can be systematically organised into contributions entering at given logarithmic accuracy

I Virtuals and reals are separately divergent.
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Resummation in direct space: regularisation of virtuals and reals

Σ(V < ν) =

∫
dΦB V(ΦB)

∞∑

n=0

∫ n∏

i=1

[dki ]|M(k1, ..., kn)|2 Θ(ν − V (k1, ..., kn))

I Introduce a slicing parameter εkt1.
Real emissions categorised as unresolved (or resolved) if kti < εkt1 (or kti > εkt1).

I Unresolved contribute negligibly to V (rIRC safety), exponentiate and regularise the virtual
form factor V(ΦB) =⇒ Sudakov radiator R(εkt1)

V(ΦB)
∞∑

n=0

∫ n∏

i=2

[dki ]|M(k1, ..., kn)|2Θ(εkt1 − kti ) ∝ e−R(εkt1) ,

−R(kt ) = Lt g1(αSLt )︸ ︷︷ ︸
LL

+ g2(αSLt )︸ ︷︷ ︸
NLL

+
αS

π
g3(αSLt )

︸ ︷︷ ︸
NNLL

+ ... , Lt = ln(mH/kt ) .

I Resolved emissions parametrised in terms of R′(kti ) = dR/d ln(mH/kti ).
Expand εkt1 and kti around kt1 and truncate to eliminate subleading effects.
Retain subleading terms only for 0, 1, 2, ... emissions at NLL, NNLL, N3LL, ... .
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Higgs pt at NLL

I Resummed cross section for Higgs transverse momentum pH
t below a certain value pHV

t .

I Lt1 = ln(mH/kt1), LNLL = NLL luminosity, pH
t ({kj}) = |∑j

~ktj |.

ΣNLL(pH
t < pHV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π
d

dLt1

[
− e−RNLL(kt1)LNLL(kt1)

]
×

× εR′LL(kt1)
∞∑

n=0

1
n!

n+1∏

i=2

∫ kt1

εkt1

dkti

kti

dφi

2π
R′LL(kt1)

︸ ︷︷ ︸
≡

∫
dZ

Θ(pHV
t − |

n+1∑

j=1

~ktj |)

I Generated as a kt -ordered (semi-inclusive) parton shower.

H

NLL: resolved emissions are soft and 
strongly ordered in rapidity/angle

ϵkt1

kt1
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Higgs pt at NNLL

ΣNNLL(pH
t < pHV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π

∫
dZ
{

d
dLt1

[
−e−RNNLL(kt1)LNNLL (kt1)

]
Θ
(

pHV
t − |

n+1∑

j=1

~ktj |
)}

I Luminosity LNNLL with O(αS) coefficient functions, radiator RNNLL with O(αn
SLn−1

t1 ) terms.
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Higgs pt at NNLL

ΣNNLL(pH
t < pHV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π

∫
dZ
{

d
dLt1

[
−e−RNNLL(kt1)LNNLL (kt1)

]
Θ
(

pHV
t − |

n+1∑

j=1

~ktj |
)

+ e−RNLL(kt1)R′LL(kt1)

∫ kt1

0

dkts

kts

dφs

2π

[(
δR′(kt1) + R′′LL(kt1) ln

kt1

kts
− d

dLt1

)
LNLL (kt1)

]

×
[

Θ
(

pHV
t − |

n+1∑

j=1

~ktj + ~kts|
)
−Θ

(
pHV

t − |
n+1∑

j=1

~ktj |
)]}

I Correction of one emission ks (only one at NNLL) in the resolved ensemble (finite in d = 4)

H

ϵkt1

kt1
kts

one real emission is hard 
collinear or resolved from 

DGLAP evolution
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Hardest jet pt at NLL

I Observables pJ
t ({kj}) = max(ktj ) and pH

t ({kj}) = |∑j
~ktj | have the same radiator R.

I At NLL the (anti)-kt jet algorithm does not cluster emissions together.
Same NLL resummation as pH

t but for the measurement function.

ΣNLL(pJ
t < pJV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π
d

dLt1

[
− e−RNLL(kt1)LNLL(kt1)

]
×

×εR′LL(kt1)
∞∑

n=0

1
n!

n+1∏

i=2

∫ kt1

εkt1

dkti

kti

dφi

2π
R′LL(kt1) Θ(pJV

t − kt1)

H

NLL: resolved emissions are not clustered 
together by jet-algorithm of kt family

ϵkt1

kt1
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Hardest jet pt at NNLL

ΣNNLL(pJ
t < pJV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π

∫
dZ
{

d
dLt1

[
−e−RNNLL(kt1)LNNLL (kt1)

]
Θ
(

pJV
t − kt1

)}

I Luminosity LNNLL with O(αS) coefficient functions, radiator RNNLL with O(αn
SLn−1

t1 ) terms.
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Hardest jet pt at NNLL

ΣNNLL(pJ
t < pJV

t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π

∫
dZ
{

d
dLt1

[
−e−RNNLL(kt1)LNNLL (kt1)

]
Θ
(

pJV
t − kt1

)

+
1
2!
LNLL (kt1) e−RNLL(kt1)

(
R′LL(kt1)

)2
∫ kt1

0

dkts1

kts1

dkts2

kts2

∫
d∆ηs1s2

dφs1

2π
d∆φs1s2

2π

(
2CA

αS(kt1)

π

)

× JR(s1, s2)
[
Θ
(

pJV
t − |~kts1 + ~kts2 |

)
−Θ

(
pJV

t −max(kts1 , kts2 )
)]

Θ
(

pJV
t − kt1

)
+ ...

}

I Clustering correction, [Banfi, et al., 1206.4998], with JR(s1, s2) ≡ Θ
(

R2−∆η2
s1s2
−∆φ2

s1s2

)
: at

NNLL the jet algorithm may cluster two emissions to form the hardest jet (ellipses: s1,2 → 1).

H

two emissions cluster 
to form the hardest jet

ϵkt1

kt1

| ⃗k ts1 + ⃗k ts2 |

kts1

kts2
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Hardest jet pt at NNLL
ΣNNLL(pJ

t < pJV
t ) =

∫ ∞

0

dkt1

kt1

dφ1

2π

∫
dZ
{

d
dLt1

[
−e−RNNLL(kt1)LNNLL (kt1)

]
Θ
(

pJV
t − kt1

)

+
1
2!
LNLL (kt1) e−RNLL(kt1)

(
R′LL(kt1)

)2
∫ kt1

0

dkts1

kts1

dkts2

kts2

∫
d∆ηs1s2

dφs1

2π
d∆φs1s2

2π

(
2CA

αS(kt1)

π

)

×
[

JR(s1, s2)
[
Θ
(

pJV
t − |~kts1 + ~kts2 |

)
−Θ

(
pJV

t −max(kts1 , kts2 )
)]

Θ
(

pJV
t − kt1

)

+ C(s1, s2)
[
1−JR(s1, s2)

][
Θ
(

pJV
t −max(kts1 , kts2 )

)
−Θ

(
pJV

t − |~kts1 + ~kts2 |
)]]

+ ...

}

I Correlated correction, [Banfi, et al., 1206.4998], with C(a, b) =
|M̃(ka,kb)|2

|M(ka)|2|M(kb)|2 , and |M̃(ka, kb)|2 is
the non-factorisable part of the double-soft matrix element.

I |M̃(ka, kb)|2 appears in RNLL(kt1), resulting in the CMW coupling [Catani, Marchesini, Webber, 1991].
Integrated inclusively there, and veto applied on |~kta + ~ktb|.
Correct for configurations where the two correlated emissions are not clustered together.
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Double-differential Higgs and jet pt resummation at NNLL

I From contributions detailed above just need to combine measurement functions!
Joint Higgs and jet pt resummation at NNLL

I All contributions detailed above: just need to combine measurement functions!

⌃NNLL(pH
t < pHV

t , pJ
t < pJV

t ) =

Z 1

0

dkt1

kt1

d�1

2⇡

Z
dZ
(

d
dLt1

h
�e�RNNLL(Lt1)LNNLL (Lt1)

i
⇥
⇣

pHV
t � |

n+1X

j=1

~ktj |
⌘
⇥
⇣

pJV
t � kt1

⌘

+ e�RNLL(Lt1)R0
LL(kt1)

Z kt1

0

dkts

kts

d�s

2⇡

✓
�R0(kt1) + R00

LL(kt1) ln
kt1

kts
� d

dLt1

◆
LNLL (Lt1)

�

⇥

⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts|
⌘
�⇥

⇣
pHV

t � |
n+1X

j=1

~ktj |
⌘�

⇥
⇣

pJV
t � kt1

⌘

+
1
2!

LNLL (Lt1) e�RNLL(Lt1)
⇣

R0
LL(kt1)

⌘2
Z kt1

0

dkts1

kts1

dkts2

kts2

Z
d�⌘s1s2

d�s1

2⇡
d��s1s2

2⇡

✓
2CA

↵S(kt1)

⇡

◆

⇥⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts1 + ~kts2 |
⌘"

JR(s1, s2)

✓
⇥
⇣

pJV
t � |~kts1 + ~kts2 |

⌘
�⇥

⇣
pJV

t � max(kts1 , kts2 )
⌘◆

+ C(s1, s2)
h
1�JR(s1, s2)

i✓
⇥
⇣

pJV
t � max(kts1 , kts2 )

⌘
�⇥

⇣
pJV

t � |~kts1 + ~kts2 |
⌘◆#

⇥
⇣

pJV
t � kt1

⌘
+ ...

)
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‘inclusive’ contribution with ptH and ptj  
measurement functions
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Joint Higgs and jet pt resummation at NNLL

I From contributions detailed above just need to combine measurement functions!
Joint Higgs and jet pt resummation at NNLL

I All contributions detailed above: just need to combine measurement functions!

⌃NNLL(pH
t < pHV

t , pJ
t < pJV

t ) =

Z 1

0

dkt1

kt1

d�1

2⇡

Z
dZ
(

d
dLt1

h
�e�RNNLL(Lt1)LNNLL (Lt1)

i
⇥
⇣

pHV
t � |

n+1X

j=1

~ktj |
⌘
⇥
⇣

pJV
t � kt1

⌘

+ e�RNLL(Lt1)R0
LL(kt1)

Z kt1

0

dkts

kts

d�s

2⇡

✓
�R0(kt1) + R00

LL(kt1) ln
kt1

kts
� d

dLt1

◆
LNLL (Lt1)

�

⇥

⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts|
⌘
�⇥

⇣
pHV

t � |
n+1X

j=1

~ktj |
⌘�

⇥
⇣

pJV
t � kt1

⌘

+
1
2!

LNLL (Lt1) e�RNLL(Lt1)
⇣

R0
LL(kt1)

⌘2
Z kt1

0

dkts1

kts1

dkts2

kts2

Z
d�⌘s1s2

d�s1

2⇡
d��s1s2

2⇡

✓
2CA

↵S(kt1)

⇡

◆

⇥⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts1 + ~kts2 |
⌘"

JR(s1, s2)

✓
⇥
⇣

pJV
t � |~kts1 + ~kts2 |

⌘
�⇥

⇣
pJV

t � max(kts1 , kts2 )
⌘◆

+ C(s1, s2)
h
1�JR(s1, s2)

i✓
⇥
⇣

pJV
t � max(kts1 , kts2 )

⌘
�⇥

⇣
pJV

t � |~kts1 + ~kts2 |
⌘◆#

⇥
⇣

pJV
t � kt1

⌘
+ ...

)
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NNLL correction to ptH 
with ptj measurement function
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Joint Higgs and jet pt resummation at NNLL

I From contributions detailed above just need to combine measurement functions!
Joint Higgs and jet pt resummation at NNLL

I All contributions detailed above: just need to combine measurement functions!

⌃NNLL(pH
t < pHV

t , pJ
t < pJV

t ) =

Z 1

0

dkt1

kt1

d�1

2⇡

Z
dZ
(

d
dLt1

h
�e�RNNLL(Lt1)LNNLL (Lt1)

i
⇥
⇣

pHV
t � |

n+1X

j=1

~ktj |
⌘
⇥
⇣

pJV
t � kt1

⌘

+ e�RNLL(Lt1)R0
LL(kt1)

Z kt1

0

dkts

kts

d�s

2⇡

✓
�R0(kt1) + R00

LL(kt1) ln
kt1

kts
� d

dLt1

◆
LNLL (Lt1)

�

⇥

⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts|
⌘
�⇥

⇣
pHV

t � |
n+1X

j=1

~ktj |
⌘�

⇥
⇣

pJV
t � kt1

⌘

+
1
2!

LNLL (Lt1) e�RNLL(Lt1)
⇣

R0
LL(kt1)

⌘2
Z kt1

0

dkts1

kts1

dkts2

kts2

Z
d�⌘s1s2

d�s1

2⇡
d��s1s2

2⇡

✓
2CA

↵S(kt1)

⇡

◆

⇥⇥
⇣

pHV
t � |

n+1X

j=1

~ktj + ~kts1 + ~kts2 |
⌘"

JR(s1, s2)

✓
⇥
⇣

pJV
t � |~kts1 + ~kts2 |

⌘
�⇥

⇣
pJV

t � max(kts1 , kts2 )
⌘◆

+ C(s1, s2)
h
1�JR(s1, s2)

i✓
⇥
⇣

pJV
t � max(kts1 , kts2 )

⌘
�⇥

⇣
pJV

t � |~kts1 + ~kts2 |
⌘◆#

⇥
⇣

pJV
t � kt1

⌘
+ ...

)
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clustering and correlated NNLL ptj corrections 
with ptH measurement function
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NNLL cross section differential in pH
t , cumulative in pJ

t < pJV
t

4

FIG. 1. The NNLL di↵erential distribution (12), integrated
over the Higgs-boson rapidity yH and over the ~pH

t azimuth, as
a function of pH

t and pJ,v
t .

ferential information on the QCD radiation, thereby en-
abling an e�cient Monte Carlo calculation. Therefore,
we adopt the latter method for a practical implementa-
tion of eq. (12). The relevant formulae are detailed in
ref. [56], and implemented in the RadISH program.

For the numerical results presented below, we choosep
s = 13TeV and we adopt the NNPDF3.1 set [58] of

parton densities (PDFs) at NNLO, with ↵s(MZ) =
0.118. The evolution of the PDFs is performed with
the LHAPDF [59] package and all convolutions are han-
dled with HOPPET [60]. We set the renormalisation and
factorisation scale to µR = µF = mH = 125 GeV, and
R = 0.4. Figure 1 shows eq. (12) integrated over the ra-
pidity of the Higgs boson yH and over the ~pH

t azimuth, as
a function of pH

t and pJ,v

t . We observe the typical peaked
structure along the pH

t direction, as well as the Sudakov
suppression at small pJ,v

t . The two-dimensional distribu-
tion also features a Sudakov shoulder along the diagonal
pH

t ⇠ pJ,v

t , which originates from the sensitivity to soft
radiation beyond LO [61]. Eq. (12) provides a resumma-
tion of the logarithms associated with the shoulder in the
regime pH

t ⇠ pJ,v

t ⌧ mH, which can be appreciated by the
absence of an integrable singularity in this region.

To verify the correctness of eq. (12), we perform a num-
ber of checks. As a first observation, we note that in the
region pJ,v

t & mH, the terms Fclust and Fcorrel vanish by
construction and, as expected, one recovers the NNLL
resummation for the inclusive pH

t spectrum. Conversely,
considering the limit pH

t & mH (i.e. small b), eq. (12)
reproduces the standard NNLL jet-veto resummation of
ref. [34] as detailed in ref. [56]. As a further test, we ex-
pand eq. (12) to second order in ↵s relative to the Born,
and compare the result with an O(↵2

s) fixed-order calcu-
lation for the inclusive production of a Higgs boson plus
one jet [62–64], with jets defined according to the anti-kt

algorithm [52]. In particular, to avoid the perturbative

FIG. 2. �(pJ,v
t , pH,v

t ), as defined in the text, at second order
in ↵s as a function of ln(pH,v

t /mH), for pJ,v
t = 2 pH,v

t . This test
features a slightly di↵erent Higgs mass, mH = 125.18 GeV.

instability associated with the Sudakov shoulder, we cal-
culate the double cumulant

�(pJ,v

t , pH,v

t ) ⌘
Z

dyHd2~pH

t

d�(pJ,v

t )

dyHd2~pH
t

⇥(pH,v

t � |~pH

t |) ,

and define the quantity

�(pJ,v

t , pH,v

t ) = �NNLO(pJ,v

t , pH,v

t ) � �NNLL
exp. (pJ,v

t , pH,v

t ) ,

where �NNLO(pJ,v

t , pH,v

t ) is computed by taking the dif-
ference between the NNLO total Higgs-production cross
section [65–67], obtained with the ggHiggs program [68],
and the NLO Higgs+jet cross section for (pJ

t > pJ,v

t ) _
(pH

t > pH,v

t ), calculated with the NNLOJET program [18].
Given that the NNLL prediction controls all divergent
terms at the second perturbative order, one expects the
quantity � to approach a constant value of N3LL na-
ture in the pH

t ! 0 limit. Figure 2 displays this limit for
pJ,v

t = 2 pH,v

t , that shows an excellent convergence towards
a constant, thereby providing a robust test of eq. (12).

As a phenomenological application of our result, we
set pJ,v

t = 30 GeV in accordance with the LHC exper-
iments. While eq. (12) provides an accurate descrip-
tion of the spectrum in the small-pH

t region, in order
to reliably extend the prediction to larger pH

t values one
needs to match the resummed formula to a fixed-order
calculation, in which the hard radiation is correctly ac-
counted for. We thus match the NNLL result to the
NLO Higgs+jet pH

t distribution obtained with the pro-
gram MCFM-8.3 [69, 70] by means of the multiplicative
matching formulated in refs. [23, 31, 71]. We adopt the
setup outlined above, and in addition we introduce the
resummation scale Q as detailed in ref. [56] as a mean
to assess the uncertainties due to missing higher loga-
rithmic corrections. To estimate the theoretical uncer-
tainty of our final prediction, we perform a variation of
the renormalisation and factorisation scales by a factor

I At given pJV
t this is the resummed pH

t spectrum in the 0-jet bin.

I Peaked structure (power like) at small pH
t ; Sudakov suppression at small pJ

t .

I Sudakov shoulder [Catani, Webber, 9710333]: integrable singularity beyond LO around pH
t ∼ pJV

t .

I Logarithms associated with the shoulder are resummed in the region pH
t ∼ pJV

t � mH
(absence of the integrable singularity there).
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Accuracy check
Difference between ΣNNLL(pH

t < pHV
t , pJ

t < pJV
t ) expanded at O(α2

S) and fixed order at O(α2
S)

4

FIG. 1. The NNLL di↵erential distribution (12), integrated
over the Higgs-boson rapidity yH and over the ~pH

t azimuth, as
a function of pH

t and pJ,v
t .

ferential information on the QCD radiation, thereby en-
abling an e�cient Monte Carlo calculation. Therefore,
we adopt the latter method for a practical implementa-
tion of eq. (12). The relevant formulae are detailed in
ref. [56], and implemented in the RadISH program.

For the numerical results presented below, we choosep
s = 13TeV and we adopt the NNPDF3.1 set [58] of

parton densities (PDFs) at NNLO, with ↵s(MZ) =
0.118. The evolution of the PDFs is performed with
the LHAPDF [59] package and all convolutions are han-
dled with HOPPET [60]. We set the renormalisation and
factorisation scale to µR = µF = mH = 125 GeV, and
R = 0.4. Figure 1 shows eq. (12) integrated over the ra-
pidity of the Higgs boson yH and over the ~pH

t azimuth, as
a function of pH

t and pJ,v

t . We observe the typical peaked
structure along the pH

t direction, as well as the Sudakov
suppression at small pJ,v

t . The two-dimensional distribu-
tion also features a Sudakov shoulder along the diagonal
pH

t ⇠ pJ,v

t , which originates from the sensitivity to soft
radiation beyond LO [61]. Eq. (12) provides a resumma-
tion of the logarithms associated with the shoulder in the
regime pH

t ⇠ pJ,v

t ⌧ mH, which can be appreciated by the
absence of an integrable singularity in this region.

To verify the correctness of eq. (12), we perform a num-
ber of checks. As a first observation, we note that in the
region pJ,v

t & mH, the terms Fclust and Fcorrel vanish by
construction and, as expected, one recovers the NNLL
resummation for the inclusive pH

t spectrum. Conversely,
considering the limit pH

t & mH (i.e. small b), eq. (12)
reproduces the standard NNLL jet-veto resummation of
ref. [34] as detailed in ref. [56]. As a further test, we ex-
pand eq. (12) to second order in ↵s relative to the Born,
and compare the result with an O(↵2

s) fixed-order calcu-
lation for the inclusive production of a Higgs boson plus
one jet [62–64], with jets defined according to the anti-kt

algorithm [52]. In particular, to avoid the perturbative
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FIG. 2. �(pJ,v
t , pH,v

t ), as defined in the text, at second order
in ↵s as a function of ln(pH,v

t /mH), for pJ,v
t = 2 pH,v

t . This test
features a slightly di↵erent Higgs mass, mH = 125.18 GeV.

instability associated with the Sudakov shoulder, we cal-
culate the double cumulant

�(pJ,v

t , pH,v

t ) ⌘
Z

dyHd2~pH

t

d�(pJ,v

t )

dyHd2~pH
t

⇥(pH,v

t � |~pH

t |) ,

and define the quantity

�(pJ,v

t , pH,v

t ) = �NNLO(pJ,v

t , pH,v

t ) � �NNLL
exp. (pJ,v

t , pH,v

t ) ,

where �NNLO(pJ,v

t , pH,v

t ) is computed by taking the dif-
ference between the NNLO total Higgs-production cross
section [65–67], obtained with the ggHiggs program [68],
and the NLO Higgs+jet cross section for (pJ

t > pJ,v

t ) _
(pH

t > pH,v

t ), calculated with the NNLOJET program [18].
Given that the NNLL prediction controls all divergent
terms at the second perturbative order, one expects the
quantity � to approach a constant value of N3LL na-
ture in the pH

t ! 0 limit. Figure 2 displays this limit for
pJ,v

t = 2 pH,v

t , that shows an excellent convergence towards
a constant, thereby providing a robust test of eq. (12).

As a phenomenological application of our result, we
set pJ,v

t = 30 GeV in accordance with the LHC exper-
iments. While eq. (12) provides an accurate descrip-
tion of the spectrum in the small-pH

t region, in order
to reliably extend the prediction to larger pH

t values one
needs to match the resummed formula to a fixed-order
calculation, in which the hard radiation is correctly ac-
counted for. We thus match the NNLL result to the
NLO Higgs+jet pH

t distribution obtained with the pro-
gram MCFM-8.3 [69, 70] by means of the multiplicative
matching formulated in refs. [23, 31, 71]. We adopt the
setup outlined above, and in addition we introduce the
resummation scale Q as detailed in ref. [56] as a mean
to assess the uncertainties due to missing higher loga-
rithmic corrections. To estimate the theoretical uncer-
tainty of our final prediction, we perform a variation of
the renormalisation and factorisation scales by a factor

I Difference tends to an O(α2
S) constant (i.e. N3LL) at very small pHV

t in the region of the
shoulder, pJV

t = 2 pHV
t .

I Very strong check: NNLL control of logarithms of the shoulder when pJ
t ∼ pH

t � mH .

I Analogously for pH
t � pJ

t � mH , and pJ
t � pH

t � mH .
Logarithms correctly accounted for regardless of hierarchy between pH

t and pJ
t (if� mH ).
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Multiplicative matching to fixed order

ΣMATCH (pH
t < pHV

t , pJ
t < pJV

t )

=
ΣNNLL(pH

t < pHV
t , pJ

t < pJV
t )

ΣNNLL(pJ
t < pJV

t )

[
ΣNNLL(pJ

t < pJV
t )

ΣNNLO(pH
t < pHV

t , pJ
t < pJV

t )

ΣEXP(pH
t < pHV

t , pJ
t < pJV

t )

]

O(α2
S)

where

ΣNNLO(pH
t < pHV

t , pJ
t < pJV

t ) = σ
pp→H
NNLO −

∫ (
Θ(pJ

t > pJV
t ) V Θ(pH

t > pHV
t )
)

dσpp→Hj
NLO .

I ΣEXP(pH
t < pHV

t , pJ
t < pJV

t ) = expansion of ΣNNLL(pH
t < pHV

t , pJ
t < pJV

t ) up to O(α2
S) relative to

Born.

I ΣNNLL(pJ
t < pJV

t ) ≡ ΣNNLL(pH
t <∞, pJ

t < pJV
t ) avoids (N3LL) K factors at large pHV

t .
NNLL+NLO pJ

t (pH
t ) cross section recovered for pHV

t →∞ (pJV
t →∞)

(NLO refers to the spectrum).

I At NLO, the multiplicative scheme includes constant terms of O(α2
S) from the fixed order,

absent in an additive scheme (NNLL’).
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LHC results: Higgs pt with a jet veto
Multiplicative matching to fixed order (NLO H + j from MCFM, [Campbell, Ellis, Giele, 1503.06182]) 5
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FIG. 3. Matched NNLL+NLO (red band), NLL+LO (blue
band), and fixed-order NLO (green band) pH

t di↵erential dis-
tributions for pJ,v

t = 30 GeV, with theoretical uncertainties
estimated as explained in the main text.

of two about the central value µR = µF = mH, while
keeping 1/2  µR/µF  2. Moreover, for central µR and
µF scales, we vary the resummation scale by a factor of
two around Q = mH/2, and take the envelope of all the
above variations. Figure 3 compares the NNLL+NLO
prediction to the NLL+LO, and to the fixed-order NLO
result. The integral of the NNLL+NLO (NLL+LO) dis-
tribution yields the corresponding jet-vetoed cross sec-
tion at NNLL+NNLO (NLL+NLO) [34].

We observe a good perturbative convergence for the
resummed predictions to the left of the peak, where log-
arithmic corrections dominate. Above pH

t ⇠ 10 GeV, the
NNLL+NLO prediction di↵ers from the NLL+LO due to
the large NLO K factor in the considered process. The

residual perturbative uncertainty in the NNLL+NLO dis-
tribution is of O(10%) for pH

t . pJ,v

t . The comparison
to the NLO fixed order shows the importance of resum-
mation across the whole pH

t region, and a much reduced
sensitivity to the Sudakov shoulder 2 at pH

t ⇠ pJ,v

t .
In this letter we have formulated the first double-

di↵erential resummation for an observable defined
through a jet algorithm in hadronic collisions. As a case
study, we considered the production of a Higgs boson in
gluon fusion with transverse momentum pH

t in association
with jets satisfying the veto requirement pJ

t  pJ,v

t . In
the limit pH

t , pJ,v

t ⌧ mH, we performed the resummation
of the large logarithms ln(mH/pH

t ), ln(mH/pJ,v

t ) up to
NNLL, resulting in an accurate theoretical prediction
for this physical observable. As a phenomenological
application, we presented matched NNLL+NLO results
at the LHC. Our formulation can be applied to the pro-
duction of any colour-singlet system, and it is relevant
in a number of phenomenological applications that will
be explored in future work.
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NLL joint resummation in b space
I Differential control in momentum space provides guidance to an analytic formula for

double-differential resummation in impact-parameter space

I NLL pH
t differential cross section (toy model with scale-independent PDFs for the sake of the

argument): pH
t measurement function completely factorises (by construction)

dσ

d2 ~pH
t

= σB

∫
d2~b
4π2

e−i~b· ~pH
t

∞∑

n=0

1
n!

∫
[dki ]|M(ki )|2

(
ei~b·~kti − 1

)

I Factorisation implies a factor ei~b·~kti per emission: jet-veto constraints on kti can be applied at
the level of b-space integrand!

I Jet veto on real radiation at NLL: Θ(pJV
t −max(kt1, ..., ktn)) =

∏n
i=1 Θ(pJV

t − kti )

I Double-differential resummation at NLL in b space

dσ(pJ
t < pJV

t )

d2 ~pH
t

= σB

∫
d2~b
4π2

e−i~b· ~pH
t

∞∑

n=0

1
n!

∫
[dki ]|M(ki )|2

(
ei~b·~kti Θ(pJV

t − kti )− 1
)

= σB

∫
d2~b
4π2

e−i~b· ~pH
t e−

∫
[dk ]|M(k)|2

(
1−ei~b·~kt Θ(pJV

t −kt )
)
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NNLL joint resummation in b space

I NNLL clustering/correlated corrections in the b-space integrand.

Fclust =
1
2!

∫
[dka][dkb]|M(ka)|2|M(kb)|2 JR(a, b) ei~b·( ~kta+ ~ktb)

×
[
Θ(pJV

t − |~kta + ~ktb|)−Θ(pJV
t −max{kta, ktb})

]

Fcorrel =
1
2!

∫
[dka][dkb]|M̃(ka, kb)|2

[
1− JR(a, b)

]
ei~b·( ~kta+ ~ktb)

×
[
Θ(pJV

t −max{kta, ktb})−Θ(pJV
t − |~kta + ~ktb|)

]

I Joint resummation at NNLL in b space

3

jet algorithm does not recombine the emissions with one
another, it fails beyond this order. Specifically, at NNLL,
at most two soft emissions can become close in angle, and
therefore may get clustered into the same jet (whose mo-
mentum is defined according to the so-called E-scheme,
where the four momenta of the constituents are added to-
gether). The configurations in which the resulting cluster
is the leading jet are not correctly described by the con-
straint in (2). In order to account for this e↵ect, one has
to include a clustering correction [34] in impact parame-
ter space, that reads

Fclust =
1

2!

Z
[dka][dkb]M

2(ka)M2(kb)Jab(R) ei~b·~kt,ab

⇥
h
⇥(pJ,v

t � kt,ab) � ⇥(pJ,v

t � max{kt,a, kt,b})
i
, (10)

where ~kt,ab = ~kt,a + ~kt,b and kt,ab is its magnitude. The
constraint Jab(R) = ⇥

�
R2 � �⌘2

ab � ��2
ab

�
restricts the

phase space to the region where the recombination be-
tween the two emissions takes place. Here R is the jet
radius and �⌘ab and ��ab are the pseudo-rapidity and
azimuthal separation between the two emissions, respec-
tively. We observe that eq. (10) di↵ers from the corre-
sponding clustering correction for the standard jet-veto

resummation [34] by the factor ei~b·~kt,ab , which accounts
for the pH

t constraint in impact-parameter space.

Eq. (10) describes the clustering correction due to two
independent soft emissions. A similar correction arises
when the two soft emissions ka, kb are correlated, i.e.
their squared matrix element cannot be factorised into
the product of two independent squared amplitudes. The
contribution of a pair of correlated emissions is accounted
for in the CMW scheme for the strong coupling that was
already used in the NLL radiator (4). However, such a

scheme is obtained by integrating inclusively over the cor-
related squared amplitude M̃2(ka, kb), given in ref. [57].
While this inclusive treatment is accurate at NLL, at
NNLL one needs to correct for configurations in which
the two correlated emissions are not clustered together
by the jet algorithm. This amounts to including a corre-
lated correction [34] of the form

Fcorrel =
1

2!

Z
[dka][dkb]M̃

2(ka, kb)(1 � Jab(R))ei~b·~kt,ab

⇥
h
⇥(pJ,v

t � max{kt,a, kt,b}) � ⇥(pJ,v

t � kt,ab)
i
. (11)

The corrections (10) and (11) describe the aforemen-
tioned e↵ects for a single pair of emissions. At NNLL,
all remaining emissions can be considered to be far in
angle from the pair ka, kb, and therefore they never get
clustered with the jets resulting from eqs. (10), (11).

As a final step towards a NNLL prediction, one must
account for non-soft collinear emissions o↵ the initial-
state particles. Since a kt-type jet algorithm never clus-
ters the soft emissions discussed above with non-soft
collinear radiation, the latter can be conveniently han-
dled by taking a Mellin transform of the resummed cross
section. In Mellin space, the collinear radiation gives rise
to the scale evolution of the parton densities f(µ) and
of the collinear coe�cient functions C(↵s). The latter,
as well as the hard-virtual corrections H(↵s), must be
included at the one-loop level for a NNLL resummation.
The equivalent of the clustering and correlated correc-
tions for hard-collinear radiation enters only at N3LL,
and therefore is neglected in the following.

After repeating the same procedure outlined for the
soft radiation we obtain the main result of this letter,
namely the NNLL master formula for the pH

t spectrum
with a jet veto pJ,v

t , di↵erential in the Higgs rapidity yH:

d�(pJ,v

t )

dyHd2~pH
t

= M2
gg!H H(↵s(mH))

Z

C1

d⌫1

2⇡i

Z

C2

d⌫2

2⇡i
x�⌫1

1 x�⌫2
2

Z
d2~b

4⇡2
e�i~b·~p H

t e�SNNLL (1 + Fclust + Fcorrel) (12)

⇥f⌫1,a1(b0/b) f⌫2,a2(b0/b)


P e

�
R mH

p
J,v
t

dµ
µ �⌫1

(↵s(µ))J0(bµ)
�

c1a1


P e

�
R mH

p
J,v
t

dµ
µ �⌫2

(↵s(µ))J0(bµ)
�

c2a2

⇥C⌫1,gb1(↵s(b0/b)) C⌫2,gb2(↵s(b0/b))


P e

�
R mH

p
J,v
t

dµ
µ �(C)

⌫1
(↵s(µ))J0(bµ)

�

c1b1


P e

�
R mH

p
J,v
t

dµ
µ �(C)

⌫2
(↵s(µ))J0(bµ)

�

c2b2

,

where x1,2 = mH/
p

s e±yH

, and Mgg!H is the Born ma-
trix element. The ⌫` subscripts denote the Mellin trans-
form, while the latin letters represent flavour indices,
and the sum over repeated indices is understood. Here

�⌫`
and �(C)

⌫`
are the anomalous dimensions describing

the scale evolution of the parton densities and coe�cient
functions, respectively. The contours C1 and C2 lie paral-
lel to the imaginary axis to the right of all singularities of
the integrand. The path-ordering symbol P has a formal
meaning, and encodes the fact that the evolution opera-
tors are matrices in flavour space. All the ingredients of

eq. (12) are given in ref. [56]. The multi-di↵erential dis-
tribution d�/dpJ

t dyH d2~pH
t is simply obtained by taking

the derivative of eq. (12) in pJ,v

t .

All integrals entering the above formula are finite in
four dimensions and can be evaluated numerically to
very high precision. We point out that, similarly to the
standard pH

t resummation [28, 29], the result in eq. (12)
can also be deduced directly in momentum space, with-
out resorting to an impact-parameter formulation. The
momentum-space approach is particularly convenient for
computational purposes, in that it gives access to dif-
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Outlook

I Theoretical control of multi-differential information to exploit LHC potential in the Higgs sector
(and much more!).

I First simultaneous resummation for a double-differential kinematic observable defined
through a jet algorithm in hadronic collisions.

I Formulation in direct space (RadISH) provides guidance to compact analytic formulation in b
space.

I Logarithms of pH
t /mH and pJ

t /mH controlled at NNLL when transverse momenta� mH .

I This does not rely on hierarchy between pH
t and pJ

t . Sudakov shoulder pH
t ∼ pJ

t resummed in
the small-pt region.

Thank you for your attention
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Backup
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RadISH resummation: organisation into correlated matrix elements

Σ(V < ν) =

∫
dΦB V(ΦB)

∞∑

n=0

∫ n∏

i=1

[dki ]|M(k1, ..., kn)|2 Θ(ν − V (k1, ..., kn))

I V(ΦB) = all-order virtual form factor (see [Dixon, Magnea, Sterman, 0805.3515]).

I Multiple emission matrix element |M(k1, ..., kn)|2 organised into
n-particle-correlated (nPC) blocks |M̃(k1, ..., kn)|2.

• Pure virtual corrections (massless form factor) exponentiate at all orders in momentum 
space: need to devise a way to cancel poles against all-order real corrections 
!

• rIRC safety suggests to decompose the squared amplitude in terms of n-particle-
correlated blocks: 
!
!
!
!
!
!
!
!
!
!
!
!

Momentum-space formulation

11

⌘ + +

+ + . . .

+ . . .

e.g.'n'soft'partons'case'(analogous'considerations'for'hardJcollinear)

2JparticleJcorrelated'(i.e.'2'real'emissions)'squared'amplitude'defined'in'terms'of'cut'webs

+ . . .

+ . . .

+ . . .

1PC(1)
1PC(0)

2PC

3PC

I Higher-orders in αS at fixed n, or larger n =⇒ logarithmically suppressed
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pH
t resummation: finiteness in four dimensions, NLL case

dΣNLL(pt )

dΦB
=

∫ M

0

dkt1

kt1

∫ 2π

0

dφ1

2π
kt1

∂

∂kt1

(
−e−R(kt1)LNLL(kt1)

)
×

× εR
′(kt1)

∞∑

n=0

1
n!

(n+1∏

i=2

∫ kt1

εkt1

dkti

kti

∫ 2π

0

dφi

2π
R′(kt1)

)

︸ ︷︷ ︸
≡

∫
dZ[{R′,ki}]

Θ(pt − |~kt1 + ...+ ~kt(n+1)|).

I Luminosity LNLL(kt1) =
∑

a,b
d|MB |2ab

dΦB
fa(x1, kt1)fb(x2, kt1).

I
∫

dZ[{R′, ki}]Θ finite as ε→ 0:

εR
′(kt1) = 1− R′(kt1) ln(1/ε) + ... = 1−

∫ 2π

0

dφ
2π

∫ kt1

εkt1

dkt

kt
R′(kt1) + ...,

∫
dZ[{R′, ki}]Θ =

[
1−

∫ 2π

0

dφ
2π

∫ kt1

εkt1

dkt

kt
R′(kt1) + ...

][
Θ(pt − |~kt1|) +

∫ 2π

0

dφ2

2π

∫ kt1

εkt1

dkt2

kt2
R′(kt1)Θ(pt − |~kt1 + ~kt2|) + ...

]

= Θ(pt − |~kt1|) +

∫ 2π

0

dφ2

2π

∫ kt1

0︸ ︷︷ ︸
ε→0

dkt2

kt2
R′(kt1)

[
Θ(pt − |~kt1 + ~kt2|)−Θ(pt − |~kt1|)

]

︸ ︷︷ ︸
finite: real-virtual cancellation

+...
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Small-pH
t behaviour at NLL

d2Σ(pt )

d2~pt dΦB
∝
∫

dkt1

kt1

dφ1

2π
e−R(kt1)R′(kt1)

∫
dZ[{R′, ki}]δ(2)

(
~pt −

(
~kt1 + · · ·+ ~kt(n+1)

))
.

I Fourier transform of the delta: δ(2)

(
~pt − |

∑

i

~kti |
)

=

∫
d2~b
4π2

e−i~b·~pt

n+1∏

i=1

ei~b·~kti .

I Integrate over azimuthal direction of all ~kti and of ~pt :

d2Σ(v)

dpt dΦB
= σ(0)(ΦB) pt

∫
b dbJ0(pt b)

∫
dkt1

kt1
e−R(kt1)R′(kt1)J0(bkt1)

× exp

{
−R′ (kt1)

∫ kt1

0

dkt

kt
(1− J0(bkt ))

}
.

I In the limit where M � kt1 � pt this gives

∫
b dbJ0(pt b)J0(bkt1) exp

{
−R′ (kt1)

∫ kt1

0

dkt

kt
(1− J0(bkt ))

}
' 4

k−2
t1

R′ (kt1)

=⇒ d2Σ(v)

dpt dΦB
= 4σ(0)(ΦB) pt

∫ M

ΛQCD

dkt1

k3
t1

e−R(kt1).
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Treatment of Landau pole
I Landau singularity in the radiator and in the coupling:

αS(µR)β0 ln(Q/kt1) =
1
2

=⇒ kt1 ∼ 0.1 GeV for µR ∼ Q ∼ mH

I Perturbative prediction is cut off below this scale, by setting probabilities to 0.

I This cutoff has no visible consequence: low pH
t dominated by kti ’s > 1 GeV

LHC Electroweak WG meeting, 2 July, CERN

Transverse momentum resummation

Resummation of transverse momentum is particularly delicate because pt is a vectorial quantity

Two concurring mechanisms leading to a system with small pt

n

∑
i=1

⃗k t,i ≃ 0cross section naturally 
suppressed as there is 
no phase space left for 
gluon emission 
(Sudakov limit)

Large kinematic cancellations 

pt ~0 far from the Sudakov limit

p2
t ∼ k2

t,i ≪ M2

Exponential 
suppression Power suppression

Dominant at small pt 

6

‣ Two concurring mechanisms drive the pT —> 0 limit of the system [both improvable in pert. theory]:

 0
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Exponential	suppression	
of	the	spectrum	 
(Sudakov	peak):

O(pT)	suppression	of	 
the	spectrum	 

(dominant	for	pT	—>	0)	
[absent	at	fixed	order]

X

i

~k?i ' 0, p2
? ⌧ k2

?i ⌧ M2

p2
? ' k2

?i ⌧ M2

Figure credit: P.F. Monni

I This does not imply absence of non-perturbative corrections (not studied) at scales of a GeV
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Equivalence of direct-space pH
t resummation with b space

I Take direct-space formula for dΣ/d ~pt , Fourier-transform the δ(2)(pt − |
∑

i
~kti |), and get

d
dpt

Σ̂
c1c2
N1,N2

(pt ) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(pt b)

∫ M

0

dkt1

kt1

×
2∑

`1=1

(
R′`1

(kt1) +
αs(kt1)

π
ΓN`1

(αs(kt1)) + Γ
(C)
N`1

(αs(kt1))

)
J0(bkt1)

× exp

{
−

2∑

`=1

∫ M

kt1

dkt

kt

(
R′` (kt ) +

αs(kt )

π
ΓN`

(αs(kt )) + Γ
(C)
N`

(αs(kt ))

)
J0(bkt )

}

× exp

{
−

2∑

`=1

∫ M

εkt1

dkt

kt

(
R′` (kt ) +

αs(kt )

π
ΓN`

(αs(kt )) + Γ
(C)
N`

(αs(kt ))

)
(1− J0(bkt ))

}
.

I Take limit ε→ 0. Integrand in kt1 is a total derivative and integrates to 1, leaving

d
dpt

Σ̂
c1c2
N1,N2

(pt ) = Cc1;T
N1

(αs(M))H(M)Cc2
N2

(αs(M)) pt

∫
b dbJ0(pt b)

× exp

{
−

2∑

`=1

∫ M

0

dkt

kt

(
R′` (kt ) +

αs(kt )

π
ΓN`

(αs(kt )) + Γ
(C)
N`

(αs(kt ))

)
(1− J0(bkt ))

}
.

I Transform 1− J0 in a Θ up to subleading logarithms, and plug this into the hadronic cross
section, to get the traditional b-space formulation.

(1− J0(bkt )) ' Θ(kt −
b0

b
) +

ζ3

12
∂3

∂ ln(Mb/b0)3
Θ(kt −

b0

b
) + . . . .

I ζ3 term starts at N3LL, is resummation-scheme change w.r.t. b space.
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Generating secondary radiation as a simplified parton shower
I Secondary radiation:

dZ[{R′, ki}] =
∞∑

n=0

1
n!

(n+1∏

i=2

∫ 2π

0

dφi

2π

∫ kt1

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1)

=
∞∑

n=0

(n+1∏

i=2

∫ 2π

0

dφi

2π

∫ kt(i−1)

εkt1

dkti

kti
R′(kt1)

)
εR
′(kt1),

εR
′(kt1) = e−R′(kt1) ln 1/ε =

n+2∏

i=2

e−R′(kt1) ln kt(i−1)/kti ,

with kt(n+2) = ε kt1.

I Each secondary emissions has differential probability

dwi =
dφi

2π
dkti

kti
R′(kt1)e−R′(kt1) ln kt(i−1)/kti =

dφi

2π
d
(

e−R′(kt1) ln kt(i−1)/kti
)
.

I kt(i−1) ≥ kti . Scale kti extracted by solving e−R′(kt1) ln kt(i−1)/kti = r , with r uniform random
number in [0, 1].

I Extract φi randomly in [0, 2π].

Paolo Torrielli Double-differential Higgs and jet pt resummation in momentum space 7 / 10



Modified logarithms

I Ensure resummation does not affect the hard region of the spectrum.

I Supplement logarithms with power-suppressed terms, irrelevant at small kt1, that enforce
resummation to vanish at kt1 � Q.

I Modified logarithms

ln
(

Q
kt1

)
→ L̃ =

1
p

ln
((

Q
kt1

)p
+ 1
)
.

I Q = resummation scale of O(M), varied to assess systematics due to higher logarithms.

I p = chosen so that resummation vanishes faster than fixed order in the hard region.

I Checked that variation of p does not induce visible effects.

I Modified logarithms map kt1 = Q into kt1 →∞.
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Luminosity to NNLL

LNNLL(kt1) =
∑

c,c′

d |MB |2cc′

dΦB

∑

i,j

∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
fi

(
µF e−Lt1 ,

x1

z1

)
fj

(
µF e−Lt1 ,

x2

z2

)

×
{
δciδc′ jδ(1− z1)δ(1− z2)

(
1 +

αS(µR)

2π
H(1)(µR , xQ)

)

+
αS(µR)

2π
1

1− 2αS(µR)β0Lt1

(
C(1)

ci (z1, µF , xQ)δ(1− z2)δc′ j + {z1 ↔ z2; c, i ↔ c′, j}
)}

with Lt1 = ln(Q/kt1).
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Sudakov radiator for joint resummation in b space

SNNLL =

∫
[dk ]|M(k)|2

(
1− ei~b·~kt Θ(pJV

t − kt )

)

=

∫
dkt

kt
R′(kt )

(
1− J0(bkt )Θ(pJV

t − kt )

)

=

∫
dkt

kt
R′(kt )

(
1− J0(bkt )

)
+

∫
dkt

kt
R′(kt )J0(bkt )Θ(kt − pJV

t )

= −Lbg1(αSLb)− g2(αSLb)− αS

π
g3(αSLb) +

∫ mH

pJV
t

dkt

kt
R′(kt )J0(bkt )

with Lb = ln(mHb/b0), b0 = 2e−γE .

Analogously for PDFs and coefficient functions.
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