Second vapor source vacuum window size

- As small as possible to reduce thickness
 - > weak interaction with the electron beam

• Big enough to allow for an "easy" alignment

 Big enough to let most of the modulated proton bunch (focused + defocused) enter the source to keep radiation as low as reasonably achievable How many protons per bunch can we let interact with the window frame or surrounding material?

• 1% → r ≈7 mm

• 10% → r ≈5 mm

• 50% → r ≈2.5 mm

Marlene's LCODE simulation and plotting

 LCODE simulated beam at first plasma exit as input in FLUKA

 Vary the entrance radius and observe the deposited energy outside the source

10 cm away from the source

Vacuum window size	Deposited energy [eV/cm ³]	Dose rate [Sv/h] (r	ep. rate 1/30 Hz)	
r = 0.7 mm	5E-2	456		
r = 0.5 mm	7.5E-2	672		
r = 0.25 mm	10E-2	888		
		Accept	Acceptable?	
		Too hig	,h?	

Next:

 Repeat the simulations and check radiation ~ 1 m away from the source (compare to old simulation studies for Run1)

Define window size

Define window thickness

• Define beamline parameters

