
The FAST-HEP
toolkit

1

Goals of this talk
Give you a sense of:

1. the big picture

2. how these tools work

3. where we want to go

4. how this fits in to the rest of the ecosystem

2

The High-level
Overview

3

Or: Repeating some themes we’ve already heard

F.A.S.T = Faster
Analysis Software
Taskforce

● Group of HEP researchers

● Started around May 2017

● Use of 1 to 3-day “hack-shops” to

test new ideas

4

Properties of an Ideal FAST Analysis:
FLAMERSP

1. Flexibility: It should be very easy change parts of an analysis, e.g. selection, input data (incl. structure), and to
prototype new ideas

2. Learnability: A new user should be able to produce meaningful results, e.g. new plots, within a week

3. Automation: Use Continuous Integration tools to automate the validation of the analysis, publication of
documentation, and performance monitoring

4. Modularity: If a new package becomes available, improving the functionality or performance of some part of
the analysis, it should be relatively easy to replace the current version with the new package.

5. Expressiveness: An analyst should be asking “what do I want to study” and not “how do I implement this”

6. Reproducibility: Once an analysis has been run, it should be easy to repeat this, and therefore easy to
document what was done

7. Summarizing: quick and easy production of plots & tables to inspect data

8. Performance: Analysis code should run quickly, processing events at MHz rates

5

Ben Krikler

6

7

This is backwards for us:

Physicists have bent ourselves
to think in ways that the code
dictates: “I want to see this, how
must I write that…”

Instead: How can we make the
spoon itself bend for us?

Or in other words….

Less: “How do I have to write this”

More: “What do I want to see”

8

Declarative
programming

● We’re most familiar with imperative programming:
○ “Loop over each event, add this to that if

something is true, etc”

● Declarative languages the user says WHAT, the

interpretation decides the HOW
○ Wikipedia: “Declarative programming […]

expresses the logic of a computation without
describing its control flow.”

● Allows:

○ Optimisation behind the scenes
○ More mathematical description of the analysis
○ More concise definition
○ Fewer bugs
○ Easier to reproduce and share

9

- martin:

 name: Martin Devloper

 job: Developer

 skills:

 - python

 - perl

 - pascal

- tabitha:

 name: Tabitha Bitumen

 job: Developer

 skills:

 - lisp

 - fortran

 - erlang

Describing analysis
with YAML
● A superset of JSON
○ Static object description (dicts, lists, numbers,

strings)
○ Adds anchors and references: reuse common

occurrences

● Easier to read than JSON:
○ Can write without brackets and braces
○ Indentation to imply nesting (c.f. python)

● Naturally declarative:
No “control flow” (e.g. no for loops)

● Widely used to describe pipeline configuration:
○ gitlab-CI, travis-CI, Azure CI/CD, Ansible,

Kubernetes, etc
○ HEPData: YAML for reproducible Data

10

[{"martin":{"name": "Martin Devloper",

 "job": "Developer",`

 "Skills": ["python", "perl", "pascal"]}

,{"tabitha":{"name": "Tabitha Bitumen", "job":

"Developer", "Skills": ["lisp", "fortran",

"erlang"]}}]

YAML

JSON

“But this is PyHEP
and you’re talking
about YAML...”

● I want to write and “own” the least
amount of code possible:
○ less maintenance

○ more sharing

● All backend code fully

python-based

11

numexpr

Further future (?):

PyHEADTAIL

Near future:

Currently:

How do you use it?

12

Where to find the code

● Docs: fast-carpenter.readthedocs.io/

● All public on github:
○ github.com/fast-hep/
○ Main package:

github.com/fast-hep/fast-carpenter

● On PyPI, e.g. fast-carpenter

● Docker image with all tools: fasthep/fast-hep-docker

● Clonable demo analysis repository:
○ gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
○ github.com/fast-hep/fast_cms_public_tutorial (prelim.)

13

https://fast-carpenter.readthedocs.io/
https://github.com/fast-hep/
https://github.com/fast-hep/fast-carpenter
http://pypi.org/project/fast-carpenter
https://hub.docker.com/r/fasthep/fast-hep-docker
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial
http://www.github.com/fast-hep/fast_cms_public_tutorial

14

Step 1:
fast_curator

Dataset
description

15

Step 1:
fast_curator

Dataset
description

Step 2:
fast_carpenter

Analysis
description

16

Step 1:
fast_curator

Dataset
description

Step 2:
fast_carpenter

Analysis
description

Step 3:
fast_plotter
fast_datacard

Plotting and
postprocessing

17

Step 1:
fast_curator

Dataset
description

Start with a root tree

● Ah, but I have many

● Ah but I need meta-data:

● E.g. cross-section, integrated exposure, calibration source

Curator: adiabatic from 1 to many files

Dataset descriptions don’t change often

● Track descriptions in repo, easy to review

Command line tool to help write YAML

● Wild-card on the command line, including xrootd files

(contributed to pyxrootd)

● Hooks in place for experiment-specific catalogues, e.g. CMS DAS

● Integrate with Rucio

Regardless of other FAST-HEP tools, generally useful for analysis

https://gitlab.cern.ch/fast-hep/public/fast-curator/blob/master/fast_curator/xrootd_glob.py
https://github.com/xrootd/xrootd/pull/854

18

defaults:

 eventtype: mc

 nfiles: 1

 tree: events

datasets:

 - eventtype: data

 Files: [input_files/HEPTutorial/files/data.root]

 name: data

 nevents: 469384

 - files:

 - input_files/HEPTutorial/files/dy.root

 - input_files/HEPTutorial/files/dy_2.root

 name: dy

 nevents: 77729

 - files: [input_files/HEPTutorial/files/qcd.root]

 name: qcd

 nevents: 142

import:

 - "{this_dir}/WW.yml"

 - "{this_dir}/WZ.yml"

Dataset description

● Default values for all datasets
● Meta data: tree name(s), data or MC

● Each dataset has a list of files
● A unique name

● Can Import other dataset files
● Build complex nested dataset

descriptions

19

Take yous trees and make them into tables

● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:

● Histogram
● Cutflow

Cover most typical particle physics analyses

● BUT: very easy to break out to imperative
python when needed

Step 2:
fast_carpenter

Analysis
description

20

Take yous trees and make them into tables

● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:

● Histogram
● Cutflow

Cover most typical particle physics analyses

● BUT: very easy to break out to imperative
python when needed

Step 2:
fast_carpenter

Analysis
description

21

Take yous trees and make them into tables

● Just like a carpenter

Table = Pandas DataFrame

Two main types of table for now:

● Histogram
● Cutflow

Cover most typical particle physics analyses

● BUT: very easy to break out to imperative
python when needed

Step 2:
fast_carpenter

Analysis
description

Describe what to do with the data

stages:

 - Stage1: StageFromBackend

 - Stage2: module.that.provides.some.Stage

 - IMPORT: "{this_dir}/another_description.yaml"

Stage1:

 keyword: value

 another_keyword: [a, list, of, values]

Stage2:

 arg1: 35

 arg2:

 takes: ["a", "dict"]

 with: 3

 different: keys

22

What type of action to take at each step:
● Stage1 = A built-in stage of fast-carpenter
● Stage2 = A stage imported from a python module
● IMPORT = Import a list of stages and their

descriptions from another YAML file

For each stage named above:
● Provide a dictionary of keyword arguments
● Passed through to stage’s init method

Stages section:
What do you want

to do with the data?

The sequence of stages wanted

Each stage:
● Any python importable class
● Duck-typed interface
● Default stages from fast-carpenter

For example:
1. Define some variables
2. Make a histogram
3. Cut out some events
4. Make another histogram

stages:

 # Just defines new variables

 - BasicVars: fast_carpenter.Define

 # A custom class to form the invariant mass of a

 # two-object system

 - DiMuons: cms_hep_tutorial.DiObjectMass

 # Filled a binned dataframe

 - NumberMuons: fast_carpenter.BinnedDataframe

 # Select events by applying cuts

 - EventSelection: fast_carpenter.CutFlow

 # Fill another binned dataframe

 - DiMuonMass: BinnedDataframe

23

Define Stage:
fast_carpenter.Define

24

BasicVars:

 variables:

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- NIsoMuon:

 formula: IsoMuon_Idx

 reduce: count_nonzero

- IsoMuPtSum:

 formula: Muon_Pt

 reduce: sum

 mask: IsoMuon_Idx

- HasTwoMuons: NIsoMuon >= 2

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Mathematical description of operations

Operates on arrays of data
○ Uses uproot + numexpr (v2)

○ Reductions: go from object-level variables

(jagged arrays) to event-level

○ Masks: remove objects failing some condition

Support for jaggedness as much as uproot /

awkward
○ E.g. reducing a 3D jagged array → 2D jagged

array, same formula

Biggest gap: operations between collections

Define Stage:
fast_carpenter.Define

25

From Joosep Pata’s
talk yesterday

Define Stage:
fast_carpenter.Define

26

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

From Joosep Pata’s
talk yesterday

Define Stage:
fast_carpenter.Define

27

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

From Joosep Pata’s
talk yesterday

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)

Define Stage:
fast_carpenter.Define

28

- Muon_Pt: "sqrt(Muon_Px ** 2 + Muon_Py ** 2)"

- IsoMuon_Idx: (Muon_Iso / Muon_Pt) < 0.10

- HasTwoMuons: NIsoMuon >= 2

● Simple operations
● Preserve the

“jaggedness”

From Joosep Pata’s
talk yesterday

- NIsoMuon:

 formula: IsoMuon_Idx

 reduce: count_nonzero

- IsoMuPtSum:

 formula: Muon_Pt

 reduce: sum

 mask: IsoMuon_Idx

● Reduce dimensionality with a
function

● Mask out objects in the event

- Muon_lead_Pt: {reduce: 0, formula: Muon_Pt}

- Muon_sublead_Pt: {reduce: 1, formula: Muon_Pt}

Take the Nth object
(on the deepest dimension)

Select events
fast_carpenter.CutFlow

Remove events from subsequent stages

Produces a cut-flow summary table
● Weighted / raw counts

Selection is specified as a nested dictionary
of All, Any and a list of expressions

Individual cuts use same scheme as variable
definition

29

EventSelection:

 weights: {weighted: EventWeight}

 selection:

All:

 - NIsoMuon >= 2

 - triggerIsoMu24 == 1

 - {reduce: 0, formula: Muon_Pt > 25}

DiMu_controlRegion:

 weights: {nominal: weight}

 selection:

 All:

 - {reduce: 0, formula: Muon_pt > 30}

 - leadJet_pt > 100

 - All:

 - DiMuon_mass > 60

 - DiMuon_mass < 120

 - Any:

 - nCleanedJet == 1

 - DiJet_mass < 500

 - DiJet_deta < 2

30

Resulting cut-flow
outputs from
EventSelection config on
last slide

Select events
fast_carpenter.
CutFlow

Fill a histogram
fast_carpenter.BinnedDataFrame

fast_carpenter.BuildAghast ● Binning scheme:
○ Assume variable already discrete

(eg. NumberHits)

○ Equal-width bins over a range

(eg. DiMuonMass)

○ List of bin edges

● Event weights
○ Multiple weight schemes add columns

● Output written to disk:

○ Pandas to produce a dataframe in any

format

○ Also (experimentally) to a Ghast

31

NumberMuons:

 binning:

- {in: NMuon, out: nMuons}

- {in: NIsoMuon, out: nIsoMuons}

 weights: [EventWeight, EventWeight_NLO_up]

DiMuonMass:

 binning:

- in: DiMuon_Mass

 out: dimu_mass

 bins: {low: 60, high: 120, nbins: 60}

 weights: {weighted: EventWeight}

Fill a
histogram:
Resulting CSV
from
DiMuonMass

32

Showing only first three
rows for each dataset
(using groupby
operation)

All built-in
stages

● Define: Create new variables

● SystematicWeights: Create event weights with
systematic variations from multiple sources

● CutFlow: Remove events failing cuts and
summarize # of events passing each cut

● SelectPhaseSpace: Like CutFlow but creates
mask without applying it

● BinnedDataframe: Creates a binned pandas
dataframe that can be fed into fast-plotter

● BuildAghast: Like BinnedDataframe but result is
a Ghast

33

● Full list of stages can be
found with:
$ fast_carpenter
--help-stages

● Can get full help for
specific stage e.g.:
$ fast_carpenter
--help-stages-full
CutFlow

User-defined
stages

● Previous steps not able to capture all analysis
needs (yet), eg:
○ More complex variable definition (e.g. invariant masses)

○ Scale factor look-ups

● But a stage needn’t belong to fast_carpenter
○ Break out of declarative YAML to full, imperative python

● Any importable python class with the correct
interface

34

stages:

 - BasicVars: fast_carpenter.Define

 - DiMuons: cms_hep_tutorial.DiObjectMass

 - Histogram: BinnedDataframe

…

DiMuons:

 mask: IsoMuon_Idx

User-defined
stages

35

from uproot_methods import TLorentzVectorArray

import numpy as np

class DiObjectMass():

 def __init__(self, name, out_dir, collection="Muon", mask=None, out_var=None):

 self.name = name

 self.out_dir = out_dir

 self.mask = mask

 self.collection = collection

 self.branches = [self.collection + "_" + var for var in ["Px", "Py", "Pz", "E"]]

 if out_var:

 self.out_var = out_var

 else:

 self.out_var = "Di{}_Mass".format(collection)

Parameters
controlled

from analysis
description

def event(self, chunk):

 # Get the data as a pandas dataframe

 px, py, pz, energy = chunk.tree.arrays(self.branches, outputtype=tuple)

 # Rename the branches so they're easier to work with here

 if self.mask:

 mask = chunk.tree.array(self.mask)

 px = px[mask]

 py = py[mask]

 pz = pz[mask]

 energy = energy[mask]

 # Find the second object in the event (which are sorted by Pt)

 has_two_obj = px.counts > 1

 # Calculate the invariant mass

 p4_0 = TLorentzVectorArray(px[has_two_obj, 0], py[has_two_obj, 0],

 pz[has_two_obj, 0], energy[has_two_obj, 0])

 p4_1 = TLorentzVectorArray(px[has_two_obj, 1], py[has_two_obj, 1],

 pz[has_two_obj, 1], energy[has_two_obj, 1])

 di_object = p4_0 + p4_1

 # insert nans for events that have fewer than 2 objects

 masses = np.full(len(chunk.tree), np.nan)

 masses[has_two_obj] = di_object.mass

 # Add this variable to the tree

 chunk.tree.new_variable(self.out_var, masses)

 return True

User-defined
stages

36

37

fast-plotter:
● Easy to produce basic plots, tools to support

final publication-quality

● Command-line tool with reasonable defaults

and simple configuration

● Written in lots of small functions: can be

used in custom scripts / notebooks

fast-datacard:

● Bring resulting DataFrames into CMS’
Combine fitting procedures

Step 3:
fast_plotter
fast_datacard

Plotting and
postprocessing

Turning outputs into
plots: fast-plotter

● Plot on the right with:
fast_plotter -y log \
-c plot_config.yml \
-o tbl_*.csv

● YAML config:
○ Colour scheme, axis labels

○ Dataset definition

○ Annotation

38

Plot of DiMuonMass binned dataframe from last slide

“Analysis in a CI pipeline”

● To run this:
○ Demo analysis in a pipeline
○ The gitlab-ci config
○ Script tying the commands together

● Feasiblity for huge datasets unclear, but can happily manage subsets of data for testing

39

https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/pipelines/734469
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/.gitlab-ci.yml
https://gitlab.cern.ch/fast-hep/public/fast_cms_public_tutorial/blob/master/pipeline/Makefile

Where are we and
what’s next

40

Current
FAST-HEP
codebase

41

Demonstrate the previous principles
● A Minimal Viable Product where we’re continually

adding features
● Hope to cover most analyses using just YAML
● Easy to add user features when FAST-HEP doesn’t

include

Developed largely by myself, Luke Kreczko, and others

● Contributions growing from various activities

Being used for 2 CMS analyses, LUX-ZEPLIN getting going,
design studies for DUNE, FCC experiments
● New features being fed back to core packages from

analysis-specific repositories

Just how
“fast” is this?

In general: as quick as a C++ equivalent

For example, the demo repo:
● Fast-carpenter: 6 seconds
● C++ example: 4 seconds

Much optimisation possible under the hood

At this level, the main advantage not the speed of
execution:

● Readability, reproducibility, portability
● From demo repo: 100 lines of YAML vs > 600 of C++

42

Major changes

● Experimental version:
https://gist.github.com/benkrikler/dc1d2b1fa291b8
250a6a07be2b7fc7fa

● Expect first integrated version in next few
weeks

● Many benefits anticipated:
○ More control over job splitting and merging
○ Caching
○ DAG monitoring
○ More parallel processing options

43

● Not just passing around root tree +

other variables

● Pass full dataframes

● Include plotting and fitting in carpenter

Next milestone: PARSL backend Version 1.0: Generalised
data-space

https://gist.github.com/benkrikler/dc1d2b1fa291b8250a6a07be2b7fc7fa
https://gist.github.com/benkrikler/dc1d2b1fa291b8250a6a07be2b7fc7fa

● Have introduced the FAST codebase
○ Being used on CMS and several other experiments

● YAML-based analysis description
○ Datasets, processing, plotting steps
○ Not too much work to “standardize” this beyond

existing backend

● As fast as C++ analysis speed
○ Lots of room for optimisations

● Resources
○ Code: github.com/fast-hep/fast-carpenter
○ PiPI: pypi.org/project/fast-carpenter/
○ Docs: fast-carpenter.readthedocs.io/
○ Gitter: gitter.im/FAST-HEP/community

Summary

44

https://github.com/fast-hep/fast-carpenter
https://pypi.org/project/fast-carpenter/
https://fast-carpenter.readthedocs.io/
https://gitter.im/FAST-HEP/community

Thank You

45

Interplay in
a typical
user’s
analysis
repo

46

Really using
YAML as an
ADL

YAML descriptions from previous slides specifically tied
to fast-carpenter and friends.

Could this be “standardised” into a full language = YADL

Stage provides the same interface and outputs: its
implementing the YADL standard for such a stage, e.g.:
● Variable definition expressions
● Cut-flows with nested dictionaries

Fast-flow already provides a “backend” mechanism
● Develop further: allow user to select backend
● E.g.: AlphaTwirl (current), Spark, RDataFrame

47

Fill a
histogram:
Technical
implementation
details

● First load necessary branches into pandas
dataframe

● Then one highly general function to
○ Discretize (i.e. bin) variables if needed (using pandas.cut)

○ Aggregate (groupby) and produce counts, sum of

(multiple) weights, and sum of square of (multiple)

weights

● This covers all cases but not optimal in many
common uses, e.g.:
○ Single variable to bin on

○ Unweighted counts

● Can optimise behind the scenes
○ https://iscinumpy.gitlab.io/post/histogram-speeds-in-py

thon/

○ Config file doesn’t have to change

48

https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/
https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

