

« Empty » space is unstable) Dark matter

IS Not E

11/1/1

John Ellis

Origin of matter

Masses of neutrinos

Hierarchy problem

Inflation

Quantum gravity

The Standard Model

Standard Model Measurements @ LHC

Standard Model Total Production Cross Section Measurements

Status: March 2019

Higgs Mass Measurements

• ATLAS + CMS ZZ^* and $\gamma\gamma$ final states

Theoretical Constraints on Higgs Mass

Buttazzo Degrassi Giardino Giudice Sala Salvio & Strumia arXiv:1307.3536

 $\lambda(Q) = -$

- Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at $\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v}$
- Small: renormalization due to t quark drives quartic coupling < 0at some scale Λ
 - \rightarrow vacuum unstable

• Vacuum could be stabilized by **Supersymmetry**

Vacuum Instability in the Standard Model

- Sensitive to α_s as well as m_t and M_H
- Instability scale: Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio & Strumia, arXiv:1307.3536

$$\log_{10} \frac{\Lambda_I}{\text{GeV}} = 11.3 + 1.0 \left(\frac{M_h}{\text{GeV}} - 125.66 \right) - 1.2 \left(\frac{M_t}{\text{GeV}} - 173.10 \right) + 0.4 \frac{\alpha_3(M_Z) - 0.1184}{0.0007}$$
$$\mathbf{m}_t = \mathbf{172.47 \pm 0.35 \text{ GeV}} \rightarrow \mathbf{log}_{10}(\Lambda/\text{GeV}) =$$

Instability during Inflation?

Hook, Kearney, Shakya & Zurek: arXiv:1404.5953

 10^{-1}

۲

Numerical soln Analytic soln (Eq. 15) Analytic soln from [12] $(1 - e^{-B_{HM}})^{N_e}$

 H/Λ_{max}

10²

Do inflation fluctuations drive us over the hill?

- Then Fokker-Planck evolution
- Do AdS regions eat us?

– Disaster if so

Stabilize vacuum with BSM physics?

"Build a wall" with supersymmetry?

Standard Model as an Effective Field Theory

- Supplement Standard Model with higherdimensional interactions generated by new physics at scale Λ Buchmueller & Wyler, 1986
- Leading dimension-6 operators:

$$\mathcal{L}_{ ext{SMEFT}} \supset \mathcal{L}_{ ext{SM}} + \sum_i rac{c_i}{\Lambda_i^2} \mathcal{O}_i$$

- Use data to constrain operator coefficients
- Look for indirect effects of physics beyond the Standard Model

Dimension-6 Operators in Warsaw Basis

• Involved in precision electroweak, diboson data

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} \supset \frac{\bar{C}_{Hl}^{(3)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l) + \frac{\bar{C}_{Hl}^{(1)}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l) + \frac{\bar{C}_{ll}}{v^2}(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l) \\ &+ \frac{\bar{C}_{HD}}{v^2} \left| H^{\dagger}D_{\mu}H \right|^2 + \frac{\bar{C}_{HWB}}{v^2} H^{\dagger}\tau^{I}H W_{\mu\nu}^{I}B^{\mu\nu} \\ &+ \frac{\bar{C}_{He}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e) + \frac{\bar{C}_{Hu}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u) + \frac{\bar{C}_{Hd}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d) \\ &+ \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q) + \frac{\bar{C}_{Hq}}{v^2} (H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q) + \frac{\bar{C}_{W}}{v^2} \epsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

Operators affecting Higgs observables

$$\begin{split} \mathcal{L}_{\text{SMEFT}}^{\text{Warsaw}} &\supset \frac{\bar{C}_{eH}}{v^2} (H^{\dagger}H) (\bar{l}eH) + \frac{\bar{C}_{dH}}{v^2} (H^{\dagger}H) (\bar{q}dH) + \frac{\bar{C}_{uH}}{v^2} (H^{\dagger}H) (\bar{q}u\tilde{H}) \\ &+ \frac{\bar{C}_G}{v^2} f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho} + \frac{\bar{C}_{H\square}}{v^2} (H^{\dagger}H) \Box (H^{\dagger}H) + \frac{\bar{C}_{uG}}{v^2} (\bar{q}\sigma^{\mu\nu}T^A u) \tilde{H} G^A_{\mu\nu} \\ &+ \frac{\bar{C}_{HW}}{v^2} H^{\dagger}H W^I_{\mu\nu} W^{I\mu\nu} + \frac{\bar{C}_{HB}}{v^2} H^{\dagger}H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{C}_{HG}}{v^2} H^{\dagger}H G^A_{\mu\nu} G^{A\mu\nu} \,. \end{split}$$

Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W⁺W⁻ at LEP, Higgs and diboson data from LHC Runs 1 and 2
- Improvements in the constraints from Run 2
- Constraints on BSM models
 - Some contribute to operators at tree level
 - Stops that contribute at loop level

JE, Murphy, Sanz & You, arXiv:1803.03252

Run 2 Higgs			CMS		ATL	AS	
Γ		Production	Decay	Sig. Stren.	Production	Decay	S' en.
leasurements		1-jet, $p_T > 450$	$b\bar{b}$	$2.3^{+1.8}_{-1.6}$	pp	μμ	<u> </u>
		Zh	$b\overline{b}$	0.9 ± 0.5	Zh		$\langle n \rangle$
used in		Wh	$b\bar{b}$	1.7 ± 0.7	Wh		
used III		$t ar{t} h$	$b\bar{b}$	$-0.19^{+0.80}_{-0.81}$	tth	$\sim \mathcal{N}$	$4^{+0.64}_{-0.61}$
CN/EET E:+		$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.20^{+1.50}_{-1.47}$	tth	0	$1.7^{+2.1}_{-1.9}$
SI		$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.86\substack{+0.79\\-0.66}$	$ \lambda) $	η_h	$-0.6^{+1.0}_{-1.5}$
		$t\bar{t}h$	$3\ell + 1 au_h$	$1.22^{+1.34}_{-1.00}$		$c + 1\tau_h$	$1.0^{+1.3}_{-1.3}$
		$t ar{t} h$	$2\ell ss$	$1.7\substack{+0.6 \\ -0.5}$		$2\ell ss + 1\tau_h$	3.0 _{-1.3}
	Include all	$t ar{t} h$	3ℓ	1.0*		2/00	1.0 _{-0.7} 1 5 ^{+0.7}
		$t ar{t} h$	4ℓ		aaF	2035 WW	1.0 _{-0.6} 1.21 ^{+0.22}
	available	0-jet	WW		VBF	WW	$0.62^{+0.37}$
		1-jet		5	$B(h \rightarrow \gamma \gamma)/B(h)$	$\rightarrow 4\ell$	$0.69^{+0.15}_{-0.36}$
	kinematical	2-jet	\ \	.0	0-iet	4ℓ	$1.07^{+0.27}_{-0.25}$
		VBF 2-je		4 ± 0.8	1-jet, $p_T < 60$	4ℓ	$0.67^{+0.72}_{-0.68}$
	information		R /	$2.1^{+2.3}_{-2.2}$	1-jet, $p_T \in (60, 120)$	4ℓ	$1.00^{+0.63}_{-0.55}$
the star				-1.4 ± 1.5	1-jet, $p_T \in (120, 200)$	4ℓ	$2.1^{+1.5}_{-1.3}$
	$+ W^+W^-$	\mathbf{O}	$\gamma\gamma$	$1.11^{+0.19}_{-0.18}$	2-jet	4ℓ	$2.2^{+1.1}_{-1.0}$
			$\gamma\gamma$	$0.5^{+0.6}_{-0.5}$	"BSM-like"	4ℓ	$2.3^{+1.2}_{-1.0}$
Toris	measurement		$\gamma\gamma$	2.2 ± 0.9	VBF, $p_T < 200$	4ℓ	$2.14^{+0.94}_{-0.77}$
State Pro-	at bigh a	Vh	$\gamma\gamma$	$2.3^{+1.1}_{-1.0}$	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
	at mgn p _T	ggF	4ℓ	$1.20^{+0.22}_{-0.21}$	$t\bar{t}h$	4ℓ	$0.51^{+0.86}_{-0.70}$
	and the second second second	0-jet	au au	0.84 ± 0.89	Wh	WW	$3.2^{+4.4}_{-4.2}$
an de		boosted	ττ	$1.17^{+0.47}_{-0.40}$			
		VBF	au au	$ 1.11^{+0.34}_{-0.35}$	IT Manulas Same 8	Vou orVi-	

*

N

JE, Murphy, Sanz & You, arXiv:1803.03252

Results of Global Fit in Warsaw Basis

Results of Global Fit in Warsaw Basis

JE. Murphy, Sanz & You, arXiv:1803.03252

JE, Murphy, Sanz & You, arXiv:1803.03252

Summary

WIMP Candidates

- Could have right density if weigh 100 to 1000 GeV (accessible to LHC experiments?)
- Present in many extensions of Standard Model
- Particularly in attempts to understand strength of weak interactions, mass of Higgs boson
- Examples:
 - Extra dimensions of space
 - Supersymmetry

We still believe in supersymmetry

You must be joking

What lies beyond the Standard Model?

Supersymmetry

Stabilize electroweak vacuum

New motivations From LHC Run 1

- Successful prediction for Higgs mass
 Should be < 130 GeV in simple models
- Successful predictions for couplings

 Should be within few % of SM values
 Should be within few % of SM values
- Naturalness, GUTs, string, ..., dark matter

Classic LHC Dark Matter Signature

Missing transverse energy carried away by dark matter particles

Nothing (yet) at the LHC

No supersymmetry

Nothing else, either

Inputs to Global Fits for New Physics

Electroweak	Observable	Source Th./Ex.	Constraint
observables	M_W [GeV]	[00] / [57,50]	$00.070 \pm 0.012 \pm 0.010_{MSSM}$
00501 v 00105	$a_{\mu}^{\mathrm{EXP}} - a_{\mu}^{\mathrm{SM}}$	[59] / [60]	$(30.2 \pm 8.8 \pm 2.0_{\text{MSSM}}) \times 10^{-10}$
Flavour	$R_{\mu\mu}$	[01-05]	2D likelihood, MFV
Thavour	$\tau(B_s \rightarrow \mu^+ \mu^-)$	[63]	$2.04 \pm 0.44 (\text{stat.}) \pm 0.05 (\text{syst.}) \text{ ps}$
observables	$BR_{b \rightarrow s\gamma}^{EXP/SM}$	[65]/ [66]	$0.988 \pm 0.045_{\rm EXP} \pm 0.068_{\rm TH,SM} \pm 0.050_{\rm TH,SUSY}$
OUSCIVADICS.	BR _B	[00,07]	$0.992 \pm 0.58_{\rm EVD} \pm 0.096_{\rm SM}$
Internetation	$BR_{B \to X_{g}\ell\ell}^{\text{EXP/SM}}$	[68]/ [66]	$0.966 \pm 0.278_{\rm EXP} \pm 0.037_{\rm SM}$
Interpretation	$\Delta M_{B_{g}}$	[01, co] / [cc]	$0.000 \pm 0.001_{\rm EXP} \pm 0.078_{\rm SM}$
reauires	$\frac{\Delta M_{B_d}^{EXP/SM}}{\Delta M_{B_d}^{EXP/SM}}$	[34,69] / [66]	$1.007\pm 0.004_{\rm EXP}\pm 0.116_{\rm SM}$
1	$BR_{K \rightarrow \mu u}^{EXP/SM}$	[34,70] / [71]	$1.0005\pm0.0017_{\rm EXP}\pm0.0093_{\rm TH}$
lattice inputs	tice inputs $BR_{K \to \pi \nu \bar{\nu}}^{EXP/SM}$		$2.01 \pm 1.30_{\rm EXP} \pm 0.18_{\rm SM}$
Dark Matter	σ_p^{-1}	[3, 5, 6]	Combined likelihood in the $(m_{ ilde{\chi}_1^0}, \sigma_p^-)$ plane
Dark Watter	$\sigma_n^{ m SD}$	[4]	Likelihood in the $(m_{z^0}, \sigma_n^{ m SD})$ plane
IHC	$ ilde{g} ightarrow q ar{q} ilde{\chi}_1^{ m o}, bb ilde{\chi}_1^{ m o}, tt ilde{\chi}_1^{ m o}$	[16, 17]	Combined likelihood in the $(m_{ ilde g}, m_{ ilde \chi_1^0})$ plane
	$ ilde q o q ilde \chi_1^0$	[16]	Likelihood in the $(m_{\tilde{q}}, m_{\tilde{\chi}_1^0})$ plane
observables	$ ilde{b} o b ilde{\chi}_1^0$	[16]	Likelihood in the $(m_{\tilde{b}}, m_{\tilde{\chi}_1^0})$, plane
UDSCI Vabies	$ ilde{t}_1 o t ilde{\chi}^0_1, c ilde{\chi}^0_1, b ilde{\chi}^\pm_1$	[16]	Likelihood in the $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0})$, plane
	$ ilde{\chi}_1^\pm o u \ell^\pm ilde{\chi}_1^0, u au^\pm ilde{\chi}_1^0, W^\pm ilde{\chi}_1^0$	[18]	Likelihood in the $(m_{ ilde{\chi}_1^\pm},m_{ ilde{\chi}_1^0})$ plane
	$ ilde{\chi}^0_2 ightarrow \ell^+ \ell^- ilde{\chi}^0_1, au^+ au^- ilde{\chi}^0_1, Z ilde{\chi}^0_1$	[18]	Likelihood in the $(m_{ ilde{\chi}^0_2}, m_{ ilde{\chi}^0_1})$ plane
	Heavy stable charged particles	[74]	Fast simulation based on [74, 75]
	$H/A \rightarrow \tau^+ \tau^-$	[28, 29, 76, 77]	Likelihood in the $(M_A, \tan \beta)$ plane

Quo Vadis g_{μ} - 2?

• Strong discrepancy between BNL experiment and e^+e^- data now ~ 3.7 σ $\Delta a_{\mu} = (27.05 \pm 7.26) \times 10^{-10}$

• New experiment at FNAL (J-PARC)

Keshavarrzi, Nomura & Teubner, arXiv:1802.02995

Analysis of pMSSM11

- Phenomenological MSSM with 11 parameters
- Sample parameter space using Multinest technique
- Sampling with/without g 2
- Dedicated sampling of Dark Matter regions
- Sample 2 \times 10⁹ points

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

ratio of vevs : $\tan \beta$,

Parameter	Range	Number of
		segments
M_1	(-4,4) TeV	6
M_2	(0, 4) TeV	2
M_3	(-4, 4) TeV	4
$m_{\widetilde{q}}$	(0, 4) TeV	2
$m_{\widetilde{q}_3}$	(0, 4) TeV	2
$m_{\widetilde{\ell}}$	(0, 2) TeV	1
$m_{ ilde{ au}}$	(0, 2) TeV	1
M_A	(0, 4) TeV	2
A	(-5, 5) TeV	1
μ	(-5, 5) TeV	1
aneta	(1, 60)	1
Total number of boxes		384

Sparticle Masses in the pMSSM

mas/TéRcope

- Best-fit values

- Accessible in pair production at ILC500, ILC1000, CLIC

Bagnaschi, Sakurai, JE et al,

Sparticle Masses in the pMSSM

- 68 & 95% CL ranges
- Best-fit values
- Accessible in pair production at ((ILC500)), (ILC1000), CLIC

Bagnaschi, Sakurai, JE et al,

Direct Dark Matter Searches

• Compilation of present and future sensitivities

Simplified Dark Matter Models

- Dark matter χ + mediator particle of spin 0 or 1
- Assume leptophobic gauge boson Y of some U(1)' with vector and/or axial-vector couplings
- Model parameters:
 - Coupling of mediator Y to dark matter: g_{DM}
 - Coupling of Y to quarks (assumed universal): g_{SM}
 - Mediator mass: m_Y
 - Dark matter particle mass: m_{χ}
- Global analysis using MasterCode

Dark Matter Simplified Models

Leptophobic vector mediator

Mediator masses between 100 GeV and > 5 TeV allowed

Bagnaschi, ..., JE et al, arXiv:1905.00892

Dark Matter Simplified Models

Leptophobic vector mediator

DM particle masses between 50 GeV and > 2.5 TeV allowed

Bagnaschi, ..., JE et al, arXiv:1905.00892

Dark Matter Simplified Models

Leptophobic vector mediator

Leptophobic axial mediator

Spin-dependent scattering

Spin-independent scattering

Scattering could be close to experimental limits

Bagnaschi, ..., JE et al, arXiv:1905.00892

Unify the Fundamental Interactions: Einstein's Dream ...

Unification via extra dimensions of space?

.. but he never succeeded

String Bump Hunting @ LHC

• Look for string recurrences in jets, γ + jets

Anchordoqui, Antoniadis, Dai, Feng, Goldberg, Huang, Lust, Stojkovic, Taylor, arXiv:1407.8120

How to get there from here?

Future Circular Colliders

The vision:

explore 10 TeV scale directly (100 TeV pp) + indirectly (e⁺e⁻)

CEPC-SPPC

Preliminary Conceptual Design Report

- LHC	shape
- FCC	shape

Jura

Study boundary
Limestone

Lake Geneva

Distance = 30.6 km

Circumference 97.75 km

Molasse Carried molasse

Prealps

SMEFT Analysis

De Blas et al, arXiv:1905.03764

Higgs Cross Sections

Examples of Higgs Measurements

Triple-Higgs Coupling Analysis Higgs@FCWG di-H, excl. di-H, glob. single-H, excl. single-H, glob. All future colliders combined with HL-LHC

How to get there from here? Go around in circles!

Best-Fit Sparticle Spectrum

0

Phenomenological MSSM Fit excluding g_u -2 Mass / GeV 3200 $egin{array}{c} A^0 \ H^0 \end{array}$ H^{\pm} 2800 Accessible to LHC? 2400 $\tilde{\chi}_2^{\pm}$ $ilde{\chi}_4^0$ t2 b2 b1 $egin{array}{l} \ell_{\mathrm{L}} \ ilde{ u}_{\mathrm{L}} \ ilde{\ell}_{\mathrm{R}} \end{array}$ 2000 \tilde{t}_1 1600 1200 800 Mas/TeRcope 400 h^0 Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

Best-Fit Sparticle Spectrum

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

Likelihood for LSP Mass

The Lighter Stop may be Light

• χ^2 likelihood functions for m_{stop} , stop mixing

Bagnaschi, Bahl, JE et al, arXiv:1810.10905

From Little Bangs to the Big Bang

•Big Bang

Fusion of two massive black holes

Masses ~ 36, 29 solar masses Radiated energy ~ 3 solar masses

Remark on Primordial Gravitational Waves

Generated by first-order electroweak phase transition Observable if $|\Phi|^6/\Lambda^2$, Λ small, also at HL-LHC

Reach of HL-LHC: 625 GeV @ 3σ, 766 GeV 2σ Reach of LISA: 580 GeV

IE, Lewicki & No, arXiv:1809.08242

Neutron Star Merger GW170817

- Longer chirp, extending to higher frequencies
- Masses < 2 solar masses
- 2 neutron stars!
- Constraints on properties
- Weak signal in Virgo helps localization
- Electromagnetic counterpart seen in detail

Direct Dark Matter Searches

 10^{2}

stop coann.

sbot coann.

 10^{3}

Spin-Independent Scattering

Phenomenological MSSM

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

Direct Dark Matter Searches

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

Search for Dark Matter in NS-NS Mergers?

Crazy ideas for dark matter signatures

JE, Hektor, Hütsi, Kannike, Marzola, Raidal & Vaskonen, arXiv:1710.05540

JE, Hütsi, Kannike, Marzola, Raidal & Vaskonen, arXiv:1804.01418

What Happens after the Merger?

- NS cores orbit and oscillate radially during ringdown
- Characteristic spectrum of frequencies in GW emissions
- Frequency peaks at stationary points in oscillations

Takami, Rezzolla & Baiotti, arXiv:1403.56720, 1412.3240

- Neutron cores

 oscillate and rotate
 inside disc
- Captures surprisingly well major features of strain fluctuations

Takami, Rezzolla & Baiotti, arXiv:1403.56720, 1412.3240

Toy Mechanical Model

Including Dark Matter

$$egin{split} L &= rac{m_n}{2} \left(\dot{r}_n^2 + \left(r_n \dot{ heta}_n
ight)^2
ight) + rac{m_d}{2} \left(\dot{r}_d^2 + \left(r_d \dot{ heta}_d
ight)^2
ight) \ &+ rac{M R^2 \dot{ heta}_n^2}{4} + 2k_n (r_n - a_n)^2 + 2k_d (r_d - a_d)^2 \,, \end{split}$$

Models for Massive DM Cores

- Conversion of neutron to heavier DM particle inside NS: *n* on Fermi surface $\rightarrow \chi$
- Bremsstrahlung of lighter DM particle:

 $n+n \rightarrow n+n+\chi$

- DM mass fraction ~ 5% possible
- Merger of DM star with conventional star before/after becoming NS
- DM fraction may depend on age, environment

DM Effects on NS Properties for various nuclear equations of state (EOS)

Summary

- The Big Bang raises many problems needing physics beyond the Standard Model
- Address them in smaller bangs:
 - LHC TeV
 - Direct dark matter searches
 - Indirect dark matter searches
 - $CMB 10^{15} GeV ?$

keV

GeV

- Black hole and neutron star mergers M_{Planck} ?
- "Per ardua ad astra" By struggles to the stars

Dark Matter Models for e⁺ Spectrum

Fits to DM Annihilations

- Annihilation mainly into bb, some admixture of $e^+e^-, \mu^+\mu^-$
- Different cosmic • ray models
- Different solar • potentials
- Annihilation $\sigma =$ • $272 \times \text{thermal}$

HAWC Collaboration, DOI:10.1126/science.aan4880

Diffuse y Emission near Pulsars

Absorption of lower-energy γ

HAWC Collaboration, DOI:10.1126/science.aan4880

Effect on Pulsar Positron Spectrum

A Tough Neighbourhood

- We live in a local bubble
- Excavated by • many supernovae in 'recent' past
 - **Opportunity** for AMS?

"16 supernovae have exploded during the past 13 million years within the boundaries of the Local Bubble."

Ann

Breitschwerdt et al. Nature 532, 73 (2016)

Inhomogeneous Diffusion Coefficient?

• More similar to AMS-02 spectrum with spatial dependence of diffusion coefficient

• Better fit including secondary production

Profumo, ReynosCordova, Kaaz & Silverman, arXiv:1803.09731

Antiprotons Compatible with Cosmic Rays

Cosmological Inflation in Light of Planck

A scalar in the sky? Supersymmetry/supergravity?

The Spectrum of Fluctuations in the Cosmic Microwave Background

Challenges for Inflationary Models

- Links to low-energy physics?
 - Only SM candidate for inflaton is Higgs
 BUT negative potential
- Link to other physics?
 - -SUSY partner of RH (singlet) neutrino?
 - Some sort of axion?
- Links to Planck-scale physics?
 - Inflaton candidates in string theory?

-Inflaton candidates in compactified string models

Starobinsky Model

- Non-minimal general relativity (singularity-free cosmology): • No scalar!? $S = \frac{1}{2} \int d^4x \sqrt{-g} (R + R^2/6M^2)$
- Conformally equivalent to scalar field model:

$$S = \frac{1}{2} \int d^4x \sqrt{-\tilde{g}} \left[\tilde{R} + (\partial_\mu \varphi')^2 - \frac{3}{2} M^2 (1 - e^{-\sqrt{2/3}\varphi'})^2 \right]$$

Inflationary interpretation, calculation of perturbations: Mukhanov & Chibisov, 1981

$$\delta S_b = \frac{1}{2} \int d^4 x \left[\phi'^2 - \nabla_a \phi \nabla^a \phi + \left(\frac{a}{a} + M^2 a^2 \right) \phi^2 \right]$$

Higgs Inflation: a Single Scalar?

Bezrukov & Shaposhnikov, arXiv:0710.3755

Standard Model with non-minimal coupling to

vity:

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M^{2} + (\xi h^{2})}{2} R + \frac{\partial_{\mu} h \partial^{\mu} h}{2} - \frac{\lambda}{4} (h^{2} - v^{2})^{2} \right\}$$

gra

• Consider case $1 \ll \sqrt{\xi} \ll 10^{17}$: in Einstein frame

$$S_E = \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2}\hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - U(\chi) \right\}$$

- With potential: $U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^{-2}$ Similar to Starobinsky, but not identical
- Successful inflationary potential at $\chi \gg M_P$

Problem for Higgs Inflation

Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio & Strumia, arXiv:1307.3536

- Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at $\lambda(Q) = \lambda(v) - \frac{3m_t^4}{2\pi^2 v^4} \log \frac{Q}{v}$ 0.10 Instability @ 80.0 $\sim 10^{11} \text{ GeV}$ Higgs quartic coupling $\lambda(\mu)$ 0.06 • Small M_h: renormalization 0.04 due to t quark drives 0.02 $M_{*} = 171.0 \text{ GeV}$ quartic coupling < 00.00 -0.02 $\alpha_s(M_7) = 0.1163$ at some scale Λ $M_{*} = 175.3 \text{ GeV}$ -0.041010 1012 1014 1016 1018 1020 \rightarrow vacuum unstable 10^{2} 104 RGE scale μ in GeV
 - Negative potential not suitable for inflation
 - Problem avoided with supersymmetry

Inflation Cries out for Supersymmetry

- Want "elementary" scalar field

 (at least looks elementary at energies << M_P)

 To get right magnitude of perturbations

 prefer mass << M_P
 (~ 10¹³ GeV in simple φ² models)
- And/or prefer small self-coupling $\lambda \ll 1$
- Both technically natural with supersymmetry

E, Nanopoulos, Olive & Tamvakis 1983

Inflation cries out for Supergravity

- Stabilize 'elementary' scalar inflaton (needs mass << m_p and/or small coupling)
- Supersymmetry
- The only good symmetry is a local symmetry (cf, gauge symmetry in Standard Model)
- Local supersymmetry = supergravity
- Early Universe cosmology needs gravity
- Supersymmetry + gravity = supergravity

No-Scale Supergravity Inflation

- Supersymmetry + gravity = Supergravity
- Include conventional matter?
- Potentials in generic supergravity models have 'holes' with depths $\sim -\,M_P{}^4$
- Exception: no-scale supergravity
- Appears in compactifications of string Witten 1985
- Flat directions, scalar potential ~ global model + controlled corrections
 JE, Enqvist, Nanopoulos, Olive & Srednicki, 1984

JE, Nanopoulos & Olive, arXiv:1305.1247, 1307.3537

No-Scale Supergravity Inflation Revived

JE, Nanopoulos & Olive, arXiv:1305.1247

- Simplest SU(2,1)/U(1) example:
- Kähler potential: $K = -3\ln(T + T^* |\phi|^2/3)$
- Wess-Zumino superpotential: $W = \frac{\mu}{2}\Phi^2 \frac{\lambda}{3}\Phi^3$
- Assume modulus T = c/2 fixed by 'string dynamics'

• Ef
$$\mathcal{L}_{eff} = \frac{c}{(c-|\phi|^2/3)^2} |\partial_\mu \phi|^2 - \frac{\hat{V}}{(c-|\phi|^2/3)^2}$$
 $\hat{V} \equiv \left|\frac{\partial W}{\partial \phi}\right|^2$

Modifications to globally supersymmetric case
Good inflation possible ...

No-Scale Supergravity Inflation

• Inflationary potential for $\lambda \simeq \mu/3$

 \mathbf{x}

JE, Nanopoulos & Olive, arXiv:1305.1247

Is there more profound connection?

• Starobinsky model:

$$S = \frac{1}{2} \int d^4x \sqrt{-g} (R + R^2/6M^2)$$

• After conformal transformation:

$$S = \frac{1}{2} \int d^4x \sqrt{-\tilde{g}} \left[\tilde{R} + (\partial_\mu \varphi')^2 - \frac{3}{2} M^2 (1 - e^{-\sqrt{2/3}\varphi'})^2 \right]$$

- Effective potential: $V = \frac{3}{4}M^2(1 e^{-\sqrt{2/3}\varphi'})^2$
- Identical with the no-scale Wess-Zumino model for the case $\lambda = \mu/3$

... it actually IS Starobinsky

Cecotti, 198'

Nanopoulos & Olive, arXiv:1305

How many e-Folds of Inflation?

General expression:

JE, García, Nanopoulos & Olive, arXiv:1505.06986

$$N_* = 67 - \ln\left(\frac{k_*}{a_0 H_0}\right) + \frac{1}{4}\ln\left(\frac{V_*^2}{M_P^4 \rho_{\rm end}}\right) + \frac{1 - 3w_{\rm int}}{12(1 + w_{\rm int})}\ln\left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right) - \frac{1}{12}\ln g_{\rm th}$$

In no-scale supergravity models:

$$N_{*} = 68.659 - \ln\left(\frac{k_{*}}{a_{0}H_{0}}\right) + \frac{1}{4}\ln\left(A_{S*}\right) - \frac{1}{4}\ln\left(N_{*} - \sqrt{\frac{3}{8}\frac{\phi_{\text{end}}}{M_{P}}} + \frac{1}{4}e^{\sqrt{\frac{2}{3}\frac{\psi_{\text{end}}}{M_{P}}}}\right) \\ + \frac{1 - 3w_{\text{int}}}{12(1 + w_{\text{int}})} \left(2.030 + 2\ln\left(\Gamma_{\phi}/m\right) - 2\ln(1 + w_{\text{eff}}) - 2\ln(0.81 - 1.10\ln\delta)\right) \\ - \frac{1}{12}\ln g_{\text{tr}},$$

Equation of state during inflaton decay **Prospective constraint on inflaton models?**

Inflaton decay rate

Amplitude of

perturbations

Planck Constraints on # of e-Folds

• Starobinsky-like no-scale models

