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Introduction



Precision physics

Experimental side doing a great job, major updates, planning of new colliders.
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Precision physics

Experimental side doing a great job, major updates, planning of new colliders.

Precise theoretical computations very crucial.
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From cross sections to Feynman integrals

Matching of observables like cross sections, calculated perturbatively in QFT.

Precision target:

@ Experimental uncertainties are reaching few % level.

@ Matching this level of precision requires computation of NNLO QCD and
mixed QCD-EW corrections.

. Feynman rules . .
Feynman diagrams — scattering amplitude — observables.
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From cross sections to Feynman integrals

Matching of observables like cross sections, calculated perturbatively in QFT.

Precision target:

@ Experimental uncertainties are reaching few % level.

@ Matching this level of precision requires computation of NNLO QCD and
mixed QCD-EW corrections.

. Feynman rules . .
Feynman diagrams — scattering amplitude — observables.

Two-loop (virtual) corrections to processes with massive particles, like top quark
and electroweak bosons very important.
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Mnemonics

q-k

\ _ 1
: I= j(%)D (=k2+m3) (=(q—k)*+m3)

4

One-loop Feynman integral
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Mnemonics

q-k

\ _ 1
: I= j(%)D (=k2+m3) (=(q—k)*+m3)

4

One-loop Feynman integral

Generalize to multi-loop:

/H de 1
2 2\v;
— ——

Massive propagators (P)

Multi-loop Feynman integral
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Big deal?

@ The point: Feynman integrals becomes more and more difficult with growing
loops and legs, as well as with the inclusion of masses.

@ Using the available tools to calculation 2-loop 'massive’ Feynman integrals is
a difficult task.
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Big deal?

@ The point: Feynman integrals becomes more and more difficult with growing

loops and legs, as well as with the inclusion of masses.

@ Using the available tools to calculation 2-loop 'massive’ Feynman integrals is
a difficult task.

Mathematical motivation

@ Helps solving a particular integral efficiently along with aiding multi-scale
generalizations.

@ Algebraic structure of Feynman integrals has proven to be a great help,
massive Feynman integrals even often contain elliptic curve(s).
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Mathematical preliminaries



Multiple Polylogarithms (MPLs)

@ Logarithm:
o0 xL
Liy(z) = =In(1 — z) —.
i
@ Generalizing to classical polylogarithm:
i
, %
Liy(z) = =
i=1
© Further generalization brings us to the MPLs:
ik
) W &
Ling ..n (21, .-y ) = j{: ar e ii

i
i1>09>... >0, >0 1 k
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Multiple Polylogarithms (MPLs)

@ Integral representation: for zj, # 0,

Vodty M dts L gy,
G(z1, ey 2131 :/ / / .
( 2 o t1—21Jo ta—2 Jo e — 2k

@ Relation between both. Introducing a short hand notation:

Gmy,...omi (21, s 285 y) = G(0,...,0, 21, ..., 2k 1,0, ..., 0, 21; ).
S~—— S~

m1—1 mk—l

LL'17ZL’1.’L'27 T1... Tk

! 1 1 1
. k
Limy ... mi (@1, oy k) = (=1) Gy ... o ( ey ;1).

6/26



Elliptic curves

With lattice
L = {mw; + nwa|m,n € Z},
we can define a meromorphic function f such that

flz+w) = f(2); zeC.
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Elliptic curves

With lattice
L = {mw; + nwa|m,n € Z},
we can define a meromorphic function f such that

flz+w) = f(2); zeC.

Elliptic curve defined by:

E:w’ —(2—21)(2—2)(2 — 23)(2 — 24) = 0.
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Machinery



Differential equations

Tool to tackle these Feynman integrals: Differential equations (DE) [Kotikov
'90], [Remiddi '97], [Gehrmann and Remiddi '99].

Integration by parts identities (IBP) [Tkachov '81], [Chetyrkin '81].

dPk,  dPk 0 & 1
/(%T);...ZDWUHHQQ)UJ :0.
(2m) i =1 (qj =g

Integral with general integer powers related to a finite set of ‘Master
integrals’ (MI).

Laporta algorithm and computer implementations [Laporta '01], [REDUZE,
FIRE, KIRA]

Computing these MI corresponds to computing the family of Feynman
integral.
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Aim:

Interested in the Laurent expansion of these integrals in €, wheree = (4 — D)/2

is the dimensional regularisation parameter.

9/26



Setting up the differential equations

@ Consider a Feynman integral with N MI.

@ Let ¢ be an external invariant (or an internal mass) and let I; € {Iy,....,In}
be a M.
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Setting up the differential equations

@ Consider a Feynman integral with N MI.

@ Let ¢ be an external invariant (or an internal mass) and let I; € {Iy,....,In}
be a ML

@ Carrying out the derivative 01;/0t under the integral sign and using |IBP
allows us to express the derivative as a linear combination of MI.

a N
ol = ; aijlj
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Setting up the differential equations

@ Consider a Feynman integral with N MI.

@ Let ¢ be an external invariant (or an internal mass) and let I; € {Iy,....,In}
be a ML

@ Carrying out the derivative 01;/0t under the integral sign and using |IBP
allows us to express the derivative as a linear combination of MI.

g N
B = ; aij1;

@ Repeating this for every M| and every kinematic variable we get a system of
DE

dl = AT

)

N
where A is a matrix-valued one-form A = > A;dx;.
i=1
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Canonical form for the differential equations

The system of DE is simple if we find canonical or ‘epsilon’ form [J. Henn, '14],
Np
dJ = eA'J, A = chwk
k=1

where

@ () has only rational or integer entries.
@ ¢ completely factorizes.

@ differential forms wy have only simple poles.

When this happens the system of DE is easily solved in terms of MPLs.
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Transformations

@ Change the basis of the Mls J = Uf, so the DE becomes
df=AJ, A =UAU' —UdU~".

12/26



Transformations

@ Change the basis of the Mls J = Uf, so the DE becomes
df=AJ, A =UAU' —UdU~".

@ Perform a coordinate transformation (particularly useful in case of square

roots). As an example, we often encounter

dx
—z(4 —x)
Here, a change of variable as
1—2)?
o =Ef
%

will rationalize the square root and transform
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Transformations in case of MPLs

@ For cases where rational transformation is sufficient : several algorithms exist
[R.N. Lee, '14], [C. Meyer '18] [Lee, Pomeransky '17].
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Transformations in case of MPLs

@ For cases where rational transformation is sufficient : several algorithms exist
[R.N. Lee, '14], [C. Meyer '18] [Lee, Pomeransky '17].

@ For algebraic cases (involving roots): not many transformations well known.
Algorithms to rationalize square roots. [Becchetti, Bonciani '17] [Besier, van
Straten, Weinzierl '18]
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When canonical form is not possible!

@ Problem for elliptic cases: DE coupled at order €?, cannot be removed away.

@ To the rescue: Picard—Fuchs equation. One way of trying to bring down the
coupled system of equations into blocks of sizes 2 x 2 at worst.

@ For elliptic cases, new incarnation of canonical form. One such algorithm

from rational functions in kinematic variables

i [L. Adams, S. Weinzierl, '18]

rational functions in the kinematic variables,
the periods of the elliptic curve and their derivatives
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When canonical form is not possible!

@ Problem for elliptic cases: DE coupled at order €?, cannot be removed away.

@ To the rescue: Picard—Fuchs equation. One way of trying to bring down the
coupled system of equations into blocks of sizes 2 x 2 at worst.

@ For elliptic cases, new incarnation of canonical form. One such algorithm

from rational functions in kinematic variables

i [L. Adams, S. Weinzierl, '18]

rational functions in the kinematic variables,
the periods of the elliptic curve and their derivatives

@ Some elliptic integrals can be expressed as iterated integrals using modular
forms [L. Adams, S. Weinzierl, '17].

@ An important tool: the maximal cut.
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Maximal cuts

cutting of all the propagators.

_ dPk dPl; &
Il/ v v D) = )7 lD/Q/ ! !
yvavm (D) = (17) 2m)? jl;[l

1

D v
(2m) Py’
Maximal cut mathematically means taking the n—fold residue at

P=.=P,=0

of the integrand in the complex plane.

Anything special?
e Maximal cuts are
e For integrals evaluating to MPLs, maximal cut is an algebraic function.

e For elliptic integrals they contain transcendental functions.
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An example

@ For elliptic cases — search for Feynman integrals whose
maximal cuts are periods of an elliptic curve.
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example

@ For elliptic cases — search for Feynman integrals whose
maximal cuts are periods of an elliptic curve.

on P2

@ For sunrise:

4P
fc VPV (P—t+4m2)\/(P2+2m2P—4m2t4+m%) (@)

2
MaxzCutc I1001001(2—2€)=1"
-

© To get the elliptic curve, we aim for an integral representation having a
square root of a quartic polynomial in the denominator along with a constant
in the numerator.
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Choice of coordinate system

@ Choosing good coordinates is one of the key tricks to solve the DE.

@ Need of a system of DE in which all occurring square roots are rationalized
(not possible for elliptic cases).

I, Vs+t+4m2ds....| [

— | .| =1....vVs+t—4m2ds
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Higgs decay




Physical relevance:

@ H — bb has highest branching ratio.
@ Experimentally observed at ATLAS and CMS recently.

Topology | Number of master integrals
A 18
B 15
C 31
D 14

In total we get 39 Mls.
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Elliptic hint

e [Manteuffel, Tancredi, '17] an example of a non planar 2-loop three point
function.
e Contributes to 2-loop amplitudes for ¢¢ production and v production in

gluon fusion.

Differs from topology C only in external momenta putting my = m;.

Contains an elliptic curve in the top topology.
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Setting up the DEs

@ Setting 2 = m?, MI depend kinematically on 2 dimensionless quantities.

@ Naive (bad) choice:

_ 7 _ miy
v = B9 w = 2
my my
© We encounter the square roots
—v (4 —v) and A(v,w, 1)

where Kallen function is defined by
Az, y,2) = 2+ 9>+ 2° — 2zy — 2yz — 22z

@ Problem: Rationalizing both square roots simultaneously.
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Rationalizing square roots

e We found the parametization [Besier, Van Straten, Weinzierl, '18] :

o -2 mby (gt 2uy) (@ 2y +ay)
m? r om0 z(1—y32) '

that simultaneously rationalizes the two square roots.

So our system is free of any elliptic curves! All the master integrals are
expressible in terms of MPLs [E. Chaubey, S. Weinzierl, '19].
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Topbox




tt production

Physical relevance

e Top-quark pair production one of the most important topics at LHC.

e Important source of irreducible background to many SM measurements and
BSM searches.

e Top-pair production can be used to determine top-quark mass and ay —
highly important to have a precise understanding of this process.

The Topbox »

ps

e Solid lines — massive propagators, Y 177 7°
all external momenta — outgoing and on-shell. 1 4 0

s = (p1 +p2)? and t = (p2 + p3)>. ! —-Z--
o 44 MI. " P
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Elliptic Curve a %
E@ :w? = (2 —t) (z — t + 4m?) (2% + 2m22z — 4m>t + m*),

Elliptic Curve b

mo- » B seceeleec— o
s 7
P o-- 2 =8 P
. i 7
I ' JERN
s e
. R no- ” 7 o 2
- ; ;

3

S

m2 777.2— 2
E® . y? = (2 -1 (z—t+4m2) (22+2m22—4m2t—|—m4— 4(t)>

Elliptic Curve c

E(c) . U}Q — (Z _ t) (Z —t + 4m2) <22 + 2m2(s+4t)z + Sm2(7n,2_4t)—4m2t2>'

(s—4m?2) s—4m?
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The Picard—Fuchs operator

e Not expressible in terms of MPLs (elliptic generalisations required).

e Several Ml coupled together at order €” in one topology by DE.
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The Picard—Fuchs operator

e Not expressible in terms of MPLs (elliptic generalisations required).

e Several Ml coupled together at order €” in one topology by DE.

e |dea — a system of first-order DE easily converted to a higher order
DE for a single Ml in this sector.
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The Picard—Fuchs operator

e Not expressible in terms of MPLs (elliptic generalisations required).

e Several Ml coupled together at order €” in one topology by DE.

e |dea — a system of first-order DE easily converted to a higher order
DE for a single Ml in this sector.

e Aim — try to transform to a suitable basis of M| which decouples the
original system of DE at order € to a system of maximal block size of 2.

e Can be done by exploiting the factorisation properties of the Picard-Fuchs
operator [L. Adams, E. Chaubey, S. Weinzierl, '17].
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Main results from Topbox:

@ Analytic results for the planar double box calculated [L. Adams, E. Chaubey,
S. Weinzierl, '18].

@ Presence of 3 distinct elliptic curves (for the first timel!).

© Two special points for this system of DE. It simplifies

e for t = m? —, Ml expressible in terms of MPLs
e as well as for s = 0o, Ml expressible in terms of iterated integrals of modular

forms.
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Conclusions




Conclusions and Outlook

Higher order loop calculations crucial to make precise theoretical predictions.

For mostly massless processes, virtual corrections expressible in terms of
MPLs. Starting from 2-loops, MPLs not sufficient.

Outlined the computation of Ml using DE for :

e mixed QCD-EW corrections for Higgs decay with a Htt coupling,
e planar double box two loop correction to ¢t production.

Guessing the class of functions for Feynman integrals far from obvious; much
more study required.
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Conclusions and Outlook

Higher order loop calculations crucial to make precise theoretical predictions.

For mostly massless processes, virtual corrections expressible in terms of
MPLs. Starting from 2-loops, MPLs not sufficient.

Outlined the computation of Ml using DE for :
e mixed QCD-EW corrections for Higgs decay with a Htt coupling,
e planar double box two loop correction to ¢t production.
Guessing the class of functions for Feynman integrals far from obvious; much

more study required.

Thank you!
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