
Statistical Methods in the NPStat Package

Igor Volobouev

Texas Tech University

i.volobouev@ttu.edu

PyHEP 2019 Workshop, October 18 2019

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 1 / 8

Introduction into NPStat

NPStat is an acronym for “nonparametric statistics”.
Developed in C++, with python API created mainly by SWIG.
Implements a substantial number of nonparametric data analysis
algorithms. Some of these are not available anywhere else.

� Arbitrary-dimensional histogramming.
� Density estimation by OSDE, KDE, LOrPE, kNN. Estimation of

comparison densities and copula-based techniques.
� Local regression (polynomial, logistic, quantile, least trimmed squares).
� Univariate and multivariate nonparametric density interpolation (a.k.a.

template morphing).
� Unfolding (i.e., solution of inverse statistical problems) with

regularization by smoothing.
� Various supporting code: sample characterization, parametric density

modeling and fitting, copula modeling, generation of random numbers
(including QMC), numerical integration, root finding, persistence, etc.

Useful for HEP, as most of our distributions can only be derived by
simulations (GEANT). We want distributions but only get samples.
The package is hosted on Hepforge. See npstat.hepforge.org.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 2 / 8

https://npstat.hepforge.org

Statistical Concepts Pervading NPStat

Empirical density function (EDF): f̂EMP(x) = 1
n

∑n
i=1 δ(x − xi)

Bandwidth (h)

Filter degree (often maps one-to-one into kernel order)

Plug-in bandwidth selector

Cross-validation (LOO CV in particular)

Akaike information criterion: AIC = 2k − 2 ln(L̂)

Effective degrees of freedom: for linear regression, ŷ = Hy. We can
associate degrees of freedom with some measure of rank(H). For
non-linear regression, replace H with the error propagation matrix.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 3 / 8

Density Estimation

Orthogonal Series Density Estimation (OSDE):
f̂OSDE(x) = 1

b−a +
∑J

j=1 wj θ̂jφj(x), θ̂j = 1
n

∑n
i=1 φj(xi),

where {φk} is some basis orthonormal on [a, b].

Kernel Density Estimation (KDE): EDF is convolved with 1
hK
(x−y

h

)
obtaining f̂KDE(x) = 1

n

∑n
i=1

1
hK
(
x−xi
h

)
.

Local Orthogonal Polynomial Expansion (LOrPE):

f̂LOrPE(x) =
∑M

k=0 ck(x fit, h)Pk

(
x−x fit

h

)
,

In this expansion, polynomials are normalized locally:
1
h

∫ b
a Pj

(
x−x fit

h

)
Pk

(
x−x fit

h

)
K
(
x−x fit

h

)
dx = δjk . Then

ck(x fit, h) = 1
h

∫ b
a f̂EMP(x)Pk((x − x fit)/h)K ((x − x fit)/h)dx .

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 4 / 8

Local Regression

Local least squares: the idea is to minimize∑n
i=1

(
p(xi |c)−yi

σi

)2
K
(
xi−x fit

h

)
over the set of coefficients c at every

x fit. Then ŷ(x fit) = p(x fit|c).

Other local regression techniques (logistic, quantile, least trimmed
squares) are implemented in C++ but not yet ported to python.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 5 / 8

Persistence

NPStat persistence is based on “Geners”: geners.hepforge.org.
“Geners” is somewhat similar to boost.serialization but, like shelve,
it supports random access to stored objects.
You can use “Geners” as shelve on steroids:

� “Geners” archives can grow as large as your disk space allows.
� Compression and random access can be used simultaneously.
� Archives are accessible from either python or C++. Dual API NPStat

classes supporting “Geners” serialization mechanisms (arrays,
histograms, probability distributions, interpolation tables, filters, etc)
and various python objects that have direct C++ analogs (strings,
floats, regular precision ints, numpy arrays of certain types) can be
stored and retrieved using either python or C++ API.

� Anything that can be pickled can also be stored in “Geners” archives
for python-only use.

� Items in the archives can be searched for by name and/or by category
using regular expressions (C++ regex). Naturally, item metadata can
be examined without retrieving the item from the archive.

C++ streams under the hood, with a special compressible streambuf.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 6 / 8

https://geners.hepforge.org
http://www.boost.org/libs/serialization
https://docs.python.org/3/library/shelve.html
https://docs.python.org/3/library/shelve.html
https://en.cppreference.com/w/cpp/regex
https://en.cppreference.com/w/cpp/io
https://en.cppreference.com/w/cpp/io/basic_streambuf

Development Status

Currently, the python API is available for about 3/4 of the NPStat
functionality. The code is known to work on various Linux systems
(Ubuntu, CentOS, Scientific Linux) in combination with recent
anaconda python distributions.

Detailed API documentation is limited at the moment, but a
substantial number (26 and growing) of well-commented example
scripts illustrate various features and algorithms.

The source tarball can be downloaded from Hepforge (use the latest
version). Please read the INSTALL file, as you will need to install
prerequisites and to include a special “make python” step in order to
compile the python API. An example script which installs NPStat and
its dependencies into a user-owned directory on a typical Linux box is
posted on Indico.

Looking for collaborators experienced in distributing mixed
C++/python packages for Windows/macOS.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 7 / 8

https://www.anaconda.com/distribution/
https://npstat.hepforge.org/downloads/

Summary

NPStat python API provides access to a number of modern
nonparametric statistical techniques including several unique
algorithm implementations.

You might also like NPStat it for its histogramming tools and
persistence mechanism. Give them a spin. Request features and
contribute.

While we will never be able to compete with the R community in
terms of breadth of statistical methods available, python has other
advantages. A good collection of HEP-oriented python tools should
elevate us as the field from the depths of using C++ as the scripting
language for data analysis.

Igor Volobouev (TTU) Statistical Methods of NPStat PyHEP 2019 Workshop, October 18 2019 8 / 8

