
Histogramming

Henry Schreiner

October 17, 2019

Overview

• Part 1: Overview of histograms
▶ Components of a Histogram
▶ Histograms in Python
▶ Boost.Histogram in C++14
▶ Introducing: boost-histogram for Python
▶ Outlook, with hist and aghast

• Part 2: Hands-on with boost-histogram

1/26Henry Schreiner Histogramming October 17, 2019

What is a histogram?

• A histogram is a set of accumulators over data in ranges
▶ Usually continuous in Physics, could also be categories
▶ Accumulators often are a sum of values - can contain other components

• Input values are digitized by axes (AKA binnings)
▶ Categories
▶ Real values

▶ Variable sized bins (usually give edges)
▶ Regular binning (#bins, start, stop)

▶ May have special features (overflow, circular, etc.)

2/26Henry Schreiner Histogramming October 17, 2019

Histogram components

A ‘histogram is a
collection of 1+ axes
and an accumulator.

Performance
• Variable axis - list

of edges is most
general but
requires a sorted
search.

• Regular axis:
regular spacing

Regular axis

Variable axis
axes

Optional overflowOptional underflow

Accumulator

3/26Henry Schreiner Histogramming October 17, 2019

Histograms in (classic) PyROOT

• 1D Regular

h = ROOT.TH1D("", "", 10, 0, 1)
h.fillN(arr)

• 1D Variable

h = ROOT.TH1D("", "", (1,2,3,4,5,6))
h.fillN(arr)

• 2D Regular

h = ROOT.TH2D("", "", 10, 0, 1, 20, 0, 2)
h.fillN(arr)

4/26Henry Schreiner Histogramming October 17, 2019

Histogram in Numpy

• 1D Regular

bins, edges = np.histogram(arr, bins=10, range=(0,1))

• 1D Variable

bins, edges = np.histogram(arr, bins=(1,2,3,4,5,6))

• 2D regular

b, e1, e2 = np.histogram2d(x, y, bins=(10,20), range=((0,1),(0,2)))

5/26Henry Schreiner Histogramming October 17, 2019

Numpy Pros and Cons

Pros
• Comes with Numpy
• Good for interactive operations (auto

binning)
• Reasonably fast
• Density option, weight support too

Cons
• Manipulation of plain arrays
• One time fill
• 2D+ not optimized for regular binning
• 1D, 2D, and ND syntax variations
• MPL had to mimic: plt.hist

6/26Henry Schreiner Histogramming October 17, 2019

PyROOT Pros and Cons

Pros
• Full histogram object
• Iterative fill option
• Weights option
• Can track sum of weights too

Cons
• ROOT requirement (Conda-forge helps)
• Can be slow in Python (and C++)
• Poor interactive exploration
• Odd syntax, odd memory model
• Max 3D

7/26Henry Schreiner Histogramming October 17, 2019

Histogram Libraries

• Narrow focus: speed,
plotting, or language

• Many are abandoned
• Often issues with design,

backends, distribution
• No/little interaction

HistBook

Histogrammar

pygram11

rootplotlib

PyROOT

YODA

physt

fast-histogramqhist

Vaex

hdrhistogram

multihist

matplotlib-hep

pyhistogram

histogram

SimpleHist

paida

theodoregoetz

numpy

8/26Henry Schreiner Histogramming October 17, 2019

https://github.com/scikit-hep/histbook
https://histogrammar.org
https://pygram11.readthedocs.io
https://github.com/drdavis/rootplotlib
https://root.cern.ch/pyroot
https://yoda.hepforge.org
https://physt.readthedocs.io/en/latest/tutorial.html
https://github.com/astrofrog/fast-histogram
https://pypi.org/project/qhist/
https://vaex.io
https://pypi.org/project/hdrhistogram/
https://pypi.org/project/multihist/
https://pypi.org/project/matplotlib-hep/
https://pypi.org/project/pyhistogram/
https://pypi.org/project/histogram
https://pypi.org/project/SimpleHist/
https://pypi.org/project/paida/
https://github.com/theodoregoetz/histogram
https://www.numpy.org/

Physt

• Histograms as objects
• Pure Python - Dropped Python 2 this

year :)
• Very slow fills (slower than numpy)

hist = histogram(heights)
hist.plot(show_values=True)

• Powerful plotting
• Easy conversion to Pandas and many

more (ROOT through uproot)
• Special histograms, like polar histograms Figure 1: Physt example default plot

9/26Henry Schreiner Histogramming October 17, 2019

https://physt.readthedocs.io

Fast-Histogram

• Exactly like numpy, but faster
▶ C kernel
▶ Takes advantage of regular binning
▶ Can be 20-25x faster for 2D histograms
▶ Missing some features / combinations

Figure 2: Fast Histogram 2d comparison with
Numpy

10/26Henry Schreiner Histogramming October 17, 2019

https://github.com/astrofrog/fast-histogram

HistBook (archived)

The first Scikit-HEP library for histograms
• Designed for shared axis histogram collections
• Plotting with Vega-Light

Now deprecated and in archive mode, functionality may return in Hist (see next slides).

>>> array = np.random.normal(0, 1, 1000000)
>>> histogram = Hist(bin("data", 10, -5, 5))
>>> histogram.fill(data=array)
>>> histogram.step("data").to(canvas)

11/26Henry Schreiner Histogramming October 17, 2019

SciKit-HEP Histogramming plan

• boost-histogram: Fast filling and manipulation (core library)
• hist: Simple analysis frontend
• aghast: Conversions between histogram libraries
• UHI: Unified Histogram Indexing: A way for histograms to be indexed cross-library

(boost-histogram and hist to begin with)

Core histogramming libraries boost-histogram ROOT

Universal adaptor Aghast

Front ends (plotting, etc) hist mpl-hep physt others

12/26Henry Schreiner Histogramming October 17, 2019

Boost.Histogram C++14

• Multidimensional templated header-only histogram library: /boostorg/histogram
• Designed by Hans Dembinski, inspired by ROOT and GSL

Histogram
• Axes
• Storage

Axes types
• Regular, Circular
• Variable
• Integer
• Category

Storage (Static
Dynamic)Regular axis

Regular axis with
log transformaxes

Optional overflowOptional underflow

Accumulator
int, double,
unlimited, ...

13/26Henry Schreiner Histogramming October 17, 2019

https://github.com/boostorg/histogram

Boost.Histogram example

#include <boost/histogram.hpp>
#include <boost/histogram/ostream.hpp>
#include <random>

int main() {
namespace bh = boost::histogram;

auto hist = bh::make_histogram(bh::axis::regular<>{20, -3, 3});

std::default_random_engine eng;
std::normal_distribution<double> dist(0, 1);
for(int n = 0; n < 10'000; ++n)

hist(dist(eng));

std::cout << hist << std::endl;
return 0;

}

14/26Henry Schreiner Histogramming October 17, 2019

Boost.Histogram example (output)
histogram(regular(20, -3, 3, options=underflow | overflow))

+--
+
[-inf, -3) 9 | |
[-3, -2.7) 19 |= |
[-2.7, -2.4) 36 |== |
[-2.4, -2.1) 110 |===== |
[-2.1, -1.8) 191 |========= |
[-1.8, -1.5) 275 |============= |
[-1.5, -1.2) 518 |========================= |
[-1.2, -0.9) 644 |=============================== |
[-0.9, -0.6) 914 |== |
[-0.6, -0.3) 1107 |=== |
[-0.3, 0) 1183 |=== |
[0, 0.3) 1185 |=== |
[0.3, 0.6) 1120 |== |
[0.6, 0.9) 874 |== |
[0.9, 1.2) 663 |================================ |
[1.2, 1.5) 491 |======================== |
[1.5, 1.8) 322 |=============== |
[1.8, 2.1) 172 |======== |
[2.1, 2.4) 79 |==== |
[2.4, 2.7) 38 |== |
[2.7, 3) 28 |= |
[3, inf) 22 |= |

+--
+

15/26Henry Schreiner Histogramming October 17, 2019

boost-histogram: Python bindings

Design
• A histogram should be an object
• Manipulation and plotting should be easy

Performance
• Fast filling
• Compiled composable manipulations

Flexibility
• Axes options: sparse, growing, labels
• Storage: integers, weights, errors…

Distribution
• Easy to use anywhere, pip or conda
• Should have wheels, be easy to build, etc.

16/26Henry Schreiner Histogramming October 17, 2019

Intro to the Python bindings

• Boost.Histogram developed with Python in mind
• Original bindings based on Boost::Python

▶ Hard to build and distribute
▶ Somewhat limited

• New bindings: /scikit-hep/boost-histogram
▶ 0-dependency build (C++14 only)
▶ State-of-the-art PyBind11

Design Flexibility Speed Distribution

17/26Henry Schreiner Histogramming October 17, 2019

https://github.com/scikit-hep/boost-histogram

Design

• 500+ unit tests run on Azure on Linux, macOS, and Windows

Resembles the original Boost.Histogram where possible, with changes where needed for Python
performance and idioms.

C++14
#include <boost/histogram.hpp>
namespace bh = boost::histogram;

auto hist = bh::make_histogram(
bh::axis::regular<>{2, 0, 1, "x"},
bh::axis::regular<>{4, 0, 1, "y"});

hist(.2, .3); // Fill will also be
hist(.4, .5); // availble in 1.7.2
hist(.3, .2);

Python
import boost.histogram as bh

hist = bh.histogram(
bh.axis.regular(2, 0, 1, metadata="x"),
bh.axis.regular(4, 0, 1, metadata="y"))

hist.fill(
[.2, .4, .3],
[.3, .5, .2])

18/26Henry Schreiner Histogramming October 17, 2019

https://www.boost.org/doc/libs/1_71_0/libs/histogram/doc/html/index.html

Design: Manipulations

Combine two histograms
hist1 + hist2

Scale a histogram
hist * 2.0

Sum a histogram contents
hist.sum()

Access an axis
ax = hist.axis(0)
ax.edges # The edges array
ax.centers # Centers of bins
ax.widths # Width of each bin

Fill 2D histogram with values or arrays
hist.fill(x, y)

Convert contents to Numpy array
hist.view()

Convert to Numpy style histogram tuple
hist.to_numpy()

Pickle supported (multiprocessing)
pickle.dumps(hist, -1)

Copy/deepcopy supported
hist2 = copy.deepcopy(hist)

19/26Henry Schreiner Histogramming October 17, 2019

Unified Histogram Indexing (UHI)

The language here (bh.loc, etc) is defined in such a way that any library can provide them -
“Unified”.

Access

v = h[b] # Returns bin contents, indexed by bin number
v = h[bh.loc(b)] # Returns the bin containing the value
v = h[bh.underflow] # Underflow and overflow can be accessed with special tags

Setting

h[b] = v
h[bh.loc(b)] = v
h[bh.underflow] = v

20/26Henry Schreiner Histogramming October 17, 2019

Unified Histogram Indexing (UHI) (2)

h == h[:] # Slice over everything
h2 = h[a:b] # Slice of histogram (includes flow bins)
h2 = h[:b] # Leaving out endpoints is okay
h2 = h[bh.loc(v):] # Slices can be in data coordinates, too
h2 = h[::bh.project] # Sum an axis (name may change)
h2 = h[::bh.rebin(2)] # Modification operations (rebin)
h2 = h[a:b:bh.rebin(2)] # Modifications can combine with slices
h2 = h[a:b, ...] # Ellipsis work just like normal numpy

• Docs are here
• Description may move to a new repository

21/26Henry Schreiner Histogramming October 17, 2019

https://boost-histogram.readthedocs.io/en/latest/usage/indexing.html

Performance

• Factor of 2 faster than 1D regular binning in Numpy 1.17
▶ Currently no specialization, just a 1D regular fill
▶ Could be optimized further

• Factor of 6-10 faster than 2D regular binning Numpy

22/26Henry Schreiner Histogramming October 17, 2019

Distribution

• We must provide excellent distribution.
▶ If anyone writes pip install boost-histogram and it fails, we have failed.

• Docker ManyLinux1 GCC 9.2: /scikit-hep/manylinuxgcc
• Used in /scikit-hep/iMinuit, see /scikit-hep/azure-wheel-helpers

Wheels
• manylinux1 32 and 64 bit, Py 2.7 &

3.5–3.7
• manylinux2010 64 bit, Py 2.7 & 3.5–3.8
• macOS 10.9+ 64 bit, Py 2.7 & 3.6–3.8
• Windows 32 and 64 bit, Py 2.7 & 3.6–3.7

Source
• SDist
• Build directly from GitHub

Conda
• conda-forge package planned

python -m pip install boost-histogram
OR git+https://github.com/scikit-hep/boost-histogram.git@develop

23/26Henry Schreiner Histogramming October 17, 2019

https://github.com/scikit-hep/manylinuxgcc
https://github.com/scikit-hep/iMinuit
https://github.com/scikit-hep/azure-wheel-helpers

Hist

hist is the ‘wrapper’ piece that does plotting and interacts with the rest of the ecosystem.

Plans
• Easy plotting adaptors (mpl-hep)
• Serialization formats via Aghast (ROOT, HDF5)
• Auto-multithreading
• Statistical functions (Like TEfficiency)
• Multihistograms (HistBook)
• Interaction with fitters (ZFit, GooFit, etc)
• Bayesian Blocks algorithm from SciKit-HEP
• Command line histograms for stream of numbers

Call for contributions
• What do you need?
• What do you want?
• What would you like?

Join in the development! This
should combine the best features
of other packages.

24/26Henry Schreiner Histogramming October 17, 2019

Aghast

Aghast is a histogramming library that does not fill histograms
and does not plot them.

• A memory format for histograms, like Apache Arrow
• Converts to and from other libraries
• Uses flatbuffers to hold histograms
• Indexing ideas inspired the UHI

Binnings
IntegerBinning • RegularBinning • HexagonalBinning • EdgesBinning • IrregularBinning •
CategoryBinning • SparseRegularBinning • FractionBinning • PredicateBinning •
VariationBinning

25/26Henry Schreiner Histogramming October 17, 2019

End of part 1

Now, we will go hands on with the first beta of boost-histogram!

Support
• Supported by IRIS-HEP, NSF OAC-1836650

26/26Henry Schreiner Histogramming October 17, 2019

http://iris-hep.org
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836650

