Multiparton webs at 4-loops

Sourav Pal

Collaborators: Neelima Agarwal, Abhinava Danish, Lorenzo Magnea, Anurag Tripathi

Department of Physics IIT Hyderabad

January 31, 2020

4 0 8

 Ω

- Introduction
- Soft function and Webs
- Multiparton webs at 4-loops
- Summary

4 D F

 QQ

Introduction

지금 지수는 지수는 지수는 지수가 있다.

 \equiv

 $2Q$

Factorization of Multileg amplitudes

ref: Mueller (81), Sen (83), Botts Sterman (89), Kidonakis Oderda Sterman (98), Catani (98), Tejeda-Yeomans Sterman (02), Kosower (03), Aybat Dixon Sterman (06), Becher Neubert (09), Gardi Magnea (09)

January 31, 2020 4 / 41

The soft singularities can be factorized from the hard part of the scattering amplitudes as-

$$
\mathcal{M}_{L}\left(\frac{p_{i}}{\mu},\alpha_{s}(\mu^{2}),\epsilon\right) = \sum_{K} S_{LK}(\beta_{i} \cdot \beta_{j},\alpha_{s}(\mu^{2}),\epsilon) \times H_{K}\left(\frac{2p_{i} \cdot p_{j}}{\mu^{2}},\frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}},\alpha_{s}(\mu^{2})\right) \times \prod_{i} \frac{J_{i}(\frac{(2p_{i} \cdot n_{i})^{2}}{\mu^{2}},\alpha_{s}(\mu^{2}),\epsilon)}{J_{i}(\frac{2(\beta_{i} \cdot n_{i})^{2}}{n_{i}^{2}},\alpha_{s}(\mu^{2}),\epsilon)}.
$$

Hard function H is finite after UV renormalization.

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow

 Ω

Soft approximation and Wilson lines

$$
\overbrace{S}^{p+k}
$$

$$
M^{\mu} = ig_s T^a \frac{p^{\mu}}{2(p \cdot k)} = ig_s T^a \frac{\beta^{\mu}}{2(\beta \cdot k)}
$$

A Wilson line is defined as

$$
\phi_n(\lambda_2, \lambda_1) = \text{Pexp}\left[\int_{\lambda_1}^{\lambda_2} d\lambda n \cdot A(\lambda n)\right]
$$

 $\mathcal{S} = <0 \mid \phi_{\beta_2}(\infty,0)\phi_{\beta_1}(0,-\infty) |0> = g_s^2\frac{\beta_1\cdot\beta_2}{(\beta_1\cdot k)(\beta_2\cdot k)} + ...$

4 0 F

Why study infrared singularities

Dimensional regularization $=$ finite! with large logs

• These logs have large values and can disturb the convergence of expansion in α . We need to do resummation.

• Knowing the IR singularities at all orders, resummation is easy.

つひい

Soft function evolution

$$
S_{LK}(\rho_{ij}, \alpha_s(\mu^2), \epsilon) \rightarrow \frac{S_{LK}(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon)}{\prod_i \mathcal{J}_i(\frac{2(\beta_i \cdot n_i)^2}{n_i^2}, \alpha_s(\mu^2), \epsilon)}.
$$

$$
\mu \frac{d}{d\mu} S_{IK}(\rho_{ij}, \alpha_s(\mu^2), \epsilon) = -\Gamma_{IJ}^S(\rho_{ij}, \alpha_s(\mu^2), \epsilon) \times S_{JK}(\rho_{ij}, \alpha_s(\mu^2), \epsilon)
$$

Solution:

$$
S_{IJ}(\rho_{ij}, \alpha_s(\mu^2), \epsilon) = P \exp \bigg\{ -\frac{1}{2} \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \Gamma_{IJ}^S(\rho_{ij}, \alpha(\lambda^2, \epsilon)) \bigg\}
$$

Γ S is finite soft anomalous dimension.

$$
\Gamma^s = \sum_{n=1}^\infty \Gamma^{(n)} \alpha_s^n
$$

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow

$$
\Gamma^{S}(\rho_{ij}, \alpha_s) = -\frac{1}{8} \hat{\gamma_K}(\alpha_s) \sum_{i=1}^n \sum_{j,j \neq i} ln(\rho_{ij}) \sum_a T_i^a T_j^a + \frac{1}{2} \hat{\delta}_{\overline{S}} \sum_{i=1}^n \sum_a T_i^a T_i^a
$$

Quadratic Casimir:

$$
C_i = \sum_a T_i^{(a)} T_i^{(a)}
$$

$$
\gamma_k^{(i)}=C_i\widehat{\gamma_k}(\alpha_s)
$$

This is a result true upto two loops.

ref: Gardi Magnea (09), Becher Neubert (09)

∢ □ ▶ ⊣ 倒 ▶

Correction to the dipole formula can arise from 2 sources:

- Conformally invariant cross-ratios, which can appear starting at 3 loops.[ref: Gardi et. al. 2015]
- Violations of 'Casimir Scaling' in the cusp anomalous dimension which starts appearing at 4-loops. [ref: Henn, Grozin (18)]

つへへ

Soft function and Webs

K □ ▶ K ① ▶ K 할 ▶ K 할 ▶ → 할 → 수) Q (^

Spider Webs

Ε

K ロ ▶ K 個 ▶ K 差 ▶ K 差 ▶

Diagrammatic representation of Soft function

 $S = exp(W)$

Figure: Webs in abelian theory

In abelian theory only connected diagrams appear in webs.

[ref: Gatheral, Frenkel Taylor (60)]

4 0 8

January 31, 2020 13 / 41

 Ω

Webs in non-abelian theory

- It was observed that only the first two diagrams contribute to the exponent, first with same color factor and the second one with modified color factors.
- The color of the 3rd diagram is absent in the exponent as it can be reduced by cutting the Wilson line.

January 31, 2020 14 / 41

continued..

- In multiparton case, the concept of webs generalizes non-trivially.
- A web in the multiparton case is a set of diagrams which differ only by the order of the gluon attachment on each Wilson line.

• If a diagram is $D = F(D)C(D)$ a Web W is expressed as a sum of diagrams in terms of mixing matrix R.

$$
W=\sum_{D}F(D)\tilde{C}(D)=\sum_{D,D'}F(D)R_{DD'}C(D)
$$

[ref: Gardi et. al. (10)]

Recent progress

- All exponentiated color factors and kinematics at 3-loops order are calculated.
- Color conservation technique $\sum_i T_i^a = 0$ is used to the exponentiated color factors at 3-loops to determine the 3-loop soft anomalous dimension. [ref: Almelid et. al. (15)]

Correction for Γ^S at 3 loops and 4 legs is calculated recently by E.Gardi and O.Almelid

$$
\Delta^{(3)} = 16f_{abe}f_{cde}\left\{\sum_{1 < i < j < k < l < n} \left[\mathbf{T}_{i}^{a}\mathbf{T}_{k}^{b}\mathbf{T}_{k}^{c}\mathbf{T}_{l}^{d}F(\rho_{ijkl}, \rho_{iljk}) + \right. \\ \left. \mathbf{T}_{i}^{a}\mathbf{T}_{k}^{b}\mathbf{T}_{j}^{c}\mathbf{T}_{l}^{d}F(\rho_{ijkl}, \rho_{ilkj}) + \mathbf{T}_{i}^{a}\mathbf{T}_{l}^{b}\mathbf{T}_{j}^{c}\mathbf{T}_{k}^{d}F(\rho_{ijlk}, \rho_{iklj}) - C\sum_{i=1}^{n} \sum_{1 \leq j < k \leq n; j, k \neq i} \left\{\mathbf{T}_{i}^{a}, \mathbf{T}_{i}^{d}\right\}\mathbf{T}_{j}^{b}\mathbf{T}_{k}^{c}\right\}
$$

Multiparton webs at 4-loops

- At 4-loop we have 20 webs at 4-legs.
- The largest dimension of the mixing matrix for the web is 24×24
- Results available for 3-loops has largest dimension of mixing matrix as 16×16

4-loop webs

Continued..

Connected color factors appearing in the exponent of soft function.

[ref: Agarwal, Danish, Magnea, SP, Tripathi (Unde[r pr](#page-18-0)e[para](#page-20-0)[ti](#page-18-0)[on\)\]](#page-19-0)

 Ω

Properties of the web mixing matrix R

Idempotence: $R^2 = R$, eigenvalues 1 or 0.

• Zero-sum rows[ref: Gardi et. al. (10)]

Conjecture: $\sum_D c(D)s(D) = 0$ [ref: Gardi et. al. (11)]

Appearance of Quartic Casimir

D January 31, 2020 22 / 41

B

 \mathcal{A}

É

 $-\frac{1}{12}$ 0 0 $-\frac{1}{12}$ $-\frac{1}{12}$ $0\quad 0$ $\frac{1}{12}$ θ $0 - \frac{1}{12}$ $\frac{1}{12}$ $\,0\,$ $rac{1}{12}$ $rac{1}{12}$ $\begin{array}{cc} 0 & \frac{1}{12} \\ 0 & -\frac{1}{4} \end{array}$ $\frac{1}{12}$ $-\frac{1}{6}$ 0 $\boldsymbol{0}$ $\,0$ $\,0\,$ $-\frac{1}{12}$ $\frac{1}{12}$ $\,0\,$ $-\frac{1}{12}$ $\,0\,$ $-\frac{1}{12}$ $rac{1}{12}$ $rac{5}{12}$ $rac{1}{12}$ θ $\frac{-\frac{1}{4}}{12}$ $0 - \frac{1}{12}$ $\frac{1}{6}$ $rac{1}{12}$ $0 - \frac{1}{6}$ $-\frac{1}{2}$ $\frac{1}{3}$ $\,0$ $$ $rac{1}{12}$ $-\frac{1}{12}$ $\frac{1}{6}$ $-\frac{1}{4}$ $-\frac{1}{6}$ $\begin{array}{ccc} 0 & -\frac{7}{12} & \frac{12}{12} \\ 0 & -\frac{1}{12} & \frac{1}{12} \\ 0 & -\frac{1}{12} & \frac{1}{12} \\ 0 & \frac{1}{12} & -\frac{1}{12} \\ 0 & -\frac{1}{4} & \frac{1}{12} \\ \end{array}$ $0 \quad 0 \quad -\frac{1}{12}$ $0\quad 0$ $\boldsymbol{0}$ $-\frac{1}{2}$ $\bar{0}$ $\frac{1}{12}$ $-\frac{1}{12}$ $-\frac{1}{6}$ $\,0\,$ $rac{1}{12}$ $\frac{1}{6}$ $-\frac{1}{12}$ $-\frac{1}{4}$ $\begin{array}{c}\n\frac{1}{12} \\
\frac{1}{12} \\
-\frac{1}{12} \\
-\frac{1}{12}\n\end{array}$ $-\frac{1}{6}$ $\frac{1}{12}$ $rac{1}{12}$
 $rac{1}{12}$ $\,0$ $\frac{1}{6}$ $-\frac{1}{4}$
 $\frac{1}{12}$ $-\frac{1}{12}$ $\frac{1}{12}$ $\begin{array}{c} 0 \\ \end{array}$ $rac{1}{12}$ $\,0\,$ $\frac{1}{4}$ $\,0\,$ $\boldsymbol{0}$ $\,0\,$ $-\frac{1}{12}$
 $-\frac{1}{12}$ $\,0\,$ $-\frac{1}{12}$ $\frac{1}{6}$ $-\frac{12}{12}$ $\overline{0}$ $\overline{0}$ $\boldsymbol{0}$ $\,0\,$ $0 - \frac{1}{6}$ $\boldsymbol{0}$ θ $-\frac{1}{12}$ $\frac{1}{12}$
 $\frac{5}{12}$ $-\frac{1}{12}$ $\,0\,$ θ $-\frac{1}{2}$ $\,1\,$ $\,0$ $\,0\,$ $\frac{3}{2}$ $-\frac{3}{7}$ $\begin{array}{c} -\frac{1}{4} \\ \frac{1}{12} \\ \frac{1}{12} \end{array}$ $\begin{array}{c} -\frac{1}{4} \\ \frac{1}{12} \\ \frac{1}{12} \end{array}$ $-\frac{1}{2}$ $rac{1}{12}$ $-\frac{1}{2}$ $\frac{1}{12}$ $0 - \frac{1}{12}$ $\ddot{0}$ $\overline{0}$ $-\frac{1}{12}$ $\,0\,$ $-\frac{1}{12}$ $-\frac{1}{2}$ $\,0$ $rac{1}{12}$ $\overline{0}$ $rac{1}{12}$ $\,0\,$ $\frac{1}{12}$ $\ddot{0}$ $0 - \frac{1}{12} - \frac{1}{12}$ $-\frac{1}{12}$ 0 0 θ $\,0\,$ $\frac{1}{12}$ $\overline{0}$ $\,0\,$ $\boldsymbol{0}$ $\boldsymbol{0}$ $\,0\,$ $-\frac{1}{12}$ $-\frac{1}{12}$ $\frac{1}{12}$ $-\frac{1}{12}$ 늚 $\frac{1}{6}$ $-\frac{1}{12}$ $\frac{1}{2}$ $\frac{1}{12}$ $0 \frac{1}{6}$ $-\frac{1}{12}$
 $\frac{1}{12}$ $-\frac{1}{4}$
 $\frac{1}{12}$ $rac{5}{12}$ $\boldsymbol{0}$ $-\frac{1}{4}$ θ $\frac{1}{12}$ $\,0\,$ $\frac{1}{12}$ $-\frac{1}{2}$ $\frac{5}{12}$ $-\frac{1}{2}$ $\frac{1}{12}$ $0 - \frac{1}{12}$ θ θ $-\frac{1}{12}$ $-\frac{1}{x}$ $\,$ 0 $\,$ $-\frac{1}{12}$ $\frac{1}{12}$ $0 - \frac{1}{6}$ $-\frac{1}{4}$ $\boldsymbol{0}$ $rac{1}{12}$
 $rac{1}{12}$ θ θ $0 \t 0 - \frac{1}{12}$ $0 - \frac{1}{12}$ $-\frac{1}{4}$ $\boldsymbol{0}$ θ θ $\begin{array}{r} -\frac{1}{12} \\ -\frac{1}{12} \\ \frac{1}{12} \end{array}$ $rac{1}{12}$ $\frac{1}{12}$ $0\quad 0$ $-\frac{1}{12}$ $\frac{1}{12}$ $-\frac{1}{6}$ $R =$ $\ddot{0}$ $-\frac{1}{12}$ $\,0\,$ $\,0\,$ $-\frac{1}{6}$ $\,0\,$ $rac{1}{12}$ $\,0$ $\,0\,$ $\,0\,$ $0\,$ $rac{1}{12}$ $-\frac{1}{2}$ $\frac{1}{12}$ $-\frac{1}{12}$ $-\frac{1}{12}$ $-\frac{1}{12}$ Ė $-\frac{1}{4}$ $\,0\,$ $-\frac{1}{4}$ $\boldsymbol{0}$ $-\frac{1}{2}$ $-\frac{1}{4}$ $\,1\,$ $\frac{1}{12}$ $\bf{0}$ $\frac{5}{12}$ $\frac{1}{3}$ $-\frac{3}{4}$ $\frac{1}{12}$ θ $-\frac{1}{12}$
 $-\frac{1}{12}$ $\frac{1}{12}$ $\boldsymbol{0}$ $-\frac{1}{12}$ $\frac{1}{12}$ θ $\frac{1}{12}$ $\,0\,$ $\,0\,$ $\frac{1}{12}$ $\,0\,$ $-\frac{1}{12}$ $-\frac{1}{12}$ $\,0\,$ $\,0\,$ $\frac{1}{12}$
 $\frac{1}{12}$ $\,0\,$ θ $\frac{1}{6}$ θ -4 $\,0\,$ $\frac{1}{12}$ θ $\,0\,$ $rac{1}{12}$ $0 - \frac{1}{6}$ $\frac{1}{4}$ $\boldsymbol{0}$ $\,0\,$ $\,0\,$ $\frac{1}{6}$ $-\frac{1}{12}$ $\frac{1}{12}$ -1 $-\frac{1}{6}$ $\boldsymbol{0}$ $rac{1}{12}$
 $rac{1}{12}$
 $rac{5}{12}$ $0\quad 0$ $\frac{1}{12}$ $\frac{1}{6}$ $\,0\,$ $-\frac{1}{4}$ $0\quad 0\quad$ $\boldsymbol{0}$ $-\frac{1}{12}$ $\,0\,$ $\frac{1}{12}$ $-\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{6}$ $-\frac{12}{12}$ $\begin{array}{c} 0&\frac{-1}{12}\\ 0&-\frac{1}{4}\\ \frac{1}{6}&0&\frac{1}{12}\\ \frac{1}{6}&0&\frac{1}{12}\\ \frac{1}{6}&0&\frac{1}{12}\\ -\frac{1}{2}&-\frac{1}{4}\\ 0&-\frac{1}{12}\\ 0&\frac{1}{12}\\ \end{array}$ $-\frac{1}{6}$ 0 $\frac{1}{12}$ $\,0\,$ $\,0\,$ $\frac{1}{12}$ $\frac{1}{12}$ $\,0$ $-\frac{1}{12}$ $\bf{0}$ $-\frac{1}{12}$ $\,0\,$ $\dot{0}$ $-\frac{1}{12}$ $\frac{1}{3}$ $-\frac{1}{2}$ $0 - \frac{1}{12}$ $0 - \frac{1}{6}$ $-\frac{1}{4}$ $-\frac{1}{12}$ $\frac{1}{6}$ $-\frac{1}{6}$ $\begin{array}{r} -\frac{1}{4} \\ \frac{1}{12} \\ \frac{1}{12} \\ \frac{5}{12} \\ \frac{1}{12} \\ -\frac{1}{12} \\ \end{array}$ $\frac{1}{12}$ H $\frac{1}{12}$ $\frac{1}{12}$ $\,0\,$ $-\frac{1}{4}$ $\frac{1}{6}$ $\begin{matrix} 0 & -\frac{1}{12} \\ 0 & -\frac{1}{4} \end{matrix}$ $\frac{1}{12}$ $0 \t 0 - \frac{1}{12}$ $-\frac{1}{6}$ $rac{1}{12}$ $0\quad 0$ $-\frac{1}{12}$ $\begin{array}{r} -\frac{1}{12}\\ -\frac{1}{12}\\ \frac{1}{12} \end{array}$ $rac{1}{12}$ $\begin{array}{c} 0 \\ \frac{1}{6} \\ -\frac{1}{6} \\ \frac{1}{6} \end{array}$ $\begin{array}{r} \frac{1}{12} \\ \frac{1}{12} \\ \frac{5}{12} \\ -\frac{1}{4} \\ \frac{1}{12} \end{array}$ $-\frac{1}{12}$ $\,$ 0 $\,0\,$ $-\frac{1}{12}$ θ $0\!-\!0$ $-\frac{1}{12}$ 0 0
 $-\frac{1}{12}$ 0 $\frac{1}{6}$ $-\frac{1}{12}$ $\frac{1}{12}$
 $\frac{1}{12}$ $-\frac{1}{6}$ $-\frac{1}{12}$ $\,0$ $\,0\,$ $-\frac{1}{6}$ $\frac{1}{6}$ $\begin{array}{ccc} 0 & -\frac{1}{4} \\ 0 & \frac{1}{12} \\ 0 & \frac{1}{12} \end{array}$ $-\frac{1}{6}$ 0 $\frac{1}{2}$ $\begin{array}{c}\n-1 \\
12 \\
\frac{1}{12} \\
-1\n\end{array}$ $-\frac{1}{4}$
 $\frac{1}{12}$ $\boldsymbol{0}$ $\frac{1}{6}$ $-\frac{1}{4}$ $\frac{1}{12}$ \longrightarrow $\begin{array}{cc} \frac{1}{6} & 0 & -\frac{1}{12} \\ 0 & 0 & -\frac{1}{12} \end{array}$ $\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}$ $rac{1}{12}$ $\begin{array}{cc} 0 & -\frac{1}{6} \\ 0 & 0 \end{array}$ $\begin{smallmatrix}0\\0\\0\end{smallmatrix}$ $\begin{array}{cc} 0 & -\frac{1}{12} \\ 0 & -\frac{1}{12} \end{array}$ $\,0\,$ $-\frac{1}{12}$ $-\frac{1}{12}$ $\frac{1}{3}$ $-\frac{1}{6}$ $\boldsymbol{0}$

(a)

Figure: Mixing matrix of one of the largest web at 4-loops

э

 QQ

メロトメ 倒 トメ ミトメ ミト

continued..

Figure: All the compleletly connected factor arise from the web

ref: Agarwal, Danish, Magnea , SP, Tripathi (Under preparation)

4 D F

January 31, 2020 24 / 41

 QQ

General color structures

Figure: Connected pieces at 4-loops

4 0 8

 QQ

Summary of results

 299

 $4 \Box$ \rightarrow \Box \rightarrow \rightarrow \Box \rightarrow \rightarrow \Box \rightarrow \Box \rightarrow \Box \rightarrow

- We have developed an in-house mathematica code which can do the following
	- It can generate all the webs at 4-loops connecting 4 and 5 lines.
	- It can generate all the diagrams of the webs.
	- It can calculate the mixing matrix of the webs for 4 and 5 lines.
- We checked correctness of the code by checking the following properties:
	- All the mixing matrices we generated have zero-sum rows
	- All the mixing matrices we generated are idempotent

- Claim about column sum conjuctre: We claim that the conjecture for column sum rule is true at 4-loops web mixing matrices.
- The Quartic Casimir which was expected to be found at 4-loops appears in our result, which agrees with Becher and Neubert 2019.

 Ω

The next step in order to calculate the 4-loop soft anomalous dimension is to apply color conservation to all the exponentiated color factors.

We need to determine the kinematic contribution of only 2 diagrams that are present in the exponent.

We can calculate the exponentiated color factors present at higher orders using our in house code.

造

 299

イロト イ部 トイモ トイモト

Backup slides

目

 2990

 \triangleright \rightarrow \triangleright

Þ

K ロ ⊁ K 倒 ≯ K

Partonic jet : $J_i(\frac{(2p_i\cdot n_i)^2}{n^2})$ $\frac{\partial \mu^{(2)} \cdot \eta_{i})^2}{\mu^2}, \alpha_{\mathsf{s}}(\mu^2), \epsilon) = <\rho | \bar{\psi}(0) \phi_{\beta_1}(0,-\infty)| 0>$ **•** Eikonal jet : $\mathcal{J}_i\left(\frac{2(\beta_i\cdot n_i)^2}{n^2}\right)$ $\frac{\langle \hat{r}_i \cdot \hat{n}_i \rangle^2}{\langle \hat{n}_i^2 \rangle}, \alpha_{\bm{s}}(\mu^2), \epsilon) = < 0 \mid \phi_{\beta}(\infty,0) \phi_n(0,-\infty) |0>$

 QQQ

Relation between Γ^S and Γ^S

$$
\Gamma_{IJ}^{\overline{S}} = \Gamma_{IJ}^{S} - \delta_{IJ} \sum_{k=1}^{n} \gamma_{\mathcal{J}_k}
$$

B

K ロ ▶ K 何 ▶ K

重

In d dimensions

$$
\mu \frac{d\alpha}{d\mu} = \beta
$$

$$
\frac{\mu}{m_R} \frac{dm_R}{d\mu} = \gamma
$$

January 31, 2020 34 / 41

重

K ロ ▶ K 何 ▶

$$
\overline{S}_{LK}(\rho_{ij}, \alpha_s(\mu^2), \epsilon) = \frac{S_{LK}(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon)}{\prod_i \mathcal{J}_i(\frac{2(\beta_i \cdot n_i)^2}{n_i^2}, \alpha_s(\mu^2), \epsilon)}.
$$

$$
\rho_{ij} = \frac{n_i^2 n_j^2 (\beta_i \cdot \beta_j)^2}{4(\beta_i \cdot n_i)^2 (\beta_j \cdot n_j)^2}
$$

January 31, 2020 35 / 41

K ロ ▶ K 御 ▶ K

É

RG equation of different quantities

$$
\mu \frac{d}{d\mu} ln J_i \left(\frac{(2p_i \cdot n_i)^2}{\mu^2}, \alpha_s(\mu^2), \epsilon \right) = -\gamma_{J_i}
$$
\n
$$
\mu \frac{d}{d\mu} ln J_i \left(\frac{2(\beta_i \cdot n_i)^2}{n_i^2}, \alpha_s(\mu^2), \epsilon \right) = -\gamma_{J_i}
$$
\n
$$
\mu \frac{d}{d\mu} S_{JK} (\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon) = -\Gamma_{IJ}^S(\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon)
$$
\n
$$
\times S_{JK} (\beta_i \cdot \beta_j, \alpha_s(\mu^2), \epsilon)
$$
\n
$$
\mu \frac{d}{d\mu} \overline{S}_{IK} (\rho_{ij}, \alpha_s(\mu^2), \epsilon) = -\Gamma_{IJ}^{\overline{S}}(\rho_{ij}, \alpha_s(\mu^2), \epsilon)
$$
\n
$$
\times \overline{S}_{JK} (\rho_{ij}, \alpha_s(\mu^2), \epsilon)
$$

イロト

- ← 冊 →

э

Factorization in terms of reduced soft function

$$
\mathcal{M}_{L}\left(\frac{p_{i}}{\mu},\alpha_{s}(\mu^{2}),\epsilon\right) = \sum_{K} S_{LK}(\beta_{i} \cdot \beta_{j},\alpha_{s}(\mu^{2}),\epsilon) \times H_{K}\left(\frac{2p_{i} \cdot p_{j}}{\mu^{2}},\frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}},\alpha_{s}(\mu^{2})\right) \times \prod_{i} \frac{J_{i}(\frac{(2p_{i} \cdot n_{i})^{2}}{\mu^{2}},\alpha_{s}(\mu^{2}),\epsilon)}{J_{i}(\frac{2(\beta_{i} \cdot n_{i})^{2}}{n_{i}^{2}},\alpha_{s}(\mu^{2}),\epsilon)} = \overline{S}_{LK}(\rho_{ij},\alpha_{s}(\mu^{2}),\epsilon) \times H_{K}\left(\frac{2p_{i} \cdot p_{j}}{\mu^{2}},\frac{(2p_{i} \cdot n_{i})^{2}}{n_{i}^{2}\mu^{2}},\alpha_{s}(\mu^{2})\right) \times J_{i}(\frac{(2p_{i} \cdot n_{i})^{2}}{\mu^{2}},\alpha_{s}(\mu^{2}),\epsilon)
$$

イロト

 QQ

- Identify distinct connected pieces in the diagrams. Associate a replica variable to each connected piece which can take value from 1 to N.
- Determine the hierarchy between the replica variables, for example if there are two connected pieces then a hierearchy determines weather i ; i , i = j , i ; i
- Define an operator R which will arraneg the gluons on a prticular leg according to the hierarchy. Given two attachments i and j to a leg I, the R operation
	- \bullet does nothing if $i=$ j
	- will order them as $\, T_i \, T_j \,$ if i $<$ j and as $\, T_j \, T_i \,$ if i $>$ j.

 QQQ

For each hieracrchy compute its multiplicity, namely a combinational factor counting how many times this hierarchy arise when all i 's go over the range 1 to N. It is equal to the number of ways of choosing n(h) different replica numbers from N. $M_N(h) = N C n(h)$. $\widetilde{\mathcal{C}}(D) = \sum_{h} M_n(h) R[\mathcal{C}(D)|h]$ at order N^1

つへへ

Calculation of R using replica trick

h	$\mathcal{R}[(a) h]$	$M_N(h)$	$\mathcal{O}(N^1)$ part of $M_N(h)$
$i = j$	$C(a)$	N	1
$i > j$	$C(a)$	$N(N-1)/2$	$-\frac{1}{2}$
$i < j$	$C(b)$	$N(N-1)/2$	$-\frac{1}{2}$
$\widetilde{C}(a) = \frac{1}{2} [C(a) - C(b)]$			
$\widetilde{C}(b) = \frac{1}{2} [C(b) - C(a)]$			

 QQ

$$
\rho_{ijkl} = \frac{(\beta_i \cdot \beta_j)(\beta_k \cdot \beta_l)}{(\beta_i \cdot \beta_k)(\beta_j \cdot \beta_l)}
$$

K ロ → K 御 → K 星 → K 星 → 「星 → り Q Q →