=) PRINCETON (g irs
UNIVERSITY hep

Awkward 1.0

Jim Pivarski

Princeton University — IRIS-HEP

October 17, 2019

On Scientific Linux, uproot/awkward/coffea is mainstream

Scientific Linux only (physicists)

o

© 1034 — numpy

9])

> —— scipy

o 11— pandas

f -

'g 10 —— matplotlib

€ —— uproot

= 10! 4 — awkward

2 —— coffea

m

= 1004

(©

°

)

4_‘3 10-1 4

%]

£

Iy

‘a 1072 T T T T T T T T T T T
,LQ'\?) ,LQ'\% ,Lg‘\b ,Lg'\‘b ,LQ\() ,LQ'\ 'LQ{\ 0’\1 ,LQ\% ,LQ'\ ,LQ\% ,LQ'XO" ,LQ'\Q' Q\q

oY ce® w© V;\aﬂ ce® W W X AR & w© V’\a\; ce®

But not outside of particle physics, obviously

Linux (not just physicists)

[

g 10°{ —— numpy

9]) e

Z 105 — scipy e -

o —— pandas e

'g 104 4 —— matplotlib S ——t T

£ 107 —— tensorflow

- —— scikit-learn A

2 1024 — torch) ~

m —— uproot

_§‘ 10! awkward "“\

E 1004 — iminuit

o —— coffea

2107 4

a

‘21072 T T T T — T T T T T T T T
SR\ R R T A M o NSRS\ N
v ik ‘\’L v P (\’L v v (\'L v > Q’L v v

Q) ce® & Wl ce® X W X @ Wl ce® & Wl ce®

But not outside of particle physics, obviously

MacOS (not just physicists)

[

g 10°1 — numpy

9])

5 105~ scpy

o —— pandas

C

S 10* { —— matplotlib
o

£ 103 —— tensorflow
- —— scikit-learn
g 102 { — torch

m A uproot
_§‘ 10° 4 awkward
E 1004 — iminuit

© —— coffea
2107 4

o

‘21072 T

10@ 1‘& 10\’6
>y ce® WWe

But not outside of particle physics, obviously

Windows (not just physicists)

[

g 10°3 — numpy

9])

& 100] s

o —— pandas

f

3 104 { —— matplotlib

IS 103 1 —— tensorflow

- —— scikit-learn

2 1024 — torch

m A uproot

_§‘ 10° 1 awkward

E 1004 — iminuit

k) —— coffea

2107 4

Iy

‘a 1072 T T T T — T T T T T T T T
N I) Sl M M o e o oW
v ik ‘\’L v P (\’L v (\'L v > Q’L v

>y 6?,9 @' V;\a‘% c)eQ o' W (9?,9 \o \]\6‘3 5?,9 o' V]\’0‘5 c)eQ

. . . BE
Uproot/Awkward maintainance is pretty much constant ' \J

180
160 { Number of issues number of new users 2000 1 humber of comments
" d 100 1 filing their first issue (issues & PRs)
1401 proot closed 17501
120 | 80 1 1500 A
100 4 60 - 1250 4
J 1000 A
80 awkward-array
60 - 40 750 -
40 1 500
uprootfmethods 20 A
201 250 -
0 T T T T T T 0 T T T T T T 0 T T T T T T
A A A% A% A9 W9 WO 1 A W® 1®
0»\’\ ’LQ‘\'% ’LQ’\% ’LQX% 10\9 rLqu 'LQXQ ,LQX ,LQ’\ oY ,LQ'\« ,LQ’\ ,LQ\« ,LQ'\« ,10'\ ,LQ\ ,Lg'\« ,LQ\ ,LQ\,Q' 10\9 ’LQ\Q
o2 T e TR Tt el Tee? o2 o el Tee® Tt e Tee? o2? ot e Tge® Tt g Tee?

180
160 1 number of issues
—— uproot opened
1407 uproot closed
120 A
100 A
801 awkward-array
60
40 4
uprootfmethods
20 A
0 T T T

0»\"\ ’LQ‘\'% ’2,0\% ’),0\‘% ’LO‘\'Q 10\9 10'\9

62® o™ (oY TR T\ o el

number of issues per bin

N
w
1

N
o
1

=
w
1

=
o
1

w
1

0-r

T T T T
min hour day month year
logarithmic issue response time

number of issues per bin

100 A

80

60 -

40 4

20 A

0 +—T—T—T—T T
0O 1 2 3 4 5 6 7

linear issue response time (days)

. . . BE
Uproot/Awkward maintainance is pretty much constant ' \J

180
160 { Number of issues 30 4 [
—— uproot opened 100 A
1409 ___ uproot closed < 25 £
120 A 8 E{ 80
n 20 A
100 A e o
80 | a 2 60
awkward-array ‘5 157 s
60 - g o
Qo 40 A
40 4 § 10 A g
uprootfmethods <
20 1 51 201
0 T T T T T T
0-r T T T T 0 T T T T T T T
ov! 10\%10\% qp\% 10‘9 753\9 7,0\9 min hour day month year 01 2 3 4 5 6 7
c,?f‘) \’6“ @\3‘! 569 \’6“ @\3\) 66(" logarithmic issue response time linear issue response time (days)

The problem with GitHub issues is that once closed, they disappear.

; .. =
Let's use StackOverflow (like most non-HEP software communities) &

Questions

If you have a question about how to use uproot that is not answered in the document below, | recommend asking your
question on StackOverflow with the [uproot] tag. (I get notified of questions with this tag.)

A
=" stackoverflow

If you believe you have found a bug in uproot, post it on the GitHub issues tab.

Tutorial

Run this tutorial on Binder.
Tutorial contents:

« Introduction

« What is uproot?

« Exploring a file
o Compressed objects in ROOT files
o Exploring a TTree
o Some terminology

« Reading arrays from a TTree 5/30

No, seriously, do it now.

= S

stackoverflow Products Customers Use cases

Create your Stack Overflow account. It's free
and only takes a minute.

G sign up with Google
Sign up with Facebook

Display name
Email

Password

Passwords must contain at least eight characters,
including at least 1 letter and 1 number

Optin to receive occasional product)
updates, user research invitations,
company announcements, and digests.

Future of Uproot and Awkward

7/30

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.

» Bugs will be fixed.

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.
» Bugs will be fixed.
» Uproot will keep ahead of changes in ROOT 1/0.

(Only one change in ROOT /0 in uproot's two-year existence: TIOFeatures.)

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.
» Bugs will be fixed.
» Uproot will keep ahead of changes in ROOT 1/0.

(Only one change in ROOT /0 in uproot's two-year existence: TIOFeatures.)

» ROOT's future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

30

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.
» Bugs will be fixed.
» Uproot will keep ahead of changes in ROOT 1/0.

(Only one change in ROOT /0 in uproot's two-year existence: TIOFeatures.)

» ROOT's future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

» “Uproot 4.0" will be a transition to Awkward 1.0.

Future of Uproot: maintenance

» T Tree-writing was the last major feature planned.
» Bugs will be fixed.
» Uproot will keep ahead of changes in ROOT 1/0.

(Only one change in ROOT /0 in uproot's two-year existence: TIOFeatures.)

» ROOT's future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

» “Uproot 4.0" will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

» There are limits to cleverness: many edge cases not handled.

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

» There are limits to cleverness: many edge cases not handled.

» Most frequent bugs are due to Numpy usage (e.g. numpy .max ([])).

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

» There are limits to cleverness: many edge cases not handled.

» Most frequent bugs are due to Numpy usage (e.g. numpy .max ([])).

» Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.
» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

» There are limits to cleverness: many edge cases not handled.

» Most frequent bugs are due to Numpy usage (e.g. numpy .max ([])).

» Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

» Feedback from users revealed some interface mistakes.

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.
» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

» There are limits to cleverness: many edge cases not handled.

» Most frequent bugs are due to Numpy usage (e.g. numpy .max ([])).

» Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

» Feedback from users revealed some interface mistakes.

» a.cross (b) versus awkward.cross (a, b)

Future of Awkward: consolidation

» Awkward has been tested “in the wild” for a year now.

» Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.
» There are limits to cleverness: many edge cases not handled.

» Most frequent bugs are due to Numpy usage (e.g. numpy .max ([])).

» Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

» Feedback from users revealed some interface mistakes.

» a.cross (b) versus awkward.cross (a, b)

» User-visible JaggedArray versus ChunkedArray (JaggedArray)

Awkward 1.0

Awkward 1.0 is a rewrite, improving structure and interface

O scikit-hep / awkward-1.0 @Unwatch~ 3 | kSar 2 YFork 0
<> Code Issues 0 Pull requests 1 Actions Projects 0 Wiki Security Insights Settings
Development of awkward 1.0, to replace scikit-hep/awkward-array in 2020. Edit

Manage topics

D 42 commits 2 branches © 12 releases 22 1 contributor & BSD-3-Clause
® C++ 56.0% @ Python 42.9% Other 1.1%
Branch: master = New pull request Create new file Upload files | Find File
@ ipivarski Update VERSION_INFO + Latest commit ceszece 2 hours ago
il ci Try to fix manylinuxl deployment again. 6 days ago
B awkward1l Access ListArray::gefitem in Numba. (#12) 3 hours ago
B docs Deep __getitem__ in C++. (#8) 11 days ago
Bl include/awkward Access ListArray::getitem in Numba. (#12) 3 hours ago
I pybind1l @ e43elcc Include pybind1l as a submodule. 2 months ago
[E Access ListArray::getitem in Numba. (#12) 3 hours ago
[studies Deep __ getitem__ in C++. (#8) 11 days ago

[l tesis Access ListArray::getitem in Numba. (#12) 3 hours ago 11/30

Layered architecture &

Layer 1: Python user interface: a single
awkward.Array class.

Single Array class in Python

7

pybind11l of C++

!

C++ classes Numba models

inherits from Pandas's ExtensionDtype
registered as a type in Numba
lazy versions may be wrapped as Dask

Layer 2: Structure classes, “layout”
(e.g. ListArray/RecordArray).

Layer 3: Memory management, array
allocation and ownership; reference
counting.

Layer 4: Implementations, where we
write for loops. The only layer that
needs to be Opt|m|Zed for speed operates on CPU pointers operates on GPU pointers

launches kernels internally

CPU functions GPU functions

12 /30

Layer 2: pybindll of C++

import numpy

EAN
content = awkwardl.layout.NumpyArray (numpy.arange (10)*1.1) '
listA = awkwardl.layout.ListOffsetArray32(

awkwardl.layout.Index32 (numpy.array ([0, 3, 3, 5, 6, 101)),

content)
listB = awkwardl.layout.ListOffsetArray32(C#+ classes Numba models
NS 7A

awkwardl.layout.Index32 (numpy.array ([0, 3, 4, 4, 51)),
listA) extern "C"

CPU functions GPU functions

13/30

Layer 2: pybindll of C++

import numpy

EAY

content = awkwardl.layout.NumpyArray (numpy.arange (10)*1.1)

listA = awkwardl.layout.ListOffsetArray32(
X

awkwardl.layout.Index32 (numpy.array ([0, 3, 3, 5, 6, 101)),
content)

listB = awkwardl.layout.ListOffsetArray32(C#+ classes Numba models
A 7A

awkwardl.layout.Index32 (numpy.array ([0, 3, 4, 4, 51)),
listA) extern "C"

print (awkwardl.tolist (1istA))
CPU functions GPU functions

[(fo.o, 1.1, 2.21, [1, [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

13/30

Layer 2: pybindll of C++

import numpy
import awkwardl
EAY
content = awkwardl.layout.NumpyArray (numpy.arange (10)+1.1) i
listA = awkwardl.layout.ListOffsetArray32 (
awkwardl.layout.Index32 (numpy.array ([0, 3, 3, 5, 6, 10]1)),

content)
listB = awkwardl.layout.ListOffsetArray32(C#+ classes Numba models
A+ 7

awkwardl.layout.Index32 (numpy.array ([0, 3, 4, 4, 51)),
listA) extern "C"

print (awkwardl.tolist (1istA))
CPU functions GPU functions

[(fo.o, 1.1, 2.21, [1, [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print (awkwardl.tolist (1istB))
rrro.o, 1.1, 2.231, I[1, (3.3, 4.411, [[5.511, (1, [l6.6, 7.7, 8.8, 9.9111]

13/30

Layer 2: pybindll of C++

import numpy
import awkwardl
EAY
content = awkwardl.layout.NumpyArray (numpy.arange (10)+1.1) i
listA = awkwardl.layout.ListOffsetArray32 (
awkwardl.layout.Index32 (numpy.array ([0, 3, 3, 5, 6, 10]1)),

content)
listB = awkwardl.layout.ListOffsetArray32(C#+ classes Numba models
A+ 7

awkwardl.layout.Index32 (numpy.array ([0, 3, 4, 4, 51)),
listA) extern "C"

print (awkwardl.tolist (1istA))
CPU functions GPU functions

[(fo.o, 1.1, 2.21, [1, [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print (awkwardl.tolist (1istB))
rrro.o, 1.1, 2.231, I[1, (3.3, 4.411, [[5.511, (1, [l6.6, 7.7, 8.8, 9.9111]
print (awkwardl.tolist (1istB[:, ::-1, ::2]))

rres3.s1, 1, (0.0, 2.211, [[(5.511, (1, [[6.6, 8.8]1]] (old awkward-array can't do this)

13/30

Layer 2: pybindll of C++

import numpy

EAY

content = awkwardl.layout.NumpyArray (numpy.arange (10)*1.1)

listA = awkwardl.layout.ListOffsetArray32(
X

awkwardl.layout.Index32 (numpy.array ([0, 3, 3, 5, 6, 101)),
content)

listB = awkwardl.layout.ListOffsetArray32(C#+ classes Numba models
A+ 7

awkwardl.layout.Index32 (numpy.array ([0, 3, 4, 4, 51)),
listA) extern "C"

print (awkwardl.tolist (1istA))
CPU functions GPU functions

[(fo.o, 1.1, 2.21, [1, [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print (awkwardl.tolist (1istB))

(reo.o, 1.1, 2.21, (1, (3.3, 4.4]], [[5.51], [I], [[6.6, 7.7, 8.8, 9.9]]]

print (awkwardl.tolist (1istB[:, ::-1, ::2]))

rees.3i, 11, ro.o, 2.211, [[5.511, [1, [[6.6, 8.8]1]] (old awkward-array can't do this)
print (awkwardl.tolist (1istB[([O, O, -1, -11, [0, -1, O, =11, 1:-11]))

rr2.231, 1, (7.7, 8.81, (7.7, 8.8]] (mixing fancy and basic indexing)
13/30

Layer 3: C++ classes

Index32 offsets(6);

offsets.ptr () .get (= 0; offsets.ptr().get () [3] = 5;

) [0]
offsets.ptr().get () [1] = 3; offsets.ptr().get () [4] = 6; N
) [2] i
auto raw = new RawArrayOf<double> (Identity::none(), 10);

offsets.ptr () .get (offsets.ptr().get () [5] = 10;
A
for (int i = 0; i < 10; i++) {
*raw->borrow (i) = 1.1x1i; C++ classes Numba models
} A 7A

std: :shared_ptr<Content> content (raw);
std: :shared_ptr<Content> list (new ListOffsetArray32(Identity::none(),

offsets, content)); | cpuyfunctions GPU functions

Il
w
~

extern "C"

14 /30

Layer 3: C++ classes

Index32 offsets(6);

offsets.ptr().get () [0] = O; offsets.ptr().get () [3] = 5;
offsets.ptr().get () [1] = 3; offsets.ptr().get () [4] = 6; N
offsets.ptr().get()[2] = 3; offsets.ptr().get () [5] = 10; g

auto raw = new RawArrayOf<double> (Identity::none(), 10);

A
for (int i = 0; i < 10; i++) {
*raw->borrow (i) = 1.1x1i; C++ classes Numba models
} o~ 7A

std: :shared_ptr<Content> content (raw);
std: :shared_ptr<Content> list (new ListOffsetArray32(Identity::none(),

offsets, content)); | ceymunctions GPU functions

"rro, 1.1, 2.21, [1, [3.3, 4.4], [5.5], (6.6, 7.7, 8.8, 9.9]]"

extern "C"

tostring(list);

tostring(list.get () ->getitem_range (1, -1));
"rrl, 3.3, 4.41, [5.5]1"

tostring(list.get () —>getitem(slice (new SliceRange (2, Slice::none(), Slice::none()),
new SliceRange(Slice::none(), Slice::none(), -1))));

"[[4.4, 3.31, [5.5], [9.9, 8.8, 7.7, 6.6]]1"
14 /30

Layer 3: Numba models

import numba

@numba. jit (nopython=True)
def iterate(array):
out = 0.0
for subarray in array:
for subsubarray in subarray:
for item in subsubarray:
out += item
return out

print (iterate (1listB))
49.5

IHEEEHHEIIIEI
EAY
for loops in a Numba-

A

compiled function are

just as fast as C or C++ C#+ classes Numba models
A~ 7A

extern "C"

CPU functions GPU functions

15/30

Layer 3: Numba models

import numba

@numba. jit (nopython=True)
def iterate(array):
out = 0.0
for subarray in array:
for subsubarray in subarray:
for item in subsubarray:
out += item
return out

print (iterate (1listB))
49.5
@numba. jit (nopython=True)

def slices(array):
return (arrayl[:, ::-1, ::2],

arrayl[[0, O, -1, -11, [O,

one, two = slices(listB)

Single Array class in Python

EAY

pybind11 of C++
A
C++ classes Numba models
A 7A

extern "C"

CPU functions GPU functions

for loops in a Numba-
compiled function are

just as fast as C or C++

same slicing works in the compiled environment

0, -11, 1:-11)

print (awkwardl.tolist (one), awkwardl.tolist (two))

(ees.3r, 1, (0.0, 2.2311, [([5.5]11, [1,

(er.13, 1, 7.7, 8.8], [7.7, 8.8]]

[[6.6, 8.811]1] (same results as before)

15/30

Layer 4: CPU functions

Single Array class in Python

EAY

for (int64_t i = 0; i < lenstarts; i++) |

int64_t length = fromstops[stopsoffset + i] -
fromstarts[startsoffset + 1i];

A
C++ classes Numba models
int64_t regular_at = at; e —y

if (regular_at < 0) {
regular_at += length;
}

CPU functions GPU functions
if (! (0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);

}
tocarry[i]

extern "C"

fromstarts[startsoffset + i] + regular_at;

}

return success();

16 /30

Layer 4: CPU functions

template <typename C, typename T>

Error awkward_listarray_getitem next_at (T« tocarry, const Cx fromstarts,
const Cx fromstops, int64_t lenstarts,

int64_t startsoffset, AN
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) |

int64_t length = fromstops[stopsoffset + i] -

A
fromstarts[startsoffset + 1i]; C++ classes Numba models
int64_t regular_at = at; A~ 7A

if (regular_at < 0) {
regular_at += length;

} CPU functions GPU functions
if (! (0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);

extern "C"

}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;
}

return success();

16 /30

Layer 4: CPU functions

template <typename C, typename T>

Error awkward_listarray_getitem next_at (T« tocarry, const Cx fromstarts,
const Cx fromstops, int64_t lenstarts,

int64_t startsoffset, AN
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) |

int64_t length = fromstops[stopsoffset + i] -

A
fromstarts[startsoffset + 1i]; C++ classes Numba models
int64_t regular_at = at; A~ 7A

if (regular_at < 0) {
regular_at += length;

} CPU functions GPU functions
if (! (0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);

extern "C"

}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;
}
return success();
}
extern "C" {
Error awkward_listarray32_getitem next_at_64 (int64_t«+ tocarry, const int32 t» fromstarts,
const int32_t+ fromstops, int64_t lenstarts, int64_t startsoffset,

int64_t stopsoffset, int64_t at); 16 /30

Layer 3: C++ classes

if (head.get () == nullptr) ({

return Shallow_copy 0

} N

else if (SliceAtx at = dynamic_cast<SliceAt*>(head.get())) {

std: :shared_ptr<SliceItem> nexthead = tail.head(); A
Slice nexttail = tail.tail();
Index64 nextcarry (lenstarts); C++ classes Numba models
Error err = awkward_listarray32_getitem_next_at_64 (~ 7A
nextcarry.ptr() .get (), oxtern "Cr
starts_.ptr().get (),
stops_.ptr().get (), CPU functions GPU functions
lenstarts,
starts_.offset (),
stops_.offset (),
at->at ());
util::handle_error (err, classname(), id_.get());
std::shared_ptr<Content> nextcontent = content_.get ()->carry (nextcarry);
return nextcontent.get () —>getitem_next (nexthead, nexttail, advanced);

else if (SliceRangex range = dynamic_cast<SliceRangex> (head.get ())) {

17 /30

Layer 3: Numba models

if isinstance (headtpe, numba.types.Integer) :

if arraytpe.bitwidth == 64:

kernel = cpu.kernels.awkward_listarray64_getitem_next_at_64 A
elif arraytpe.bitwidth == 32:

kernel = cpu.kernels.awkward_listarray32_getitem_next_at_64
A

nextcarry = util.newindex64 (context, builder, numba.int64, lenstarts)

util.call (context, builder, kernel, C++ classes Numba models

(util.arrayptr (context, builder, util.index64tpe, nextcarry), 33 7A
util.arrayptr (context, builder, arraytpe.startstpe, proxyin.starts),

extern "C"

util.arrayptr (context, builder, arraytpe.stopstpe, proxyin.stops),

lenstarts, CPU functions GPU functions

context.get_constant (numba.int64, 0),
context.get_constant (numba.int64, 0),
util.cast (context, builder, headtpe, numba.int64, headval)),

"in {}, indexing error".format (arraytpe.shortname))
nextcontenttpe = arraytpe.contenttpe.carry ()
nextcontentval = arraytpe.contenttpe.lower_carry(context, builder, arraytpe.contenttpe,

util.index64tpe, proxyin.content, nextcarry)
return nextcontenttpe.lower_getitem_next (context, builder, nextcontenttpe, tailtpe,
nextcontentval, tailval, advanced)
elif isinstance (headtpe, numba.types.SliceType) :

/30

Still following the array-at-a-time approach

Slow Python has been replaced by slow C++ (dynamic dispatch, runtime type-checks).

But only O(depth of type) operations are performed in C++; O(number of events)
operations are performed in single-pass cpu-functions.

A
S S
c” >bp E
rzl ! I'2i

record- column- T,
oriented oriented

19/30

Deliverables s

Compilable by CMake (for pure C++) or python setup.py install.

cpu-kernels.so suite of Layer 4 functions with an extern "C" interface, which
can be accessed by any language (notably C++ and Numba).

libawkward.so library of Layer 3 classes that can be used in any C++ project.
awkwardl Python library: Layer 1 (user interface), Layer 2 (extension

module), and Layer 3 (Numba extensions, if Numba is installed).

https://pypi.org/project/awkwardl/#files hosts 29 binary wheels and
1 source package; most users will pip install without compiling.

20/30

https://pypi.org/project/awkward1/#files

Mathematical aspects

21/30

Functional programming for arrays

Arrays are functions:
array :[0,n) — dtype

such that array [i] for integer i is a function call.

22 /30

Functional programming for arrays

Arrays are functions:
array :[0,n) — dtype

such that array [i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints :[0,m) — [0, n) = array[ints] :[0,m) — dtype

22 /30

Functional programming for arrays

Arrays are functions:
array :[0,n) — dtype

such that array [i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints :[0,m) — [0, n) = array[ints] :[0,m) — dtype
So if £ and g are Z=° — Z=° functions and we sample them as F and G,
F = numpy.array ([£ (1) for i in range(...)])
G = numpy.array ([g (i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then [G[F] = GoF |.

22 /30

Functional programming for arrays

Arrays are functions:
array :[0,n) — dtype

such that array [i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints :[0,m) — [0, n) = array[ints] :[0,m) — dtype
So if £ and g are Z=° — Z=° functions and we sample them as F and G,
F = numpy.array ([£ (1) for i in range(...)])
G = numpy.array ([g (i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then [G[F] = GoF |.

Functional composition is associative: if H is any array, ‘H [G][F] =HI[G[F]] ‘

22 /30

. e L]
Associativity of integer-array indexing is a very useful feature ' &

10 scikit-hep / awkward-1.0 Oumacn |3 ksw |2 Yrom | o
O Olssies o [Pultequesis o OAcions [Projecs 0 COWK USecuy Ll lasighs € Setings
St master~ | awkwiard-1.0/docs | theory / arrays-are-functions.paf Finatie Copypain

ectitca 20daysago

01k Download | History T

https://github.com/scikit—-hep/
awkward-1.0/blob/master/docs/
theory/arrays—are-functions.pdf

Array manipulations as functional programming

Jim Pivarski

September 19, 2019

Introduction

Used throughout getitem_next to
, “carry” information from one level of

oo oo and S fine e o compociion. A ovefnerson) e . . .

of dtype d (e.g. int32 or £1oat6s) can be thought of as a function from integer indeses to recursion to the next, In an alogy with

members of d. Thus,
array[il T
s carrying digits in longhand addition.

because given an integer i € Z, it returns a value in d. In Python, this function is the
implementation of the array’s __getiten__ method.

Specifcd this way. this is @ partal function' —for some integers, it aiss an excoption

tegers greater than o equal to the array's length or
nts Python’s negative indexin; e outside
the bounds of the array and do not return a value.) Tt can be made into a total function by
restricting the domain to [0.n) where 1 is the length of the array:

array: [0.n) - d.

We can choose [0, 1) as the domain and work with total functions or Z as the domain and 23/30

https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf
https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf
https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf

Pandas-style indexing

24 /30

Indexing distinguishes Numpy from Pandas and xarray

a

NumPy

pandas
VS. Bz + i + €

o I

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

AL

25 /30

Indexing distinguishes Numpy from Pandas and xarray &

pandas
VS. Yo =BTy + i + €

A xéwé&

NumPy

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_Jjet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ValueError: in ListArray32 at id[10374, "muons", 1, "jets"] attempting
to get 0, index out of range
25 /30

Indexing distinguishes Numpy from Pandas and xarray &

pandas
VS. Yo =BTy + i + €

A xéwé&

NumPy

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_Jjet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ValueError: in ListArray32 at 1d[10374, "muons", 1, "jets"] attempting
to get 0, index out of range

25 /30

- . 5 5 5 5 BB
... but it was motivated by investigations into set-based languages &

‘https://github.com/jpivarski/PartiQL‘

For events with at least three leptons (electrons or muons) and a same-flavor

opposite-sign lepton pair, find the same-flavor opposite-sign lepton pair with a
mass closest to 91.2 GeV; make a histogram of the pT of the leading other lepton.
leptons = electrons union muons

cut count (leptons) >= 3 named "three_ leptons” {
7 = electrons as (lepl, lep2) union muons as (lepl, lep2)
where lepl.charge != lep2.charge
min by abs(mass(lepl, lep2) - 91.2)
third = leptons except [Z.lepl, Z.lep2] max by pt
hist third.pt by regular (100, 0, 250) named "third pt"

}

An Identity (surrogate-key index) is needed to define set operations like join,
cross, union, and except such that particles are never duplicated.

26 /30

https://github.com/jpivarski/PartiQL

Multi-paradigm arrays %

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

27 /30

Multi-paradigm arrays %

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

» perform Numpy-like slicing, reduction, and vectorized operations,

27 /30

Multi-paradigm arrays %

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

» perform Numpy-like slicing, reduction, and vectorized operations,

» enter a compiled Numba function for imperative code in Python,

27 /30

Multi-paradigm arrays s

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

» perform Numpy-like slicing, reduction, and vectorized operations,
» enter a compiled Numba function for imperative code in Python,

» pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

27 /30

Multi-paradigm arrays s

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

» perform Numpy-like slicing, reduction, and vectorized operations,
» enter a compiled Numba function for imperative code in Python,
» pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

» compute combinatorics with a HEP-specific domain specific language,

27 /30

Multi-paradigm arrays s

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

v

perform Numpy-like slicing, reduction, and vectorized operations,

v

enter a compiled Numba function for imperative code in Python,

v

pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

» compute combinatorics with a HEP-specific domain specific language,

interchangeably.

27 /30

Multi-paradigm arrays %

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. ..), we want to

v

perform Numpy-like slicing, reduction, and vectorized operations,

v

enter a compiled Numba function for imperative code in Python,

v

pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

» compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 /30

When can | try it?

Nowish: it is in a testable state (for Coffea and thrill-seekers).

Will be minimally usable for physics analysis in “early 2020."

Start an import awkward — import awkward0
import awkwardl — import awkward transition by spring.

28 /30

Roadmap

The rough estimate for development time to a minimally usable library for physics was six months, starting in late August
(i.e. finishing in late February). Progress is currently on track.

Approximate order of implementation

Completed items ar heck-marked. See closed PRs for more details.

<

Cross-platform, cross-Python version build and deploy process. Regularly deploying 30 wheels after closing each PR.

%

Basic NumpyArray , ListArray ,and ListOffsetArray with _ getitem__ forint/slice and __iter__ in C++/pybind1l
to establish structure and ensure proper reference counting.

<

Introduce Identity as a Pandas-style index to pass through __getitem__ .

<

Reproduce all of the above as Numba extensions (make NumpyArray , ListArray ,and ListOffsetArray usablein
Numba-compiled functions).

<

Error messages with location-of-failure information if the array has an 1dentity (exceptin Numba).

<

Fully implement __getitem__ for int/slice/intarray/boolarray/tuple (placeholders for newaxis/ellipsis), with perfect
agreement with Numpy basic/advanced indexing, to all levels of depth.
Appendable arrays (a distinct phase from readable arrays, when the type is still in flux) to implement awkward.fromiter
in C++,
JSON - Awkward via header-only simdjson and awkward.fromiter .
Explicit broadcasting functions for jagged and non-jagged arrays and scalars.
Extend _ getitem__ to take jagged arrays of integers and booleans (same behavior as old).
Full suite of array types:
< RawArray : flat, 1-dimensional array type for pure C++ (header-only).
< NumpyArray : rectilinear, N-dimensional array type without Python/pybind11 dependencies, but intended for Numpy.
< ListArray :the new JaggedArray , based on starts and stops (i.e. fully general).
v ListoffsetArray :the JaggedArray case with no unreachable data between reachable data (gaps).
RecordArray : the new Table without lazy-slicing. 29 /30

Did you get a StackOverflow account?

N

stackoverflow Products Customers Use cases

Create your Stack Overflow account. It's free
and only takes a minute.

G sign up with Google
Sign up with Facebook

Display name
Email

Password

Passwords must contain at least eight characters,
including at least 1 letter and 1 number

Optin to receive occasional product)
updates, user research invitations,
company announcements, and digests.

30/30

