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On Scientific Linux, uproot/awkward/coffea is mainstream
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But not outside of particle physics, obviously
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Uproot/Awkward maintainance is pretty much constant
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The problem with GitHub issues is that once closed, they disappear.
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Let’s use StackOverflow (like most non-HEP software communities)
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No, seriously, do it now.
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Future of Uproot and Awkward
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Future of Uproot: maintenance

I TTree-writing was the last major feature planned.

I Bugs will be fixed.

I Uproot will keep ahead of changes in ROOT I/O.

(Only one change in ROOT I/O in uproot’s two-year existence: TIOFeatures.)

I ROOT’s future RNtuple can probably be handled with
semi-independent code, as uproot-methods is now.

I “Uproot 4.0” will be a transition to Awkward 1.0.

(Apart from TTree-writing, uproot has been in maintenance mode for a year already.)
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Future of Awkward: consolidation

I Awkward has been tested “in the wild” for a year now.

I Pure Numpy implementation does some complex (clever!)
things to perform jagged operations: no for loops allowed.

I There are limits to cleverness: many edge cases not handled.

I Most frequent bugs are due to Numpy usage (e.g. numpy.max([])).

I Desire to use awkward-arrays in Numba, on GPUs, and in C++ library
interfaces leads to duplication; hard to synchronize implementations.

I Feedback from users revealed some interface mistakes.

I a.cross(b) versus awkward.cross(a, b)

I User-visible JaggedArray versus ChunkedArray(JaggedArray)
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Awkward 1.0
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Awkward 1.0 is a rewrite, improving structure and interface
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Layered architecture

Layer 1: Python user interface: a single
awkward.Array class.

Layer 2: Structure classes, “layout”
(e.g. ListArray/RecordArray).

Layer 3: Memory management, array
allocation and ownership; reference
counting.

Layer 4: Implementations, where we
write for loops. The only layer that
needs to be optimized for speed.

extern "C" interface

C++ classes Numba models

pybind11 of C++

Single Array class in Python

CPU functions GPU functions

inherits from Pandas's ExtensionDtype
registered as a type in Numba
lazy versions may be wrapped as Dask

operates on CPU pointers operates on GPU pointers
launches kernels internally
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Layer 2: pybind11 of C++

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numpy
import awkward1

content = awkward1.layout.NumpyArray(numpy.arange(10)*1.1)
listA = awkward1.layout.ListOffsetArray32(

awkward1.layout.Index32(numpy.array([0, 3, 3, 5, 6, 10])),
content)

listB = awkward1.layout.ListOffsetArray32(
awkward1.layout.Index32(numpy.array([0, 3, 4, 4, 5])),
listA)

print(awkward1.tolist(listA))

[[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]

print(awkward1.tolist(listB))

[[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[5.5]], [], [[6.6, 7.7, 8.8, 9.9]]]

print(awkward1.tolist(listB[:, ::-1, ::2]))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (old awkward-array can't do this)

print(awkward1.tolist(listB[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1]))

[[1.1], [], [7.7, 8.8], [7.7, 8.8]] (mixing fancy and basic indexing)
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Layer 3: C++ classes

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

Index32 offsets(6);
offsets.ptr().get()[0] = 0; offsets.ptr().get()[3] = 5;
offsets.ptr().get()[1] = 3; offsets.ptr().get()[4] = 6;
offsets.ptr().get()[2] = 3; offsets.ptr().get()[5] = 10;

auto raw = new RawArrayOf<double>(Identity::none(), 10);
for (int i = 0; i < 10; i++) {

*raw->borrow(i) = 1.1*i;
}
std::shared_ptr<Content> content(raw);
std::shared_ptr<Content> list(new ListOffsetArray32(Identity::none(),

offsets, content));

tostring(list);

"[[0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]]"

tostring(list.get()->getitem_range(1, -1));

"[[], [3.3, 4.4], [5.5]]"

tostring(list.get()->getitem(slice(new SliceRange(2, Slice::none(), Slice::none()),
new SliceRange(Slice::none(), Slice::none(), -1))));

"[[4.4, 3.3], [5.5], [9.9, 8.8, 7.7, 6.6]]"
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Layer 3: Numba models

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

import numba

@numba.jit(nopython=True)
def iterate(array):

out = 0.0
for subarray in array: # for loops in a Numba-

for subsubarray in subarray: # compiled function are
for item in subsubarray: # just as fast as C or C++

out += item
return out

print(iterate(listB))

49.5

@numba.jit(nopython=True)
def slices(array): # same slicing works in the compiled environment

return (array[:, ::-1, ::2],
array[[0, 0, -1, -1], [0, -1, 0, -1], 1:-1])

one, two = slices(listB)
print(awkward1.tolist(one), awkward1.tolist(two))

[[[3.3], [], [0.0, 2.2]], [[5.5]], [], [[6.6, 8.8]]] (same results as before)
[[1.1], [], [7.7, 8.8], [7.7, 8.8]]
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Layer 4: CPU functions

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

template <typename C, typename T>
Error awkward_listarray_getitem_next_at(T* tocarry, const C* fromstarts,

const C* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at)

{
for (int64_t i = 0; i < lenstarts; i++) {
int64_t length = fromstops[stopsoffset + i] -

fromstarts[startsoffset + i];
int64_t regular_at = at;
if (regular_at < 0) {

regular_at += length;
}
if (!(0 <= regular_at && regular_at < length)) {

return failure("index out of range", i, at);
}
tocarry[i] = fromstarts[startsoffset + i] + regular_at;

}
return success();

}

extern "C" {
Error awkward_listarray32_getitem_next_at_64(int64_t* tocarry, const int32_t* fromstarts,

const int32_t* fromstops, int64_t lenstarts, int64_t startsoffset,
int64_t stopsoffset, int64_t at);
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Layer 3: C++ classes

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

if (head.get() == nullptr) {
return shallow_copy();

}

else if (SliceAt* at = dynamic_cast<SliceAt*>(head.get())) {
std::shared_ptr<SliceItem> nexthead = tail.head();
Slice nexttail = tail.tail();
Index64 nextcarry(lenstarts);
Error err = awkward_listarray32_getitem_next_at_64(
nextcarry.ptr().get(),
starts_.ptr().get(),
stops_.ptr().get(),
lenstarts,
starts_.offset(),
stops_.offset(),
at->at());

util::handle_error(err, classname(), id_.get());
std::shared_ptr<Content> nextcontent = content_.get()->carry(nextcarry);
return nextcontent.get()->getitem_next(nexthead, nexttail, advanced);

}

else if (SliceRange* range = dynamic_cast<SliceRange*>(head.get())) {
...
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Layer 3: Numba models

Single Array class in Python

CPU functions GPU functions

extern "C"

pybind11 of C++

C++ classes Numba models

if isinstance(headtpe, numba.types.Integer):
if arraytpe.bitwidth == 64:
kernel = cpu.kernels.awkward_listarray64_getitem_next_at_64

elif arraytpe.bitwidth == 32:
kernel = cpu.kernels.awkward_listarray32_getitem_next_at_64

nextcarry = util.newindex64(context, builder, numba.int64, lenstarts)
util.call(context, builder, kernel,
(util.arrayptr(context, builder, util.index64tpe, nextcarry),
util.arrayptr(context, builder, arraytpe.startstpe, proxyin.starts),
util.arrayptr(context, builder, arraytpe.stopstpe, proxyin.stops),
lenstarts,
context.get_constant(numba.int64, 0),
context.get_constant(numba.int64, 0),
util.cast(context, builder, headtpe, numba.int64, headval)),
"in {}, indexing error".format(arraytpe.shortname))

nextcontenttpe = arraytpe.contenttpe.carry()
nextcontentval = arraytpe.contenttpe.lower_carry(context, builder, arraytpe.contenttpe,

util.index64tpe, proxyin.content, nextcarry)
return nextcontenttpe.lower_getitem_next(context, builder, nextcontenttpe, tailtpe,

nextcontentval, tailval, advanced)
elif isinstance(headtpe, numba.types.SliceType):
...
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Still following the array-at-a-time approach

Slow Python has been replaced by slow C++ (dynamic dispatch, runtime type-checks).

But only O(depth of type) operations are performed in C++; O(number of events)
operations are performed in single-pass cpu-functions.
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Deliverables

Compilable by CMake (for pure C++) or python setup.py install.

cpu-kernels.so suite of Layer 4 functions with an extern "C" interface, which
can be accessed by any language (notably C++ and Numba).

libawkward.so library of Layer 3 classes that can be used in any C++ project.

awkward1 Python library: Layer 1 (user interface), Layer 2 (extension
module), and Layer 3 (Numba extensions, if Numba is installed).

https://pypi.org/project/awkward1/#files hosts 29 binary wheels and
1 source package; most users will pip install without compiling.
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Mathematical aspects
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Functional programming for arrays

Arrays are functions:

array : [0, n) → dtype

such that array[i] for integer i is a function call.

Indexing by an integer array is functional composition:

ints : [0,m) → [0, n) ⇒ array[ints] : [0,m) → dtype

So if f and g are Z≥0 → Z≥0 functions and we sample them as F and G,
F = numpy.array([f(i) for i in range(...)])
G = numpy.array([g(i) for i in range(...)])
GoF = numpy.array([g(f(i)) for i in range(...)])

then G[F] = GoF .

Functional composition is associative: if H is any array, H[G][F] = H[G[F]] .
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Associativity of integer-array indexing is a very useful feature

https://github.com/scikit-hep/
awkward-1.0/blob/master/docs/
theory/arrays-are-functions.pdf

Used throughout getitem_next to
“carry” information from one level of
recursion to the next, in analogy with
carrying digits in longhand addition.
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Pandas-style indexing
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Indexing distinguishes Numpy from Pandas and xarray

vs.

Awkward 1.0 operations will optionally pass around an Identity, an extra array
that attaches permanent coordinates to each number, list, and record in the data.

Good for error messages. . .

>>> dataset.setid() # generate Identities
>>> primary_jet_for_muon = dataset[:, "muons", :, "jets", 0]

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

ValueError: in ListArray32 at id[10374, "muons", 1, "jets"] attempting
to get 0, index out of range
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. . . but it was motivated by investigations into set-based languages

https://github.com/jpivarski/PartiQL

# For events with at least three leptons (electrons or muons) and a same-flavor
# opposite-sign lepton pair, find the same-flavor opposite-sign lepton pair with a
# mass closest to 91.2 GeV; make a histogram of the pT of the leading other lepton.

leptons = electrons union muons

cut count(leptons) >= 3 named "three_leptons" {
Z = electrons as (lep1, lep2) union muons as (lep1, lep2)

where lep1.charge != lep2.charge
min by abs(mass(lep1, lep2) - 91.2)

third = leptons except [Z.lep1, Z.lep2] max by pt
hist third.pt by regular(100, 0, 250) named "third_pt"

}

An Identity (surrogate-key index) is needed to define set operations like join,
cross, union, and except such that particles are never duplicated.
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Multi-paradigm arrays

With a dataset in Awkward form (from TTrees, RNtuples, Arrow. . . ), we want to

I perform Numpy-like slicing, reduction, and vectorized operations,

I enter a compiled Numba function for imperative code in Python,

I pass to/from a C++ library (e.g. jagged array of Lorentz vectors to FastJet),

I compute combinatorics with a HEP-specific domain specific language,

interchangeably.

Awkward 1.0 is intended as a solid foundation for that future.
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When can I try it?

Nowish: it is in a testable state (for Coffea and thrill-seekers).

Will be minimally usable for physics analysis in “early 2020.”

Start an import awkward → import awkward0

import awkward1 → import awkward transition by spring.
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Did you get a StackOverflow account?
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