
GPU Computing via
Python’s Context Management

for Beam Dynamics Simulations

Adrian Oeftiger
16 Oct 2019, PyHEP 2019



Motivation

Numerical simulations on beam dynamics...

follow long-term motion of beam particles in a synchrotron

demand iterative development: frequent update of models

require heavy number crunching
−→ in particular for collective effects (particle-to-particle

interaction)

often rely on high-performance computing (HPC)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 2/21



HPC and Python?

HPC vs. Python?!
Pure python:

 reputation of being slow
=⇒ libraries and tools

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 3/21



HPC and Python?

rapid
proto-
typing

iterative
optimisa-

tion

numpy,
cython,
numba,
pycuda,
CuPy, ...

glue:
low-level

lan-
guages

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 3/21



The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project

Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project

Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project

Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project

Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project

Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project
Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


The General Problem...

Ingredients:

50k lines (smoothly working) CPU simulation code
5 dashes new numerical challenges

few nice GPUs in the corner...

Recipe:

translate into CUDA, ...

fiddling with GPU libraries

achieve promising speed-ups

this one impressive GPU
cluster simulation

... maintenance kills the project
Figure: Mai Tai, postprohibition.com

maintenance problems...
“oh this new feature.. yes, that’s only in the CPU version for
the moment..”

“did we fix that physics bug also in the GPU version?”

...

=⇒ typically at some point, GPU version lags behind CPU version

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 4/21

postprohibition.com


... how to solve the
maintenance problem?



One implementation to rule them all

Lessons learned from past experiences:
implement the physics once
separate architecture-specific back-end from physics

Approaches to separate backend from physics:
Python’s duck typing
templating (=⇒ cf. next talk by M. Schwinzerl)
just-in-time (JIT) compilation

“If it walks like a duck and it quacks like a
duck, then it must be a duck.”
=⇒ dynamic typing

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 5/21



One implementation to rule them all

Lessons learned from past experiences:
implement the physics once
separate architecture-specific back-end from physics

Approaches to separate backend from physics:
Python’s duck typing
templating (=⇒ cf. next talk by M. Schwinzerl)
just-in-time (JIT) compilation

“If it walks like a duck and it quacks like a
duck, then it must be a duck.”
=⇒ dynamic typing

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 5/21



Gains

Separate back-end via duck typing =
less code, less bugs, less maintenance

more readable physics

simplify code extensibility:
1. user:

use fixed script with simulation library, adapt input values
2. “proactive” user:

easily extend simulation library with more physics
3. developer:

maintain back-ends, optimise new extensions

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 6/21



Example of PyHEADTAIL

Implemented this strategy in beam dynamics simulation tool
PyHEADTAIL ↗.

=⇒ Let’s play! Find a concept jupyter notebook ↗ in this
github repo ↗:

Figure: PyHEADTAIL concept jupyter notebook

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 7/21

https://github.com/PyCOMPLETE/PyHEADTAIL
https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb
https://github.com/aoeftiger/PyHEADTAIL_concept_testing/
https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb


Basics

Implement the physics once – a synchrotron model consists of
many consecutive accelerator elements:

12. 03. 2015 ABP information meeting - Kevin Li 11

Segments

Interaction points:
• Impedance
• Electron cloud

e-cloud - 
quad

e-cloud - 
drif

e-cloud - 
dipole

space 
charge

diagnostics

impedances

beam

Figure: arrange the synchrotron like duplo (image courtesy Kevin Li)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 8/21



Basics

Implement the physics once – a synchrotron model consists of
many consecutive accelerator elements:

accelerator element:

from abc import ABCMeta, abstractmethod

class Element(object):

__metaclass__ = ABCMeta

@abstractmethod

def track(self, beam):

pass

=⇒ track method implements the physics for a given Element

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 8/21



Dynamical State

The dynamical state of the physical system (in our case the beam
particles) is stored in arrays (e.g. numpy):

particles:

class Particles(object):
def __init__(

self, x, xp, y, yp, z, dp,
intensity, gamma, circumference,

charge=e, mass=m_p, *args, **kwargs):

# arrays, each entry = one macro−particle:
self.x = x
self.xp = xp
(...)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 9/21



Dynamical State

The dynamical state of the physical system (in our case the beam
particles) is stored in arrays (e.g. numpy):

particles:

class Particles(object):
(...)

def mean_x(self):
return pm.mean(self.x) # imagine pm to be numpy for now

(...)

def sigma_x(self):
return pm.std(self.x)

(...)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 9/21



Example: Track through RF Cavity

Example: a radio-frequency cavity

Figure: CERN Control Centre Animations, 09 “LHC accelerating cavities”

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 10/21



Example: Track through RF Cavity

Example: a radio-frequency cavity

simple accelerator element example:

class RFCavity(Element):
def __init__(self, voltage):
self.voltage = voltage

def track(self, beam):
amplitude = (beam.charge * self.voltage /

(beam.p0 * beam.beta * c))
phi = 2 * np.pi * beam.z / beam.circumference
beam.dp += amplitude * pm.sin(phi)

track doesn’t know about the back-end!

=⇒ just assume that pm.sin can deal with beam.z,dp array!

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 10/21



Context Management

A typical simulation structure may look like so:

simulation script:

beam = Particles(...)

one_turn_map = [SomeElement(...), AnotherElement(...),

YetAnotherElement(...), ...]

n_turns = 1000

for i in range(n_turns):

for el in one_turn_map:

el.track(beam)

one_turn_map represents mapping through synchrotron

−→ each element therein transports particles to next element
FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 11/21



Context Management

A typical simulation structure may look like so:

simulation script:

beam = Particles(...)

one_turn_map = [SomeElement(...), AnotherElement(...),

YetAnotherElement(...), ...]

n_turns = 1000

with CPU(beam):
for i in range(n_turns):

for el in one_turn_map:

el.track(beam)

use context management to specify back-end (and
corresponding libraries) for el.track(beam)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 11/21



Define Context Manager

So what are the pm math library and CPU context manager?

pm math library for the CPU:

import numpy as np

cpu_dict = dict(
mean=np.mean,

std=np.std,

(...)

sin=np.sin,

exp=np.exp,

(...)

)

cpu_dict redirects to numpy functions as default for CPU

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 12/21



Define Context Manager

So what are the pm math library and CPU context manager?

pm math library for the CPU:

class pmath(object):
default = cpu_dict

def __init__(self):
self.update(self.default)

def update(self, func_dict):
for func in func_dict:
setattr(self, func, func_dict[func])

pm = pmath()

here, global state pm can update active function dictionary

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 12/21



Define Context Manager

So what are the pm math library and CPU context manager?

CPU context manager:

class CPU(object):
def __init__(self, beam):
self.beam = beam
self.to_move = [’x’, ’xp’, ...] # all arrays in Particles

(...)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 12/21



Define Context Manager

So what are the pm math library and CPU context manager?

CPU context manager:

class CPU(object):
(...)

def __enter__(self):
# ‘‘move’’ data to CPU RAM:
for attr in self.to_move:
coord = getattr(self.beam, attr)
transferred = np.asarray(coord)
setattr(self.beam, attr, transferred)

# redirect math library correctly to numpy:
pm.update(cpu_dict)
return self

(...)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 12/21



Define Context Manager

So what are the pm math library and CPU context manager?

CPU context manager:

class CPU(object):
(...)

def __exit__(self, exc_type, exc_value, traceback):
# potentially move data back to host

# default math library
pm.update(pm.default)

.

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 12/21



Simplifying Extensibility!

Remember the 3 types of interaction with the simulation library?

1. user:
use fixed script with simulation library, adapt input values
−→ can easily switch back-end via context (CPU GPU)

2. “proactive” user:
easily extend simulation library with more physics

−→ super easy to add more physics in RFCavity or add own
implementation based on pm math functions

=⇒ no knowledge of back-end required!

3. developer:
maintain back-ends, optimise new extensions

−→ can add functionality in math function dictionaries behind pm
−→ can provide new dictionaries + context managers

(i.) use low-level languages (C, Cython, ...)
(ii.) exploit new architectures like the GPU!

Python’s duck typing

−→ separate physics from back-end
(based on numpy array API)

−→ implement physics once

−→ can change back-end easily

−→ can provide more context managers
addressing new back-ends

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 13/21



Simplifying Extensibility!

Remember the 3 types of interaction with the simulation library?

1. user:
use fixed script with simulation library, adapt input values
−→ can easily switch back-end via context (CPU GPU)

2. “proactive” user:
easily extend simulation library with more physics
−→ super easy to add more physics in RFCavity or add own

implementation based on pm math functions
=⇒ no knowledge of back-end required!

3. developer:
maintain back-ends, optimise new extensions

−→ can add functionality in math function dictionaries behind pm
−→ can provide new dictionaries + context managers

(i.) use low-level languages (C, Cython, ...)
(ii.) exploit new architectures like the GPU!

Python’s duck typing

−→ separate physics from back-end
(based on numpy array API)

−→ implement physics once

−→ can change back-end easily

−→ can provide more context managers
addressing new back-ends

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 13/21



Simplifying Extensibility!

Remember the 3 types of interaction with the simulation library?

1. user:
use fixed script with simulation library, adapt input values
−→ can easily switch back-end via context (CPU GPU)

2. “proactive” user:
easily extend simulation library with more physics
−→ super easy to add more physics in RFCavity or add own

implementation based on pm math functions
=⇒ no knowledge of back-end required!

3. developer:
maintain back-ends, optimise new extensions
−→ can add functionality in math function dictionaries behind pm
−→ can provide new dictionaries + context managers

(i.) use low-level languages (C, Cython, ...)
(ii.) exploit new architectures like the GPU!

Python’s duck typing

−→ separate physics from back-end
(based on numpy array API)

−→ implement physics once

−→ can change back-end easily

−→ can provide more context managers
addressing new back-ends

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 13/21



Simplifying Extensibility!

Remember the 3 types of interaction with the simulation library?

1. user:
use fixed script with simulation library, adapt input values
−→ can easily switch back-end via context (CPU GPU)

2. “proactive” user:
easily extend simulation library with more physics
−→ super easy to add more physics in RFCavity or add own

implementation based on pm math functions
=⇒ no knowledge of back-end required!

3. developer:
maintain back-ends, optimise new extensions
−→ can add functionality in math function dictionaries behind pm
−→ can provide new dictionaries + context managers

(i.) use low-level languages (C, Cython, ...)
(ii.) exploit new architectures like the GPU!

Python’s duck typing

−→ separate physics from back-end
(based on numpy array API)

−→ implement physics once

−→ can change back-end easily

−→ can provide more context managers
addressing new back-ends

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 13/21



... as developers,
we’re now interested in

how to speed things up, right?!

=⇒ 1. new function dicts for pm
=⇒ 2. new GPU context



Collective Effects

In the previously mentioned jupyter notebook ↗, you find more
sophisticated Element types representing collective effects:

−→ e.g. particle-to-particle interaction via the metal vacuum tube
(“wakefields / impedances”)

−→ imply calculating beam statistics, histogramming etc.

=⇒ heavy computations and memory-intensive algorithms

Figure: source particle impacting trailing witness particle via wakefield (induced mirror current)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 14/21

https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb


Collective Effects

In the previously mentioned jupyter notebook ↗, you find more
sophisticated Element types representing collective effects:

−→ e.g. particle-to-particle interaction via the metal vacuum tube
(“wakefields / impedances”)

−→ imply calculating beam statistics, histogramming etc.
=⇒ heavy computations and memory-intensive algorithms

Figure: source particle impacting trailing witness particle via wakefield (induced mirror current)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 14/21

https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb


Speed up with Cython!

=⇒ Typically, timing bottleneck in a simulation boils down to one
(statistics) function.

Suppose e.g. beam.sigma_x() is the bad guy:

based on np.std via with previous cpu_dict and CPU context:

In: %timeit with CPU(beam): beam.sigma_x()
Out: 100 loops, best of 3: 6.63 ms per loop

=⇒ use Cython to speed up beam size computation by 5×:

In: %timeit with CPU_Cython(beam): beam.sigma_x()
Out: 1000 loops, best of 3: 1.37 ms per loop

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 15/21



Speed up with Cython!

=⇒ Typically, timing bottleneck in a simulation boils down to one
(statistics) function.

Suppose e.g. beam.sigma_x() is the bad guy:

based on np.std via with previous cpu_dict and CPU context:

In: %timeit with CPU(beam): beam.sigma_x()
Out: 100 loops, best of 3: 6.63 ms per loop

=⇒ use Cython to speed up beam size computation by 5×:

In: %timeit with CPU_Cython(beam): beam.sigma_x()
Out: 1000 loops, best of 3: 1.37 ms per loop

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 15/21



What’s that Cython Magic?

Cython low-level implementation:

%%cython −−compile−args=−fopenmp −−link−args=−fopenmp −n cython_functions
cimport libc.math as cmath
cimport cython.boundscheck
cimport cython.cdivision

@cython.boundscheck(False)
@cython.cdivision(True)
cpdef double cov(double[::1] a, double[::1] b):
(...)
for i in xrange(n):
a_sum += a[i] − shift_a
b_sum += b[i] − shift_b
ab_sum += (a[i] − shift_a) * (b[i] − shift_b)

return (ab_sum − a_sum * b_sum / n) / (n − 1)

@cython.boundscheck(False)
@cython.cdivision(True)
cpdef double std(double[::1] u):
return cmath.sqrt(cov(u, u))

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 16/21



What’s that Cython Magic?

cython_dict and CPU_Cython

import cython_functions

cython_dict = cpu_dict.copy()
cython_dict.update(dict(
cov=cython_functions.cov,
std=cython_functions.std,

))

class CPU_Cython(CPU):
def __enter__(self):

# moving data as in parent CPU class

(...)

# replace functions in general.math.py

pm.update_active_dict(cython_dict)
return self

−→ Full Cython implementation cf. jupyter notebook ↗
FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 16/21

https://nbviewer.jupyter.org/github/aoeftiger/PyHEADTAIL_concept_testing/blob/master/PyHEADTAIL_concept_testing.ipynb#IV.-1.-Using-cython-for-statistics-functions----as-implemented-in-real-PyHEADTAIL


Thanks to numpy array API

(a) Cython on CPU (b) CuPy on NVIDIA GPUs (c) PyCUDA on NVIDIA GPUs

Figure: Python libraries with numpy array API

Based on duck typing approach:

use other libraries implementing numpy array API to provide
func_dict rebindings and context managers

=⇒ completely transparent to users and “proactive” users
extending the physics, just need to support

math functions sin, cos, exp, sqrt etc.
numpy array arithmetics: a += b * c - d**2

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 17/21



Example for CuPy

gpu_dict with CuPy

import cupy

gpu_dict = dict(
mean=cupy.mean,

std=cupy.std,

(...)

sin=cupy.sin,

exp=cupy.exp,

(...)

)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 18/21



Example for CuPy

GPU context manager:

class GPU(object):
(...)

def __enter__(self):
# moving data to device
for attr in self.to_move:
coord = getattr(self.beam, attr)
transferred = cupy.asarray(coord)
setattr(self.beam, attr, transferred)

# replace functions in general.math.py
pm.update_active_dict(gpu_dict)
return self

(...)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 18/21



Example for CuPy

GPU context manager:

class GPU(object):
(...)

def __exit__(self):
# moving data back to host
for attr in self.to_move:
coord = getattr(self.beam, attr)
transferred = coord.get()
setattr(self.beam, attr, transferred)

pm.update_active_dict(pm._default_function_dict)

.

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 18/21



=⇒ this concept makes it
easy to include GPUs!



Real PyHEADTAIL...

As outlined, this concept is implemented in the actual beam
dynamics simulation tool PyHEADTAIL ↗.

Typical realistic simulations with self-consistent space charge
(direct particle-to-particle Coulomb interaction
 heavily memory-constrained):

Table: Full Timing for Space Charge Node1

hardware cores time [ms]

NVIDIA GPU Tesla P100 3584 53

NVIDIA GPU Tesla C2075 448 694

CPU Intel Xeon E5 1 1349

1timings based on 1×106 macro-particles on 256×256×100 grid

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 19/21

https://github.com/PyCOMPLETE/PyHEADTAIL


Usage Examples

beam dynamics with self-consistent beam fields HPC
−→ self-field driven a) resonances and b) coherent instabilities

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 20/21



Summary

Lessons learned:

separate physics from back-end implementation

utilise duck typing and numpy API to provide sandwich layer:
context management and function redirection

can introduce speed-up via specialised Cython etc., exploit
GPU via CuPy and PyCUDA

=⇒ back-end details transparent to users/high-level developers

... and, based on this concept, we could
enjoy the CPU / GPU cocktail again, and
again, and again2 ...

2in 2015 PyHEADTAIL introduced the context management for GPU usage, many library extensions
for more physics since then profited from running on the GPU!

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 21/21



Summary

Lessons learned:

separate physics from back-end implementation

utilise duck typing and numpy API to provide sandwich layer:
context management and function redirection

can introduce speed-up via specialised Cython etc., exploit
GPU via CuPy and PyCUDA

=⇒ back-end details transparent to users/high-level developers

... and, based on this concept, we could
enjoy the CPU / GPU cocktail again, and
again, and again2 ...

2in 2015 PyHEADTAIL introduced the context management for GPU usage, many library extensions
for more physics since then profited from running on the GPU!

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 21/21



Thank you for your attention!

Acknowledgements:

Stefan Hegglin, Riccardo de Maria, Martin Schwinzerl,

and collaborators from NVIDIA
(notably Andreas Hehn, Bai-Cheng (Ryan) Jeng, Miguel Martinez,

Vishal Mehta, Akira Naruse)



Timing Profile for Table 1

Line_profiler output on the P100 GPU for space charge node:
Timer unit: 1e-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py
Function: pic_solve at line 675

Line # Hits Time Per Hit % Time Line Contents
==============================================================

675 def pic_solve(self, *mp_coords, **kwargs):
676 ’’’Encapsulates the whole algorithm to determine the
677 fields of the particles on themselves.
678 The keyword argument charge=e is the charge per macro-particle.
679 Further keyword arguments are
680 mesh_indices=None, mesh_distances=None, mesh_weights=None .
681
682 The optional keyword arguments lower_bounds=False and
683 upper_bounds=False trigger the use of sorted_particles_to_mesh
684 which assumes the particles to be sorted by the node ids of the
685 mesh. (see further info there.)
686 This results in particle deposition to be 3.5x quicker and
687 mesh to particle interpolation to be 0.25x quicker.
688 (Timing for 1e6 particles and a 64x64x32 mesh includes sorting.)
689
690 The optional keyword argument state=None gets rho, phi and
691 mesh_e_fields assigned as members if provided.
692
693 Return as many interpolated fields per particle as
694 dimensions in mp_coords are given.
695 ’’’

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 22/21



Timing Profile for Table 1

Line_profiler output on the P100 GPU for space charge node:
Timer unit: 1e-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py
Function: pic_solve at line 675

Line # Hits Time Per Hit % Time Line Contents
==============================================================

696 1 2 2.0 0.0 charge = kwargs.pop("charge", e)
697 1 1 1.0 0.0 if not self.optimize_meshing_memory:
698 kwargs["mesh_indices"], kwargs["mesh_weights"] = \
699 self.get_meshing(kwargs, *mp_coords)
700
701 1 1 1.0 0.0 lower_bounds = kwargs.pop(’lower_bounds’, None)
702 1 1 1.0 0.0 upper_bounds = kwargs.pop(’upper_bounds’, None)
703
704 1 0 0.0 0.0 state = kwargs.pop(’state’, None)
705
706 1 1 1.0 0.0 if lower_bounds is not None and upper_bounds is not None:
707 mesh_charges = self.sorted_particles_to_mesh(
708 *mp_coords, charge=charge,
709 lower_bounds=lower_bounds, upper_bounds=upper_bounds
710 )
711 else: # particle arrays are not sorted by mesh node ids
712 1 1 1.0 0.0 mesh_charges = self.particles_to_mesh(
713 1 894 894.0 1.7 *mp_coords, charge=charge, **kwargs
714 )
715 1 139 139.0 0.3 rho = mesh_charges / self.mesh.volume_elem
716 1 4 4.0 0.0 if getattr(self.poissonsolver, ’is_25D’, False):

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 23/21



Timing Profile for Table 1

Line_profiler output on the P100 GPU for space charge node:
Timer unit: 1e-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py
Function: pic_solve at line 675

Line # Hits Time Per Hit % Time Line Contents
==============================================================

717 rho *= self.mesh.dz
718 1 1 1.0 0.0 if state: state.rho = rho.copy()
719
720 1 48153 48153.0 90.9 phi = self.poisson_solve(rho)
721 1 1 1.0 0.0 if state: state.phi = phi
722
723 1 1974 1974.0 3.7 mesh_e_fields = self.get_electric_fields(phi)
724 1 5 5.0 0.0 self._context.synchronize()
725 1 1 1.0 0.0 if state: state.mesh_e_fields = mesh_e_fields
726
727 1 3 3.0 0.0 mesh_fields_and_mp_coords = zip(list(mesh_e_fields), list(mp_coords))
728 1 175 175.0 0.3 fields = self.field_to_particles(*mesh_fields_and_mp_coords, **kwargs)
729 1 1607 1607.0 3.0 self._context.synchronize()
730 1 1 1.0 0.0 return fields

=⇒ ≈ 90% of time spent inside low-level cuFFT library
(hidden behind poisson_solve, uses > 95% there)

FAIR GmbH | GSI GmbH Adrian Oeftiger 16 Oct 2019 24/21


	Appendix

	anm1: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


