
The FAST-HEP 
toolkit
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Goals of this talk
Give you a sense of:

1. the big picture

2. how these tools work

3. where we want to go

4. how this fits in to the rest of the ecosystem
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The High-level 
Overview
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Or: Repeating some themes we’ve already heard



F.A.S.T = Faster 
Analysis Software 
Taskforce

● Group of HEP researchers

● Started around May 2017

● Use of 1 to 3-day “hack-shops” to 

test new ideas
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Properties of an Ideal FAST Analysis:
FLAMERSP

1. Flexibility: It should be very easy change parts of an analysis, e.g. selection, input data (incl. structure),  and to 
prototype new ideas

2. Learnability: A new user should be able to produce meaningful results, e.g. new plots, within a week 

3. Automation:  Use Continuous Integration tools to automate the validation of the analysis, publication of 
documentation, and performance monitoring

4. Modularity:  If a new package becomes available, improving the functionality or performance of some part of 
the analysis, it should be relatively easy to replace the current version with the new package.

5. Expressiveness:  An analyst should be asking “what do I want to study” and not “how do I implement this”

6. Reproducibility: Once an analysis has been run, it should be easy to repeat this, and therefore easy to 
document what was done

7. Summarizing: quick and easy production of plots & tables to inspect data

8. Performance:  Analysis code should run quickly, processing events at MHz rates
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This is backwards for us:  

Physicists have bent ourselves 
to think in ways that the code 
dictates: “I want to see this, how 
must I write that…”

Instead: How can we make the 
spoon itself bend for us?

Or in other words….



Less: “How do I have to write this”

More: “What do I want to see”
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Declarative 
programming

● We’re most familiar with imperative programming:
○ “Loop over each event, add this to that if 

something is true, etc”

● Declarative languages the user says WHAT, the 

interpretation decides the HOW
○ Wikipedia: “Declarative programming […] 

expresses the logic of a computation without 
describing its control flow.”

● Allows:

○ Optimisation behind the scenes
○ More mathematical description of the analysis
○ More concise definition
○ Fewer bugs
○ Easier to reproduce and share
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-  martin:

    name: Martin Devloper

    job: Developer

    skills:

      - python

      - perl

      - pascal

-  tabitha:

    name: Tabitha Bitumen

    job: Developer

    skills:

      - lisp

      - fortran

      - erlang

Describing analysis 
with YAML
● A superset of JSON
○ Static object description (dicts, lists, numbers, 

strings)
○ Adds anchors and references: reuse common 

occurrences

● Easier to read than JSON: 
○ Can write without brackets and braces
○ Indentation to imply nesting (c.f. python)

● Naturally declarative:   
No “control flow” (e.g. no for loops)

● Widely used to describe pipeline configuration: 
○ gitlab-CI, travis-CI, Azure CI/CD, Ansible, 

Kubernetes, etc
○ HEPData: YAML for reproducible Data
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[{"martin":{"name": "Martin Devloper",

    "job": "Developer",`

    "Skills": ["python", "perl", "pascal"]}

,{"tabitha":{"name": "Tabitha Bitumen", "job": 

"Developer", "Skills": ["lisp", "fortran", 

"erlang"]}}]

YAML

JSON



“But this is PyHEP 
and you’re talking 
about YAML...”

● I want to write and “own” the least 
amount of code possible: 
○ less maintenance

○ more sharing

● All backend code fully 

python-based

11

numexpr

Further future (?):

PyHEADTAIL

Near future:

Currently:



How do you use it?
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Where to find the code

● Docs: fast-carpenter.readthedocs.io/

● All public on github:
○ github.com/fast-hep/
○ Main package: 

github.com/fast-hep/fast-carpenter 

● On PyPI, e.g. fast-carpenter

● Docker image with all tools: fasthep/fast-hep-docker

● Clonable demo analysis repository:
○ gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
○ github.com/fast-hep/fast_cms_public_tutorial (prelim.)
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https://fast-carpenter.readthedocs.io/
https://github.com/fast-hep/
https://github.com/fast-hep/fast-carpenter
http://pypi.org/project/fast-carpenter
https://hub.docker.com/r/fasthep/fast-hep-docker
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
http://www.github.com/fast-hep/fast_cms_public_tutorial
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Step 1:
fast_curator

Dataset 
description
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Step 1:
fast_curator

Dataset 
description

Step 2:
fast_carpenter

Analysis 
description
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Step 1:
fast_curator

Dataset 
description

Step 2:
fast_carpenter

Analysis 
description

Step 3:
fast_plotter
fast_datacard

Plotting and 
postprocessing



17

Step 1:
fast_curator

Dataset 
description

Start with a root tree

● Ah, but I have many

● Ah but I need meta-data:

● E.g. cross-section, integrated exposure, calibration source

Curator: adiabatic from 1 to many files

Dataset descriptions don’t change often

● Track descriptions in repo, easy to review

Command line tool to help write YAML

● Wild-card on the command line, including xrootd files 

(contributed to pyxrootd)

● Hooks in place for experiment-specific catalogues, e.g. CMS DAS

● Integrate with Rucio

Regardless of other FAST-HEP tools, generally useful for analysis

https://gitlab.cern.ch/fast-hep/public/fast-curator/blob/master/fast_curator/xrootd_glob.py
https://github.com/xrootd/xrootd/pull/854
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defaults:

  eventtype: mc

  nfiles: 1

  tree: events

datasets:

  - eventtype: data

    Files: [input_files/HEPTutorial/files/data.root]

    name: data

    nevents: 469384

  - files: 

     - input_files/HEPTutorial/files/dy.root

     - input_files/HEPTutorial/files/dy_2.root

    name: dy

    nevents: 77729

  - files: [input_files/HEPTutorial/files/qcd.root]

    name: qcd

    nevents: 142

import:

  - "{this_dir}/WW.yml"

  - "{this_dir}/WZ.yml"

Dataset description

● Default values for all datasets
● Meta data: tree name(s), data or MC

● Each dataset has a list of files
● A unique name

● Can Import other dataset files
● Build complex nested dataset 

descriptions
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Take yous trees and make them into tables

● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:

● Histogram
● Cutflow

Cover most typical particle physics analyses

● BUT: very easy to break out to imperative 
python when needed

Step 2:
fast_carpenter

Analysis 
description
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Take yous trees and make them into tables

● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:

● Histogram
● Cutflow

Cover most typical particle physics analyses

● BUT: very easy to break out to imperative 
python when needed

Step 2:
fast_carpenter

Analysis 
description



Describe what to do with the data

stages:

  - Stage1: StageFromBackend

  - Stage2: module.that.provides.some.Stage

  - IMPORT: "{this_dir}/another_description.yaml"

Stage1:

  keyword: value

  another_keyword: [a, list, of, values]

Stage2:

  arg1: 35

  arg2: 

      takes: ["a", "dict"]

      with: 3

      different: keys
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What type of action to take at each step:
● Stage1 = A built-in stage of fast-carpenter
● Stage2 = A stage imported from a python module
● IMPORT = Import a list of stages and their 

descriptions from another YAML file

For each stage named above:
● Provide a dictionary of keyword arguments
● Passed through to stage’s init method



Stages section:
What do you want 

to do with the data?

The sequence of stages wanted

Each stage:
● Any python importable class
● Duck-typed interface
● Default stages from fast-carpenter

For example:
1. Define some variables
2. Make a histogram
3. Cut out some events
4. Make another histogram 

stages:

  # Just defines new variables

  - BasicVars: fast_carpenter.Define

  # A custom class to form the invariant mass of a 

  # two-object system

  - DiMuons: cms_hep_tutorial.DiObjectMass

  # Filled a binned dataframe

  - NumberMuons: fast_carpenter.BinnedDataframe

  # Select events by applying cuts

  - EventSelection: fast_carpenter.CutFlow

  # Fill another binned dataframe

  - DiMuonMass: BinnedDataframe
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Define Stage:
fast_carpenter.Define
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BasicVars:

  variables:

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- NIsoMuon: 

    formula: IsoMuon_Idx

    reduce: count_nonzero

- IsoMuPtSum: 

    formula: Muon_Pt

    reduce: sum

    mask: IsoMuon_Idx

- HasTwoMuons: NIsoMuon >= 2

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Mathematical description of operations

Operates on arrays of data
○ Uses uproot + numexpr (v2)

○ Reductions: go from object-level variables 

(jagged arrays) to event-level

○ Masks: remove objects failing some condition

Support for jaggedness as much as uproot / 

awkward
○ E.g. reducing a 3D jagged array → 2D jagged 

array, same formula

Biggest gap:  operations between collections



Define Stage:
fast_carpenter.Define
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From Joosep Pata’s 
talk yesterday



Define Stage:
fast_carpenter.Define
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- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the 

“jaggedness”

From Joosep Pata’s 
talk yesterday



Define Stage:
fast_carpenter.Define
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- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the 

“jaggedness”

From Joosep Pata’s 
talk yesterday

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)



Define Stage:
fast_carpenter.Define
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- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the 

“jaggedness”

From Joosep Pata’s 
talk yesterday

- NIsoMuon: 

    formula: IsoMuon_Idx

    reduce: count_nonzero

- IsoMuPtSum: 

    formula: Muon_Pt

    reduce: sum

    mask: IsoMuon_Idx

● Reduce dimensionality with a 
function

● Mask out objects in the event

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)



Select events
fast_carpenter.CutFlow

Remove events from subsequent stages

Produces a cut-flow summary table
● Weighted / raw counts

Selection is specified as a nested dictionary 
of All, Any and a list of expressions

Individual cuts use same scheme as variable 
definition
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EventSelection:

  weights: {weighted: EventWeight}

  selection:

All:

  - NIsoMuon >= 2

  - triggerIsoMu24 == 1

  - {reduce: 0, formula: Muon_Pt > 25}

DiMu_controlRegion:  

    weights: {nominal: weight}

    selection:

        All:

          - {reduce: 0, formula: Muon_pt > 30}

          - leadJet_pt > 100

          - All: 

            - DiMuon_mass > 60

            - DiMuon_mass < 120

          - Any:

            - nCleanedJet == 1

            - DiJet_mass < 500

            - DiJet_deta < 2
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Resulting cut-flow 
outputs from 
EventSelection config on 
last slide

Select events
fast_carpenter.
CutFlow



Fill a histogram
fast_carpenter.BinnedDataFrame

fast_carpenter.BuildAghast ● Binning scheme:
○ Assume variable already discrete

(eg. NumberHits)

○ Equal-width bins over a range 

(eg. DiMuonMass)

○ List of bin edges

● Event weights
○ Multiple weight schemes add columns

● Output written to disk:

○ Pandas to produce a dataframe in any 

format

○ Also (experimentally) to a Ghast
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NumberMuons:

  binning:

- {in: NMuon, out: nMuons}

- {in: NIsoMuon, out: nIsoMuons}

  weights: [EventWeight, EventWeight_NLO_up]

DiMuonMass:

  binning:

- in: DiMuon_Mass

  out: dimu_mass

  bins: {low: 60, high: 120, nbins: 60}

  weights: {weighted: EventWeight}



Fill a 
histogram:
Resulting CSV 
from 
DiMuonMass
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Showing only first three 
rows for each dataset 
(using groupby 
operation)



All built-in 
stages

● Define: Create new variables

● SystematicWeights: Create event weights with 
systematic variations from multiple sources

● CutFlow: Remove events failing cuts and 
summarize # of events passing each cut

● SelectPhaseSpace: Like CutFlow but creates 
mask without applying it

● BinnedDataframe: Creates a binned pandas 
dataframe that can be fed into fast-plotter

● BuildAghast: Like BinnedDataframe but result is 
a Ghast
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● Full list of stages can be 
found with:
$ fast_carpenter 
--help-stages

● Can get full help for 
specific stage e.g.:
$ fast_carpenter 
--help-stages-full 
CutFlow



User-defined 
stages

● Previous steps not able to capture all analysis 
needs (yet), eg:
○ More complex variable definition (e.g. invariant masses)

○ Scale factor look-ups

● But a stage needn’t belong to fast_carpenter
○ Break out of declarative YAML to full, imperative python

● Any importable python class with the correct 
interface
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stages:

  - BasicVars: fast_carpenter.Define

  - DiMuons: cms_hep_tutorial.DiObjectMass

  - Histogram: BinnedDataframe

…

DiMuons: 

    mask: IsoMuon_Idx



User-defined 
stages
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from uproot_methods import TLorentzVectorArray

import numpy as np

class DiObjectMass():

    def __init__(self, name, out_dir, collection="Muon", mask=None, out_var=None):

        self.name = name

        self.out_dir = out_dir

        self.mask = mask

        self.collection = collection

        self.branches = [self.collection + "_" + var for var in ["Px", "Py", "Pz", "E"]]

        if out_var:

            self.out_var = out_var

        else:

            self.out_var = "Di{}_Mass".format(collection)

Parameters 
controlled 

from analysis 
description



def event(self, chunk):

    # Get the data as a pandas dataframe

    px, py, pz, energy = chunk.tree.arrays(self.branches, outputtype=tuple)

    # Rename the branches so they're easier to work with here

    if self.mask:

        mask = chunk.tree.array(self.mask)

        px = px[mask]

        py = py[mask]

        pz = pz[mask]

        energy = energy[mask]

    # Find the second object in the event (which are sorted by Pt)

    has_two_obj = px.counts > 1

    # Calculate the invariant mass

    p4_0 = TLorentzVectorArray(px[has_two_obj, 0], py[has_two_obj, 0], 

                               pz[has_two_obj, 0], energy[has_two_obj, 0])

    p4_1 = TLorentzVectorArray(px[has_two_obj, 1], py[has_two_obj, 1],

                               pz[has_two_obj, 1], energy[has_two_obj, 1])

    di_object = p4_0 + p4_1

    # insert nans for events that have fewer than 2 objects

    masses = np.full(len(chunk.tree), np.nan)

    masses[has_two_obj] = di_object.mass

    # Add this variable to the tree

    chunk.tree.new_variable(self.out_var, masses)

    return True

User-defined 
stages
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fast-plotter:
● Easy to produce basic plots, tools to support 

final publication-quality

● Command-line tool with reasonable defaults 

and simple configuration

● Written in lots of small functions: can be 

used in custom scripts / notebooks

fast-datacard:

● Bring resulting DataFrames into CMS’ 
Combine fitting procedures

Step 3:
fast_plotter
fast_datacard

Plotting and 
postprocessing



Turning outputs into 
plots: fast-plotter

● Plot on the right with:
fast_plotter -y log \
-c plot_config.yml \
-o tbl_*.csv

● YAML config:
○ Colour scheme, axis labels

○ Dataset definition

○ Annotation
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Plot of DiMuonMass binned dataframe from last slide



“Analysis in a CI pipeline”

● To run this:
○ Demo analysis in a pipeline 
○ The gitlab-ci config 
○ Script tying the commands together 

● Feasiblity for huge datasets unclear, but can happily manage subsets of data for testing
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https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/pipelines/734469
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/.gitlab-ci.yml
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/pipeline/Makefile


Where are we and 
what’s next
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Current 
FAST-HEP 
codebase
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Demonstrate the previous principles
● A Minimal Viable Product where we’re continually 

adding features
● Hope to cover most analyses using just YAML
● Easy to add user features when FAST-HEP doesn’t 

include

Developed largely by myself, Luke Kreczko, and others

● Contributions growing from various activities

Being used for 2 CMS analyses, LUX-ZEPLIN getting going, 
design studies for DUNE, FCC experiments
● New features being fed back to core packages from 

analysis-specific repositories



Just how 
“fast” is this?

In general: as quick as a C++ equivalent 

For example, the demo repo:
● Fast-carpenter: 6 seconds
● C++ example: 4 seconds

Much optimisation possible under the hood

At this level, the main advantage not the speed of 
execution:

● Readability, reproducibility, portability
● From demo repo: 100 lines of YAML vs > 600 of C++
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Major changes

● Experimental version: 
https://gist.github.com/benkrikler/dc1d2b1fa291b8
250a6a07be2b7fc7fa 

● Expect first integrated version in next few 
weeks

● Many benefits anticipated:
○ More control over job splitting and merging
○ Caching
○ DAG monitoring
○ More parallel processing options
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● Not just passing around root tree + 

other variables

● Pass full dataframes

● Include plotting and fitting in carpenter

Next milestone: PARSL backend Version 1.0: Generalised 
data-space

https://gist.github.com/benkrikler/dc1d2b1fa291b8250a6a07be2b7fc7fa
https://gist.github.com/benkrikler/dc1d2b1fa291b8250a6a07be2b7fc7fa


● Have introduced the FAST codebase
○ Being used on CMS and several other experiments

● YAML-based analysis description
○ Datasets, processing, plotting steps
○ Not too much work to “standardize” this beyond 

existing backend

● As fast as C++ analysis speed
○ Lots of room for optimisations

● Resources
○ Code: github.com/fast-hep/fast-carpenter
○ PiPI: pypi.org/project/fast-carpenter/ 
○ Docs: fast-carpenter.readthedocs.io/
○ Gitter: gitter.im/FAST-HEP/community 

Summary
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https://github.com/fast-hep/fast-carpenter
https://pypi.org/project/fast-carpenter/
https://fast-carpenter.readthedocs.io/
https://gitter.im/FAST-HEP/community


Thank You
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Interplay in 
a typical 
user’s 
analysis 
repo
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Really using 
YAML as an 
ADL

YAML descriptions from previous slides specifically tied 
to fast-carpenter and friends.

Could this be “standardised” into a full language  = YADL 

Stage provides the same interface and outputs: its 
implementing the YADL standard for such a stage, e.g.:
● Variable definition expressions
● Cut-flows with nested dictionaries

Fast-flow already provides a “backend” mechanism
● Develop further: allow user to select backend
● E.g.: AlphaTwirl (current), Spark, RDataFrame
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Fill a 
histogram:
Technical 
implementation 
details

● First load necessary branches into pandas 
dataframe

● Then one highly general function to
○ Discretize (i.e. bin) variables if needed (using pandas.cut)

○ Aggregate (groupby) and produce counts, sum of 

(multiple) weights, and sum of square of (multiple) 

weights

● This covers all cases but not optimal in many 
common uses, e.g.:
○ Single variable to bin on

○ Unweighted counts

● Can optimise behind the scenes
○ https://iscinumpy.gitlab.io/post/histogram-speeds-in-py

thon/ 

○ Config file doesn’t have to change
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https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/
https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

