
https://root.cern

ROOT
Data Analysis Framework

Modernisation of RooFit

S. Hageboeck (CERN, EP-SFT) for the ROOT team

https://root.cern

Introduction

▶ RooFit used in all LHC (+ other) experiments
● Express statistical models (binned / unbinned likelihoods)
● Parameter estimation (i.e. errors!)
● Statistical tests (e.g. Higgs Discovery)

▶ Development started before ~2005 until ~2011, not touched much in
recent years

▶ Challenges: Data statistics in LHC’s Run 3
● More events to be processed (e.g. LHCb: ~10x more)
● Higher statistics → allow for more complex models
● Goal: speed up >= 10x

2

RooFit’s Strengths
▶ Compose PDFs as trees of

functions & variables
RooFit classes can be stitched together
to evaluate complex functions

▶ Each PDF can be:
● evaluated
● normalised
● fitted to data
● plotted
● Parameter

estimation
● Toy experiments
● ... 3

https://root.cern.ch/doc/master/rf108__plotbinning_8C.html
https://root.cern.ch/doc/master/rf205__compplot_8C.html

RooFit’s Weakness
Likelihood:
Probability of observing the data given a
probability model

Maximum-likelihood fit:

▶ Adjust parameters until likelihood
maximal

▶ One virtual call per:
● Data point
● PDF node
● Set of parameters tested

▶ Large fit: 1M data points * 1000
elements * 1000 fit steps
= 1 trillion calls

▶ + 1 billion normalisation integrals
when parameters change

4

A random PDF
from a question in the forum

Data point

Parameters

RooFit’s Weakness
Flow of data:

▶ A single data point is loaded into
the variables

▶ The whole expression tree (except
for constant branches) is evaluated

▶ By the time execution returns to
the data point, the cache line
almost certainly disappeared

● Some simple profiling for a
large fit model:
50% of data points from
DRAM

▶ 0 chance to vectorise computations

5

A random PDF
from a question in the forum

Data point

Parameters

My Initial Plan for RooFit

1. Fix the most pressing issues
2. LinkedList → std::vector<RooAbsArg*>
3. Batched evaluation

● Walk expression tree only once for all data points
● Reduce number of virtual calls by factor of batch size
● No change of state, no copying subtree (→ threads)
● Data come as std::vector<double> and are accessed consecutively (cache-friendly)

4. Vectorise loops inside batches
5. Batched generation of toy data

● Bottleneck for some analyses

6. Threads

https://sft.its.cern.ch/jira/browse/ROOT-9815

6

https://sft.its.cern.ch/jira/browse/ROOT-9815

Pressing Issues

▶ Static destruction order fiasco
crashed ROOT when trying to
quit after using RooFit

▶ Memory leaks were preventing
toy studies

▶ Unable to read ROOT 5
workspaces because of
cint ←→ cling differences
(e.g. Higgs discovery)

▶ + Most common problems in the
forum

7

RooAbsCollection

8

Collections:

▶ Expression tree (+ almost
everything else in RooFit) stored as
RooLinkedList<RooAbsArg*>

● Often small search & iterates
● Optional hash table to

compensate slow iterations
▶ Toy MonteCarlo generation:

● ~50% of L3 misses due to
linked list + hash table
operations

▶ The plan:
● Replace LinkedList by

std::vector
● Provide STL-like interface

The Challenge

▶ Axel: “How much user code are you going to break?”
→ The answer would have been "Almost everything" …

▶ The old collections directly expose the underlying storage implementation
through the iterators

9

Solution

▶ Three kinds of old iterators need
to be supported (all in use)

▶ RooLinkedList needs continued
support (user code)

▶ Implemented wrapper that
delegates to RooLinkedList
or STL as needed

▶ Downside: slower
● Extra layer with virtual

dispatch
● Need to create&destroy

iterators and hand into
userland

10

The Legacy Iterators now
▶ All legacy iterators work
▶ 10 - 20% slower than

before

▶ Flagged with
R__SUGGEST_ALTERNATIVE:
● Requested during ROOT user’s

workshop
● Flags functions/classes whose

use is discouraged, but won’t
be fully deprecated

● https://github.com/root-project/root/p
ull/3100

11

https://github.com/root-project/root/pull/3100
https://github.com/root-project/root/pull/3100

Iterating Through Collections in RooFit

▶ New iterators look
& feel like STL

▶ They are ~ 25%
faster

▶ Same results
▶ No code changes

for users
▶ Updating makes

loops faster

12

Execution time of RooFit / RooStats Tutorials

ROOT-6.18
20% faster

ROOT-6.16

My Plan for RooFit

1. Fix the most pressing issues
2. LinkedList → std::vector<RooAbsArg*>

● Much more memory friendly, 20% faster iterate/allocate/destroy + much faster index access

3. Batched evaluation
● Walk expression tree only once for all data points
● Reduce number of virtual calls by factor of batch size
● No change of state, no copying subtree (→ threads)
● Data come as std::vector<double> and are accessed consecutively (cache-friendly)

4. Vectorise loops inside batches
5. Batched generation of toy data

● Bottleneck for some analyses

6. Threads

https://sft.its.cern.ch/jira/browse/ROOT-9815

13

ROOT 6.18

ROOT 6.16

https://sft.its.cern.ch/jira/browse/ROOT-9815

Batched function evaluations
▶ Now: A single data point is loaded

into the variables
▶ The whole (minus cached branches)

expression tree is walked over
▶ Execution returns to the data point,

cache line disappeared
● Simple profiling:

50% L3 misses
▶ 0 chance to vectorise computations
▶ My plan:

● Evaluate a batch of data
points in a single call

● Exploit vectorised fp
instructions

14

A random PDF
from a question in the forum

Data point
→ Data arrayParameters

Batched and Auto-Vectorised Gaussian

15

- Zero or one dimensional
- Template types decide behaviour
- Dynamic dispatching

Challenge:
● Whether a node is a

parameter or a batch is
decided at run time
(might even change at
RT)

● Solved with classes that
either collapse to a
constant or an array
(completely inlinable)

● VDT math functions for
auto vectorisation

Old:

New:

Batch & Vectorisation Benchmark

▶ Optimised Gauss, Exp,
Sum, Poisson

▶ Batches & better cache
locality result in 10x faster
likelihood computation

▶ With AVX2, 16x faster LH
possible

▶ (*) AVX512 should allow for
more speed up, but CPU
likely throttling

16

Single likelihood
computation CPU time / ms Error

Speed
up Error

clang 7 -O3 SSE 2867 45

286 34 10.0 1.2

clang 7 -O3 AVX2 2834 22

183 7 15.5 0.6

clang 9 -O3 AVX512 2109 29

Titan X * 125 1 16.9 0.3

L(x | P) = Gauss(x | P1) + Gauss(x | P2) +
 Exp(x | P3)

Old

New

Required changes on user side:

Batch & Vectorisation Full Fit

▶ Full fit can be 7 to 10
times faster with batches
and vectorisation

▶ Results identical to 10E-14
● Unit tests running batch

against scalar code
● Minimal differences expected

(e.g. vdt::exp vs std::exp)

17

Full fit + error estimation CPU time / s Speed up

clang 7 -O3 SSE 9.61

2.45 3.9

clang 7 -O3 AVX2 9.97

1.32 7.5

clang 9 -O3 AVX512 6.53

Titan X * 0.68 9.7

L(x | P) = Gauss(x | P1) + Gauss(x | P2) +
 Exp(x | P3)

Compatibility Mode

▶ Only a few PDFs batched
& vectorised

▶ My summer student
Manos will update more

▶ Remaining PDFs can run
in "compatibility mode"
● Scalar loop in inherited

from base class
● Fill batch & return
● ˜25% faster

18

● Load single entries
into serving nodes

● Call scalar evaluate()

My Plan for RooFit

1. Fix the most pressing issues
2. LinkedList → std::vector<RooAbsArg*>

● Much more memory friendly, faster to iterate/allocate/destroy/index access

3. Batched evaluation
● Walk expression tree only once for all data points
● Reduce number of virtual calls by factor of batch size
● No change of state, no copying subtree (→ threads)
● Data come as std::vector<double> and are accessed consecutively (cache-friendly)

4. Vectorise loops inside batches
5. Batched & threaded generation of toy data

● Bottleneck for some analyses

6. Threads

https://sft.its.cern.ch/jira/browse/ROOT-9815

19

ROOT 6.18

ROOT 6.16

Working demo
being finalised

Up to 10x speed up

https://sft.its.cern.ch/jira/browse/ROOT-9815

Summary

▶ Users are starting to realise that RooFit is evolving again
▶ See no obstacles to have the batch & vectorise demo in

ROOT 6.20 (autumn / winter) with >= 10x speed up
▶ MP / MT

● RooFit has simple MP capabilities, batch mode + MP needs testing
● Will test threads soon
● Batch & vectorise interface designed with threads in mind

Caveat: PDF normalisation has lots of thread-hostile code. Expect to
need lots of locks in the beginning.

▶ More ideas in pipeline:
● RNTuple as storage backend ROOT-10206 to allow for bulk reading
● Likelihood gradient parallelisation (collaboration with NIKHEF)

20

https://sft.its.cern.ch/jira/browse/ROOT-10206

Backup

The Challenge II

▶ RooLinkedList:
● Remove/add/replace before and after

current iterator
● No reallocations → iterator valid

▶ Solution: Legacy-to-STL adapters count
● Can remove/add after iterator
● Can replace everywhere
● Safe also if reallocating
● But: Will break when removing/adding

before iterator

22

