
Awkward 1.0

Jim Pivarski

Princeton University – IRIS-HEP

October 17, 2019

1 / 30

On Scientific Linux, uproot/awkward/coffea is mainstream

May 2015
Sep 2015

Jan 2016

May 2016
Sep 2016

Jan 2017

May 2017
Sep 2017

Jan 2018

May 2018
Sep 2018

Jan 2019

May 2019
Sep 2019

10 2

10 1

100

101

102

103

pi
p-

in
st

al
ls/

da
y,

 3
0-

da
y

m
ov

in
g

av
er

ag
e

Scientific Linux only (physicists)
numpy
scipy
pandas
matplotlib
uproot
awkward
coffea

2 / 30

But not outside of particle physics, obviously

May 2015
Sep 2015

Jan 2016

May 2016
Sep 2016

Jan 2017

May 2017
Sep 2017

Jan 2018

May 2018
Sep 2018

Jan 2019

May 2019
Sep 2019

10 2

10 1

100

101

102

103

104

105

106

pi
p-

in
st

al
ls/

da
y,

 3
0-

da
y

m
ov

in
g

av
er

ag
e

Linux (not just physicists)
numpy
scipy
pandas
matplotlib
tensorflow
scikit-learn
torch
uproot
awkward
iminuit
coffea

3 / 30

But not outside of particle physics, obviously

May 2015
Sep 2015

Jan 2016

May 2016
Sep 2016

Jan 2017

May 2017
Sep 2017

Jan 2018

May 2018
Sep 2018

Jan 2019

May 2019
Sep 2019

10 2

10 1

100

101

102

103

104

105

106

pi
p-

in
st

al
ls/

da
y,

 3
0-

da
y

m
ov

in
g

av
er

ag
e

MacOS (not just physicists)
numpy
scipy
pandas
matplotlib
tensorflow
scikit-learn
torch
uproot
awkward
iminuit
coffea

3 / 30

But not outside of particle physics, obviously

May 2015
Sep 2015

Jan 2016

May 2016
Sep 2016

Jan 2017

May 2017
Sep 2017

Jan 2018

May 2018
Sep 2018

Jan 2019

May 2019
Sep 2019

10 2

10 1

100

101

102

103

104

105

106

pi
p-

in
st

al
ls/

da
y,

 3
0-

da
y

m
ov

in
g

av
er

ag
e

Windows (not just physicists)
numpy
scipy
pandas
matplotlib
tensorflow
scikit-learn
torch
uproot
awkward
iminuit
coffea

3 / 30

Uproot/Awkward maintainance is pretty much constant

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
0

20

40

60

80

100

120

140

160

180

number of issues

uproot opened
uproot closed

awkward-array

uproot-methods

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
0

20

40

60

80

100
number of new users
filing their first issue

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
0

250

500

750

1000

1250

1500

1750

2000 number of comments
(issues & PRs)

The problem with GitHub issues is that once closed, they disappear.

4 / 30

Uproot/Awkward maintainance is pretty much constant

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
0

20

40

60

80

100

120

140

160

180

number of issues

uproot opened
uproot closed

awkward-array

uproot-methods

min hour day month year
logarithmic issue response time

0

5

10

15

20

25

30

n
u
m

b
e
r

o
f

is
su

e
s

p
e
r

b
in

0 1 2 3 4 5 6 7
linear issue response time (days)

0

20

40

60

80

100

n
u
m

b
e
r

o
f

is
su

e
s

p
e
r

b
in

The problem with GitHub issues is that once closed, they disappear.

4 / 30

Uproot/Awkward maintainance is pretty much constant

Sep 2017

Jan 2018

May 2018

Sep 2018

Jan 2019

May 2019

Sep 2019
0

20

40

60

80

100

120

140

160

180

number of issues

uproot opened
uproot closed

awkward-array

uproot-methods

min hour day month year
logarithmic issue response time

0

5

10

15

20

25

30

n
u
m

b
e
r

o
f

is
su

e
s

p
e
r

b
in

0 1 2 3 4 5 6 7
linear issue response time (days)

0

20

40

60

80

100

n
u
m

b
e
r

o
f

is
su

e
s

p
e
r

b
in

The problem with GitHub issues is that once closed, they disappear.

4 / 30

Let’s use StackOverflow (like most non-HEP software communities)

5 / 30

No, seriously, do it now.

6 / 30

Future of Uproot and Awkward

7 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)

8 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)

9 / 30

Awkward 1.0

10 / 30

Awkward 1.0 is a rewrite, improving structure and interface

11 / 30

Layered architecture

Layer 1: Python user interface: a single
awkward.Array class.

Layer 2: Structure classes, “layout”
(e.g. ListArray/RecordArray).

Layer 3: Memory management, array
allocation and ownership; reference
counting.

Layer 4: Implementations, where we
write for loops. The only layer that
needs to be optimized for speed.

extern "C" interface

C++ classes Numba models

pybind11 of C++

Single Array class in Python

CPU functions GPU functions

inherits from Pandas's ExtensionDtype
registered as a type in Numba
lazy versions may be wrapped as Dask

operates on CPU pointers operates on GPU pointers
launches kernels internally

12 / 30

Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)

13 / 30

Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)

13 / 30

Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)

13 / 30

Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)

13 / 30

Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)
13 / 30

Layer 3: C++ classes

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

Index32 offsets(6);
offsets.ptr().get()[0] = 0; offsets.ptr().get()[3] = 5;
offsets.ptr().get()[1] = 3; offsets.ptr().get()[4] = 6;
offsets.ptr().get()[2] = 3; offsets.ptr().get()[5] = 10;

auto raw = new RawArrayOf<double>(Identity::none(), 10);
for (int i = 0; i < 10; i++) {

*raw->borrow(i) = 1.1*i;
}
std::shared_ptr<Content> content(raw);
std::shared_ptr<Content> list(new ListOffsetArray32(Identity::none(),

offsets, content));

tostring(list);

"[[0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]"

tostring(list.get()->getitem_range(1, -1));

"[[], [3.3, 4.4], [5.5]]"

tostring(list.get()->getitem(slice(new SliceRange(2, Slice::none(), Slice::none()),
new SliceRange(Slice::none(), Slice::none(), -1))));

"[[4.4, 3.3], [5.5], [9.9, 8.8, 7.7, 6.6]]"

14 / 30

Layer 3: C++ classes

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

Index32 offsets(6);
offsets.ptr().get()[0] = 0; offsets.ptr().get()[3] = 5;
offsets.ptr().get()[1] = 3; offsets.ptr().get()[4] = 6;
offsets.ptr().get()[2] = 3; offsets.ptr().get()[5] = 10;

auto raw = new RawArrayOf<double>(Identity::none(), 10);
for (int i = 0; i < 10; i++) {

*raw->borrow(i) = 1.1*i;
}
std::shared_ptr<Content> content(raw);
std::shared_ptr<Content> list(new ListOffsetArray32(Identity::none(),

offsets, content));

tostring(list);

"[[0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]"

tostring(list.get()->getitem_range(1, -1));

"[[], [3.3, 4.4], [5.5]]"

tostring(list.get()->getitem(slice(new SliceRange(2, Slice::none(), Slice::none()),
new SliceRange(Slice::none(), Slice::none(), -1))));

"[[4.4, 3.3], [5.5], [9.9, 8.8, 7.7, 6.6]]"
14 / 30

Layer 3: Numba models

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numba

@numba.jit(nopython=True)
def iterate(array):

out = 0.0
for subarray in array: # for loops in a Numba-

for subsubarray in subarray: # compiled function are
for item in subsubarray: # just as fast as C or C++

out += item
return out

print(iterate(listB))

49.5

@numba.jit(nopython=True)
def slices(array): # same slicing works in the compiled environment

return (array[:, ::-1, ::2],
array[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1])

one, two = slices(listB)
print(awkward1.tolist(one), awkward1.tolist(two))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (same results as before)
[[1.1], [], [7.7, 8.8], [7.7, 8.8]]

15 / 30

Layer 3: Numba models

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numba

@numba.jit(nopython=True)
def iterate(array):

out = 0.0
for subarray in array: # for loops in a Numba-

for subsubarray in subarray: # compiled function are
for item in subsubarray: # just as fast as C or C++

out += item
return out

print(iterate(listB))

49.5

@numba.jit(nopython=True)
def slices(array): # same slicing works in the compiled environment

return (array[:, ::-1, ::2],
array[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1])

one, two = slices(listB)
print(awkward1.tolist(one), awkward1.tolist(two))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (same results as before)
[[1.1], [], [7.7, 8.8], [7.7, 8.8]] 15 / 30

Layer 4: CPU functions

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

template <typename C, typename T>
Error awkward_listarray_getitem_next_at(T* tocarry, const C* fromstarts,

const C* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) {
int64_t length = fromstops[stopsoffset + i] -

fromstarts[startsoffset + i];
int64_t regular_at = at;
if (regular_at < 0) {

regular_at += length;
}
if (!(0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);
}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;

}
return success();

}

extern "C" {
Error awkward_listarray32_getitem_next_at_64(int64_t* tocarry, const int32_t* fromstarts,

const int32_t* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at);

16 / 30

Layer 4: CPU functions

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

template <typename C, typename T>
Error awkward_listarray_getitem_next_at(T* tocarry, const C* fromstarts,

const C* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) {
int64_t length = fromstops[stopsoffset + i] -

fromstarts[startsoffset + i];
int64_t regular_at = at;
if (regular_at < 0) {

regular_at += length;
}
if (!(0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);
}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;

}
return success();

}

extern "C" {
Error awkward_listarray32_getitem_next_at_64(int64_t* tocarry, const int32_t* fromstarts,

const int32_t* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at);

16 / 30

Layer 4: CPU functions

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

template <typename C, typename T>
Error awkward_listarray_getitem_next_at(T* tocarry, const C* fromstarts,

const C* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) {
int64_t length = fromstops[stopsoffset + i] -

fromstarts[startsoffset + i];
int64_t regular_at = at;
if (regular_at < 0) {

regular_at += length;
}
if (!(0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);
}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;

}
return success();

}

extern "C" {
Error awkward_listarray32_getitem_next_at_64(int64_t* tocarry, const int32_t* fromstarts,

const int32_t* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at);

16 / 30

Layer 3: C++ classes

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

if (head.get() == nullptr) {
return shallow_copy();

}

else if (SliceAt* at = dynamic_cast<SliceAt*>(head.get())) {
std::shared_ptr<SliceItem> nexthead = tail.head();
Slice nexttail = tail.tail();
Index64 nextcarry(lenstarts);
Error err = awkward_listarray32_getitem_next_at_64(
nextcarry.ptr().get(),
starts_.ptr().get(),
stops_.ptr().get(),
lenstarts,
starts_.offset(),
stops_.offset(),
at->at());

util::handle_error(err, classname(), id_.get());
std::shared_ptr<Content> nextcontent = content_.get()->carry(nextcarry);
return nextcontent.get()->getitem_next(nexthead, nexttail, advanced);

}

else if (SliceRange* range = dynamic_cast<SliceRange*>(head.get())) {
...

17 / 30

Layer 3: Numba models

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

if isinstance(headtpe, numba.types.Integer):
if arraytpe.bitwidth == 64:
kernel = cpu.kernels.awkward_listarray64_getitem_next_at_64

elif arraytpe.bitwidth == 32:
kernel = cpu.kernels.awkward_listarray32_getitem_next_at_64

nextcarry = util.newindex64(context, builder, numba.int64, lenstarts)
util.call(context, builder, kernel,
(util.arrayptr(context, builder, util.index64tpe, nextcarry),
util.arrayptr(context, builder, arraytpe.startstpe, proxyin.starts),
util.arrayptr(context, builder, arraytpe.stopstpe, proxyin.stops),
lenstarts,
context.get_constant(numba.int64, 0),
context.get_constant(numba.int64, 0),
util.cast(context, builder, headtpe, numba.int64, headval)),
"in {}, indexing error".format(arraytpe.shortname))

nextcontenttpe = arraytpe.contenttpe.carry()
nextcontentval = arraytpe.contenttpe.lower_carry(context, builder, arraytpe.contenttpe,

util.index64tpe, proxyin.content, nextcarry)
return nextcontenttpe.lower_getitem_next(context, builder, nextcontenttpe, tailtpe,

nextcontentval, tailval, advanced)
elif isinstance(headtpe, numba.types.SliceType):
...

18 / 30

Still following the array-at-a-time approach

Slow Python has been replaced by slow C++ (dynamic dispatch, runtime type-checks).

But only O(depth of type) operations are performed in C++; O(number of events)
operations are performed in single-pass cpu-functions.

19 / 30

Deliverables

Compilable by CMake (for pure C++) or python setup.py install.

cpu-kernels.so suite of Layer 4 functions with an extern "C" interface, which
can be accessed by any language (notably C++ and Numba).

libawkward.so library of Layer 3 classes that can be used in any C++ project.

awkward1 Python library: Layer 1 (user interface), Layer 2 (extension
module), and Layer 3 (Numba extensions, if Numba is installed).

https://pypi.org/project/awkward1/#files hosts 29 binary wheels and
1 source package; most users will pip install without compiling.

20 / 30

https://pypi.org/project/awkward1/#files

Mathematical aspects

21 / 30

Functional programming for arrays

Arrays are functions:

array : [0, n) → dtype

such that array[i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints : [0,m) → [0, n) ⇒ array[ints] : [0,m) → dtype

So if f and g are Z≥0 → Z≥0 functions and we sample them as F and G,
F = numpy.array([f(i) for i in range(...)])
G = numpy.array([g(i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then G[F] = GoF .

Functional composition is associative: if H is any array, H[G][F] = H[G[F]] .

22 / 30

Functional programming for arrays

Arrays are functions:

array : [0, n) → dtype

such that array[i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints : [0,m) → [0, n) ⇒ array[ints] : [0,m) → dtype

So if f and g are Z≥0 → Z≥0 functions and we sample them as F and G,
F = numpy.array([f(i) for i in range(...)])
G = numpy.array([g(i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then G[F] = GoF .

Functional composition is associative: if H is any array, H[G][F] = H[G[F]] .

22 / 30

Functional programming for arrays

Arrays are functions:

array : [0, n) → dtype

such that array[i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints : [0,m) → [0, n) ⇒ array[ints] : [0,m) → dtype

So if f and g are Z≥0 → Z≥0 functions and we sample them as F and G,
F = numpy.array([f(i) for i in range(...)])
G = numpy.array([g(i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then G[F] = GoF .

Functional composition is associative: if H is any array, H[G][F] = H[G[F]] .

22 / 30

Functional programming for arrays

Arrays are functions:

array : [0, n) → dtype

such that array[i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints : [0,m) → [0, n) ⇒ array[ints] : [0,m) → dtype

So if f and g are Z≥0 → Z≥0 functions and we sample them as F and G,
F = numpy.array([f(i) for i in range(...)])
G = numpy.array([g(i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then G[F] = GoF .

Functional composition is associative: if H is any array, H[G][F] = H[G[F]] .
22 / 30

Associativity of integer-array indexing is a very useful feature

https://github.com/scikit-hep/
awkward-1.0/blob/master/docs/
theory/arrays-are-functions.pdf

Used throughout getitem_next to
“carry” information from one level of
recursion to the next, in analogy with
carrying digits in longhand addition.

23 / 30

https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf
https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf
https://github.com/scikit-hep/awkward-1.0/blob/master/docs/theory/arrays-are-functions.pdf

Pandas-style indexing

24 / 30

Indexing distinguishes Numpy from Pandas and xarray

vs.

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_jet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: in ListArray32 at id[10374, "muons", 1, "jets"] attempting
to get 0, index out of range

25 / 30

Indexing distinguishes Numpy from Pandas and xarray

vs.

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_jet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: in ListArray32 at id[10374, "muons", 1, "jets"] attempting
to get 0, index out of range

25 / 30

Indexing distinguishes Numpy from Pandas and xarray

vs.

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_jet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: in ListArray32 at id[10374, "muons", 1, "jets"] attempting
to get 0, index out of range

25 / 30

. . . but it was motivated by investigations into set-based languages

https://github.com/jpivarski/PartiQL

For events with at least three leptons (electrons or muons) and a same-flavor
opposite-sign lepton pair, find the same-flavor opposite-sign lepton pair with a
mass closest to 91.2 GeV; make a histogram of the pT of the leading other lepton.

leptons = electrons union muons

cut count(leptons) >= 3 named "three_leptons" {
Z = electrons as (lep1, lep2) union muons as (lep1, lep2)

where lep1.charge != lep2.charge
min by abs(mass(lep1, lep2) - 91.2)

third = leptons except [Z.lep1, Z.lep2] max by pt
hist third.pt by regular(100, 0, 250) named "third_pt"

}

An Identity (surrogate-key index) is needed to define set operations like join,
cross, union, and except such that particles are never duplicated.

26 / 30

https://github.com/jpivarski/PartiQL

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . .), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.

27 / 30

When can I try it?

Nowish: it is in a testable state (for Coffea and thrill-seekers).

Will be minimally usable for physics analysis in “early 2020.”

Start an import awkward → import awkward0

import awkward1 → import awkward transition by spring.

28 / 30

29 / 30

Did you get a StackOverflow account?

30 / 30

