



# GPU Computing via Python's Context Management for Beam Dynamics Simulations

Adrian Oeftiger
16 Oct 2019, PyHEP 2019

#### **Motivation**





Numerical simulations on beam dynamics...

- follow **long-term** motion of beam particles in a synchrotron
- demand iterative development: frequent update of models
- require heavy number crunching
  - in particular for collective effects (particle-to-particle interaction)
- often rely on high-performance computing (HPC)

## **HPC and Python?**





## HPC vs. Python?!

Pure python:

 $\rightsquigarrow$  reputation of being slow

⇒ libraries and tools

## **HPC and Python?**











#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

#### Recipe:

translate into CUDA, ...



Figure: Mai Tai, postprohibition.com





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

- translate into CUDA, ...
- fiddling with GPU libraries



Figure: Mai Tai, postprohibition.com





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

- translate into CUDA, ...
- fiddling with GPU libraries
- achieve promising speed-ups



Figure: Mai Tai, postprohibition.com





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

- translate into CUDA, ...
- fiddling with GPU libraries
- achieve promising speed-ups
- this one impressive GPU cluster simulation



Figure: Mai Tai, postprohibition.com





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

- translate into CUDA, ...
- fiddling with GPU libraries
- achieve promising speed-ups
- this one impressive GPU cluster simulation
- ... maintenance kills the project



Figure: Mai Tai, postprohibition.com





#### Ingredients:

50k lines (smoothly working) CPU simulation code 5 dashes new numerical challenges few nice GPUs in the corner...

## maintenance problems...

- "oh this new feature.. yes, that's only in the CPU version for the moment.."
- "did we fix that physics bug also in the GPU version?"
- **...**
- typically at some point, GPU version lags behind CPU version
  - cluster simulation
  - ... maintenance kills the project

Figure: Mai Tai, postprohibition.com

# ... how to solve the maintenance problem?



# One implementation to rule them all





Lessons learned from past experiences:

- implement the physics once
- separate architecture-specific back-end from physics

Approaches to separate backend from physics:

- Python's duck typing
- templating ( ⇒ cf. next talk by M. Schwinzerl)
- just-in-time (JIT) compilation

# One implementation to rule them all





Lessons learned from past experiences:

- implement the physics once
- separate architecture-specific back-end from physics

#### Approaches to separate backend from physics:

- Python's duck typing
- templating ( ⇒ cf. next talk by M. Schwinzerl)
- just-in-time (JIT) compilation



## **Gains**





#### Separate back-end via duck typing =

- less code, less bugs, less maintenance
- more readable physics
- simplify code extensibility:
  - 1. user:

use fixed script with simulation library, adapt input values

- 2. "proactive" user:
  - easily extend simulation library with more physics
- developer:

maintain back-ends, optimise new extensions

## **Example of PyHEADTAIL**





Implemented this strategy in beam dynamics simulation tool PyHEADTAIL  $\nearrow$ .

 $\implies$  Let's play! Find a <u>concept jupyter notebook /</u> in this github repo /:



Figure: PyHEADTAIL concept jupyter notebook

### **Basics**





Implement the physics once – a synchrotron model consists of many consecutive *accelerator elements*:



Figure: arrange the synchrotron like duplo (image courtesy Kevin Li)

#### **Basics**





Implement the physics once – a synchrotron model consists of many consecutive *accelerator elements*:

#### accelerator element:

```
from abc import ABCMeta, abstractmethod

class Element(object):
    __metaclass__ = ABCMeta

    @abstractmethod
    def track(self, beam):
        pass
```

track method implements the physics for a given Element

## **Dynamical State**





The dynamical state of the physical system (in our case the beam particles) is stored in arrays (e.g. numpy):

## particles:

```
class Particles(object):
    def __init__(
        self, x, xp, y, yp, z, dp,
        intensity, gamma, circumference,
        charge=e, mass=m_p, *args, **kwargs):

# arrays, each entry = one macro-particle:
    self.x = x
    self.xp = xp
    (...)
```

## **Dynamical State**





The dynamical state of the physical system (in our case the beam particles) is stored in arrays (e.g. numpy):

## particles:

```
class Particles(object):
    (...)

def mean_x(self):
    return pm.mean(self.x) # imagine pm to be numpy for now
    (...)

def sigma_x(self):
    return pm.std(self.x)
    (...)
```

# **Example: Track through RF Cavity**





Example: a radio-frequency cavity



Figure: CERN Control Centre Animations, 09 "LHC accelerating cavities"

# **Example: Track through RF Cavity**





Example: a radio-frequency cavity

## simple accelerator element example:

- track doesn't know about the back-end!
- ⇒ just assume that pm.sin can deal with beam.z,dp array!

# **Context Management**





A typical simulation structure may look like so:

## simulation script:



- one\_turn\_map represents mapping through synchrotron
- each element therein transports particles to next element

# **Context Management**





A typical simulation structure may look like so:

## simulation script:

use context management to specify back-end (and corresponding libraries) for el.track(beam)





So what are the pm math library and CPU context manager?

## pm math library for the CPU:

```
import numpy as np

cpu_dict = dict(
    mean=np.mean,
    std=np.std,
    (...)
    sin=np.sin,
    exp=np.exp,
    (...)
)
```

■ cpu\_dict ~> redirects to numpy functions as default for CPU





So what are the pm math library and CPU context manager?

## pm math library for the CPU:

```
class pmath(object):
    default = cpu_dict
    def __init__(self):
        self.update(self.default)

    def update(self, func_dict):
        for func in func_dict:
            setattr(self, func, func_dict[func])

pm = pmath()
```

here, global state pm can update active function dictionary





So what are the pm math library and CPU context manager?

## CPU context manager:

```
class CPU(object):
    def __init__(self, beam):
        self.beam = beam
        self.to_move = ['x', 'xp', ...] # all arrays in Particles
```





So what are the pm math library and CPU context manager?

### CPU context manager:

```
class CPU(object):
   (\ldots)
   def __enter__(self):
       # "move" data to CPU RAM:
       for attr in self.to move:
          coord = getattr(self.beam, attr)
          transferred = np.asarray(coord)
          setattr(self.beam, attr, transferred)
       # redirect math library correctly to numpy:
       pm.update(cpu_dict)
       return self
   (...)
```





So what are the pm math library and CPU context manager?

## CPU context manager:

```
class CPU(object):
    (...)
    def __exit__(self, exc_type, exc_value, traceback):
        # potentially move data back to host

    # default math library
    pm.update(pm.default)
```





Remember the 3 types of interaction with the simulation library?

- 1. user:
  - use fixed script with simulation library, adapt input values
  - → can easily switch back-end via context (CPU \simple GPU)





Remember the 3 types of interaction with the simulation library?

- 1. user:
  - use fixed script with simulation library, adapt input values
    - → can easily switch back-end via context (CPU 
      → GPU)
- 2. "proactive" user:
  - easily extend simulation library with more physics
  - super easy to add more physics in RFCavity or add own implementation based on pm math functions
  - → no knowledge of back-end required!





Remember the 3 types of interaction with the simulation library?

- 1. user:
  - use fixed script with simulation library, adapt input values
  - → can easily switch back-end via context (CPU ~→ GPU)
- 2. "proactive" user:

easily extend simulation library with more physics

- super easy to add more physics in RFCavity or add own implementation based on pm math functions
- no knowledge of back-end required!
- developer:

maintain back-ends, optimise new extensions

- --- can add functionality in math function dictionaries behind pm
- can provide new dictionaries + context managers
  - (i.) use low-level languages (C, Cython, ...)
  - (ii.) exploit new architectures like the GPU!





Remember the 3 types of interaction with the simulation library?

- user:
  - use fixed script with simulation library, adapt input values
  - → can easily switch back-end via context (CPU ~→ GPU)

# Python's duck typing



- separate physics from back-end (based on numpy array API)
- implement physics once
- → can change back-end easily
- can provide more context managers addressing new back-ends
- (i.) use low-level languages (C, Cython, ...)
- (ii.) exploit new architectures like the GPU!

... as developers, we're now interested in how to speed things up, right?!

→ 1. new function dicts for pm

⇒ 2. new GPU context

#### **Collective Effects**





In the previously mentioned jupyter notebook /, you find more sophisticated Element types representing collective effects:

 e.g. particle-to-particle interaction via the metal vacuum tube ("wakefields / impedances")



Figure: source particle impacting trailing witness particle via wakefield (induced mirror current)

#### **Collective Effects**





In the previously mentioned jupyter notebook /, you find more sophisticated Element types representing collective effects:

- e.g. particle-to-particle interaction via the metal vacuum tube ("wakefields / impedances")
- imply calculating beam statistics, histogramming etc.
  - → heavy computations and memory-intensive algorithms

# Speed up with Cython!





⇒ Typically, timing bottleneck in a simulation boils down to one (statistics) function.

Suppose e.g. beam.sigma\_x() is the bad guy:

based on np.std via with previous cpu\_dict and CPU context:

```
In: %timeit with CPU(beam): beam.sigma_x()
Out: 100 loops, best of 3: 6.63 ms per loop
```

# Speed up with Cython!





⇒ Typically, timing bottleneck in a simulation boils down to one (statistics) function.

Suppose e.g. beam.sigma\_x() is the bad guy:

based on np.std via with previous cpu\_dict and CPU context:

```
In: %timeit with CPU(beam): beam.sigma_x()
Out: 100 loops, best of 3: 6.63 ms per loop
```

use Cython to speed up beam size computation by 5x:

```
In: %timeit with CPU_Cython(beam): beam.sigma_x()
Out: 1000 loops, best of 3: 1.37 ms per loop
```

#### What's that Cython Magic?





#### Cython low-level implementation:

```
%%cython --compile-args=-fopenmp --link-args=-fopenmp -n cython_functions
cimport libc.math as cmath
cimport cython.boundscheck
cimport cython.cdivision
@cython.boundscheck(False)
@cvthon.cdivision(True)
cpdef double cov(double[::1] a, double[::1] b):
   (\ldots)
   for i in xrange(n):
       a_sum += a[i] - shift_a
       b_sum += b[i] - shift_b
       ab\_sum += (a[i] - shift\_a) \cdot (b[i] - shift\_b)
   return (ab_sum - a_sum * b_sum / n) / (n - 1)
@cython.boundscheck(False)
@cython.cdivision(True)
cpdef double std(double[::1] u):
   return cmath.sqrt(cov(u, u))
```

#### What's that Cython Magic?





#### cython\_dict and CPU\_Cython

```
import cython_functions
cython_dict = cpu_dict.copy()
cython_dict.update(dict(
    cov=cython_functions.cov.
    std=cython_functions.std.
))
class CPU_Cython(CPU):
   def __enter__(self):
        # moving data as in parent CPU class
        (\ldots)
        # replace functions in general.math.pv
        pm.update_active_dict(cython_dict)
        return self
```

→ Full Cython implementation cf. jupyter notebook /

#### Thanks to numpy array API











(a) Cython on CPU

(b) CuPy on NVIDIA GPUs

(c) PyCUDA on NVIDIA GPUs

Figure: Python libraries with numpy array API

#### Based on duck typing approach:

- use other libraries implementing numpy array API to provide func\_dict rebindings and context managers
- completely transparent to users and "proactive" users extending the physics, just need to support
  - math functions sin, cos, exp, sqrt etc.
  - numpy array arithmetics: a += b \* c d\*\*2

# Example for CuPy





## gpu\_dict with CuPy

```
import cupy

gpu_dict = dict(
    mean=cupy.mean,
    std=cupy.std,
    (...)
    sin=cupy.sin,
    exp=cupy.exp,
    (...)
)
```

#### Example for CuPy





#### GPU context manager:

```
class GPU(object):
   (\ldots)
   def __enter__(self):
       # moving data to device
       for attr in self.to move:
          coord = getattr(self.beam, attr)
          transferred = cupy.asarray(coord)
          setattr(self.beam, attr, transferred)
       # replace functions in general.math.py
       pm.update_active_dict(gpu_dict)
       return self
   (...)
```

#### Example for CuPy





#### GPU context manager:

```
class GPU(object):
    (...)
    def __exit__(self):
        # moving data back to host
        for attr in self.to_move:
            coord = getattr(self.beam, attr)
            transferred = coord.get()
            setattr(self.beam, attr, transferred)
        pm.update_active_dict(pm._default_function_dict)
```

# this concept makes it easy to include GPUs!

## Real PyHEADTAIL...





As outlined, this concept is implemented in the actual beam dynamics simulation tool PyHEADTAIL  $\nearrow$ .

Typical realistic simulations with self-consistent space charge (direct particle-to-particle Coulomb interaction heavily memory-constrained):

Table: Full Timing for Space Charge Node<sup>1</sup>

| hardware               | cores | time [ms] |
|------------------------|-------|-----------|
| NVIDIA GPU Tesla P100  | 3584  | 53        |
| NVIDIA GPU Tesla C2075 | 448   | 694       |
| CPU Intel Xeon E5      | 1     | 1349      |

<sup>&</sup>lt;sup>1</sup>timings based on  $1 \times 10^6$  macro-particles on  $256 \times 256 \times 100$  grid

## **Usage Examples**





beam dynamics with self-consistent beam fields \infty HPC

self-field driven a) resonances and b) coherent instabilities FAIR GmbH | GSI GmbH

# **Summary**





#### Lessons learned:

- separate physics from back-end implementation
- utilise duck typing and numpy API to provide sandwich layer: context management and function redirection
- can introduce speed-up via specialised Cython etc., exploit GPU via CuPy and PyCUDA
- ⇒ back-end details transparent to users/high-level developers

# **Summary**





#### Lessons learned:

- separate physics from back-end implementation
- utilise duck typing and numpy API to provide sandwich layer: context management and function redirection
- can introduce speed-up via specialised Cython etc., exploit GPU via CuPy and PyCUDA
- back-end details transparent to users/high-level developers

... and, based on this concept, we could enjoy the CPU / GPU cocktail again, and again, and again<sup>2</sup> ...



<sup>&</sup>lt;sup>2</sup>in 2015 PyHEADTAIL introduced the context management for GPU usage, many library extensions for more physics since then profited from running on the GPU!

# Thank you for your attention!

#### **Acknowledgements:**

Stefan Hegglin, Riccardo de Maria, Martin Schwinzerl, and collaborators from NVIDIA (notably Andreas Hehn, Bai-Cheng (Ryan) Jeng, Miguel Martinez, Vishal Mehta, Akira Naruse)

#### **Timing Profile for Table 1**





#### Line\_profiler output on the P100 GPU for space charge node:

Timer unit: 1e-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py
Function: pic\_solve at line 675

| Line # | Hits | Time Per Hit % | Time L | Line Contents                                         |
|--------|------|----------------|--------|-------------------------------------------------------|
| ====== |      |                |        |                                                       |
| 675    |      |                |        | <pre>def pic_solve(self, *mp_coords, **kwargs):</pre> |
| 676    |      |                |        | "'Encapsulates the whole algorithm to determine the   |
| 677    |      |                |        | fields of the particles on themselves.                |
| 678    |      |                |        | The keyword argument charge=e is the charge per macro |
| 679    |      |                |        | Further keyword arguments are                         |
| 680    |      |                |        | mesh_indices=None, mesh_distances=None, mesh_weights= |
| 681    |      |                |        |                                                       |
| 682    |      |                |        | The optional keyword arguments lower_bounds=False and |
| 683    |      |                |        | upper_bounds=False trigger the use of sorted_particle |
| 684    |      |                |        | which assumes the particles to be sorted by the node  |
| 685    |      |                |        | mesh. (see further info there.)                       |
| 686    |      |                |        | This results in particle deposition to be 3.5x quicke |
| 687    |      |                |        | mesh to particle interpolation to be 0.25x quicker.   |
| 688    |      |                |        | (Timing for 1e6 particles and a 64x64x32 mesh include |
| 689    |      |                |        |                                                       |
| 690    |      |                |        | The optional keyword argument state=None gets rho, ph |
| 691    |      |                |        | mesh_e_fields assigned as members if provided.        |
| 692    |      |                |        |                                                       |
| 693    |      |                |        | Return as many interpolated fields per particle as    |
| 694    |      |                |        | dimensions in mp_coords are given.                    |
| 695    |      |                |        | ,,,                                                   |
|        |      |                |        |                                                       |

## **Timing Profile for Table 1**

Time Dow Hit





#### Line\_profiler output on the P100 GPU for space charge node:

Timer unit: 1e-06 s

Tino #

Total time: 0.052965 s File: PyPIC/GPU/pypic.py Function: pic\_solve at line 675

Ui+a

| Line # | Hits | Time | Per Hit | % Time | Line Contents                                              |
|--------|------|------|---------|--------|------------------------------------------------------------|
| 696    | 1    | 2    | 2.0     | 0.0    | charge = kwargs.pop("charge", e)                           |
| 697    | 1    | 1    | 1.0     | 0.0    | if not self.optimize_meshing_memory:                       |
| 698    |      |      |         |        | kwargs["mesh_indices"], kwargs["mesh_weights"] =           |
| 699    |      |      |         |        | self.get_meshing(kwargs, *mp_coords)                       |
| 700    |      |      |         |        | 8                                                          |
| 701    | 1    | 1    | 1.0     | 0.0    | <pre>lower_bounds = kwargs.pop('lower_bounds', None)</pre> |
| 702    | 1    | 1    | 1.0     | 0.0    | upper_bounds = kwargs.pop('upper_bounds', None)            |
| 703    |      |      |         |        |                                                            |
| 704    | 1    | 0    | 0.0     | 0.0    | <pre>state = kwargs.pop('state', None)</pre>               |
| 705    |      |      |         |        |                                                            |
| 706    | 1    | 1    | 1.0     | 0.0    | if lower_bounds is not None and upper_bounds is not N      |
| 707    |      |      |         |        | mesh_charges = self.sorted_particles_to_mesh(              |
| 708    |      |      |         |        | *mp_coords, charge=charge,                                 |
| 709    |      |      |         |        | lower_bounds=lower_bounds, upper_bounds=upper              |
| 710    |      |      |         |        | )                                                          |
| 711    |      |      |         |        | else: # particle arrays are not sorted by mesh node i      |
| 712    | 1    | 1    | 1.0     | 0.0    | mesh_charges = self.particles_to_mesh(                     |
| 713    | 1    | 894  | 894.0   | 1.7    | *mp_coords, charge=charge, **kwargs                        |
| 714    |      |      |         |        | )                                                          |
| 715    | 1    | 139  | 139.0   | 0.3    | rho = mesh_charges / self.mesh.volume_elem                 |
| 716    | 1    | 4    | 4.0     | 0.0    | if getattr(self.poissonsolver, 'is_25D', False):           |
|        |      |      |         |        |                                                            |

## **Timing Profile for Table 1**





#### Line\_profiler output on the P100 GPU for space charge node:

Timer unit: 1e-06 s

Total time: 0.052965 s
File: PyPIC/GPU/pypic.py

Function: pic\_solve at line 675

| Line # | Hits | Time  | Per Hit | % Time | Line Contents                                        |
|--------|------|-------|---------|--------|------------------------------------------------------|
| 717    |      |       |         |        | rho *= self.mesh.dz                                  |
| 718    | 1    | 1     | 1.0     | 0.0    | if state: state.rho = rho.copy()                     |
| 719    | 1    | 1     | 1.0     | 0.0    | II state: state:Ino - Ino.copy()                     |
| 720    | 1    | 48153 | 48153.0 | 90.9   | <pre>phi = self.poisson_solve(rho)</pre>             |
| 721    | 1    | 1     | 1.0     | 0.0    | if state: state.phi = phi                            |
| 722    |      |       |         |        | • •                                                  |
| 723    | 1    | 1974  | 1974.0  | 3.7    | mesh_e_fields = self.get_electric_fields(phi)        |
| 724    | 1    | 5     | 5.0     | 0.0    | selfcontext.synchronize()                            |
| 725    | 1    | 1     | 1.0     | 0.0    | if state: state.mesh_e_fields = mesh_e_fields        |
| 726    |      |       |         |        |                                                      |
| 727    | 1    | 3     | 3.0     | 0.0    | mesh_fields_and_mp_coords = zip(list(mesh_e_fields), |
| 728    | 1    | 175   | 175.0   | 0.3    | fields = self.field_to_particles(*mesh_fields_and_mp |
| 729    | 1    | 1607  | 1607.0  | 3.0    | selfcontext.synchronize()                            |
| 730    | 1    | 1     | 1.0     | 0.0    | return fields                                        |
|        |      |       |         |        |                                                      |

 $\Rightarrow \approx 90\%$  of time spent inside low-level cuFFT library (hidden behind poisson\_solve, uses > 95% there)