SWAN: Interactive data
analysis on the web

Prasanth Kothuri
On behalf of the SWAN team

https://cern.ch/swan

Oct 11th, 2019
SWAN Users’ Workshop

Introduction

&d» SWAN in a Nutshell

> Analysis only with a web browser

= No local installation needed
= Based on Jupyter Notebooks
= Calculations, input data and results “in the Cloud”

> Support for multiple analysis ecosystems and languages
= Python, ROOT C++, R and Octave

> Easy sharing of scientific results: plots, data, code

> |ntegration with CERN resources
» software, storage, mass processing power

(@)

Nyl

&® Integrating services

Software l F|Ie sySTem

Compute Storage

Isolation| local compute

&d Jupyter - The Notebook as Interface

> A web-based interactive interface and platform
that combines code, equations, text and
visualizations
» |deal for sharing/collaboration

= A “shell opened within the browser” .AO
> |nteractive, usually lightweight computations jupyter
= And distributed parallel processing capability with the v

integration of mass processing system (Apache Spark)

> Very useful for some use cases at CERN

* Final steps of an Analysis, Exploration, Teaching,
Documentation and Reproducibility

. (@)

Nyl

&™ User Interface

Configure Environment X

Specify the parameters that will be used to contextualise the
container which is created for you. See the online SWAN guide for
more details.

Software stack more

|96 v

Platform more

| CentOS 7 (gccs) v

Environment script more

| e.g. $CERNBOX_HOME/MySWAN/myscript.st ‘

Number of cores more

E :
Memory more
| 8 GB v

Spark cluster more

| BE NXCALS (NXCals) v

Always start with this configuration

Start my Session

SWAN > My Projects

My Projects

NAME o

Proj1

Proj2

Project

Project 1

Project 2

ProjTest

Spark
SWAN-Spark_NXCALS_Example

teste

- = = ®m ®m B = W =N

SWAN © Copyright CERN 2017. All rights reserved.
Home | Contacts | Support | Report a bug | Imprint

Share CERNBox

4 montt

19 days ago

FILE EDIT

VIEW

INSERT

CELL

KERNEL

NAVIGATE ~ WIDGETS

® B + 2 & B 4+ ¥ N B C(») Coe s

h.Draw()
c.Draw()

Y axis

In [6]:

We'll try now to beautify the plot a bit, for example filling the histogram with a colour and setting a grid on the canvas.

h.SetFillColor (ROOT.kBlue-10)

60

50

40

30

20

10

: ¢ = ROOT.TCanvas()

o 2 Displaying graphics

We can now draw the histogram. We will at first create a canvas, the entity which in ROOT holds graphics primitives. Note that thanks to JSROOT, this is not a static plot but an interactive
visualisation. Try to play with it and save it as image when you are satisfied!

My Histo

@ B

[ET

| Python2 © (ol

IIIIII]IIIIIIIlIIIIlIIIIlIIlIl

m1 11

by o by by g by p oy by oy g by

myHisto

Entries 1000
Mean 0.02680
Std Dev 1.038

[=N

0

4

c.SetGrid()

-3

-2

-1

0

1

2

3 Xaxiét

myHisto

h.Draw()
c.Draw()
My Histo
2 g0l ;
s Tk aM

Entries 1000
Mean 0.02680

CERN

FILE EDIT

VIEW INSERT

B+ = A B+ ¥

In [11]:

In [19]:

Out[19]:

CELL

KERNEL HELP

M B C . Code vi(=) (=) (<t

Do the heavylifting in spark and collect aggregated view to panda DF

df_loadAvg_pandas

spark.sql("SELECT submitter_host, \
avg(body.LoadAvg) as avg, \

hour(from_unixtime(timestamp / 1000, 'yyyy-MM-dd HH:mm:ss')) as hr \

FROM loadAvg \

WHERE submitter_hostgroup = 'hadoop/itdb/datanode’ \
AND dayofmonth(from_unixtime(timestamp / 1000, 'yyyy-MM-dd HH:mm:ss')) = 15 \
GROUP BY hour(from_unixtime(timestamp / 1000, 'yyyy-MM-dd HH:mm:ss')), submitter_host")\

.toPandas()
90 EXECUTORS = 180 CORES 1 COMPLETED
Job ID Job Name Status Stages Tasks
> 3 toPandas
Visualize with seaborn

heatmap of service availability
plt.figure(figsize=(10, 6))

ax = sns.heatmap(df_loadAvg_pandas.pivot(index="submitter_host', columns="hr', values="avg'), cmap="Blues")
ax.set_title("Heatmap of loadAvg")

Text(®.5,1,u"'Heatmap of loadAvg')

itrac1501.cern.ch
itrac1502.cern.ch
itrac1503.cern.ch
itrac1504.cern.ch
itrac1505.cern.ch
Iitrac1506.cern.ch

itrac1507.cern.ch

submitter_host

itrac1508.cern.ch

itrac1509.cern.ch

itrac1510.cern.ch

itrac1511.cern.ch

itrac1512.cern.ch

Heatmap of loadAvg

0

1

2 3 456 7 8 91011 1213141516 17 18 19 20 21 22 23
hr

2 s minuts sg0 s6s

10

Trusted | Python2 O P

Submission Time Duratio®

Monitoring

Visualizations

&® Cloud storage as your Home

> CERNBox is SWAN's home directory

= Storage for your notebooks and data
» 16k users and 6PB of user data

User 1
Cloud Storage

> Uses EOS disk storage system

= All experiment data potentially available i
= 250PB of experimental data at CERN (LHC and others) &

> Sync & Share

» Files synced across devices and the Cloud
= Collaborative analysis

&» Sharing made easy

> Sharing from inside SWAN interface

» Integration with CERNBoOX
= List shares from other users

> Users can share “Projects”

= Special kind of folder that contains
notebooks and other files, like input data

= Self contained

Share Project X

You are sharing:

Super Real Analysis with TOTEM data

Search by name or username.
Use "a:* for secondary accounts.

Shared with

& Danilo Piparo (danilo)
& Enric Tejedor Saavedra (enric)

dd» Software

> Software distributed through CVMFS

= Distributed read-only filesystem User
= "LCG Releases” - pack a series of compatible packages @ CERNE Software

» Reduced Docker Images size

= |Lazy fetching of software Jupyter
dcker modules
> Possibility to install libraries in user cloud storage
= Good way to use custom/not mainstream packages rl WM
= Configurable environment s File system LCG Release
CERN |
Software

ER
. (@

NS

D Architecture

w42 2

,Jupyterhub Web portal

Spark Worker
SWAN] Python task
Container Scheduler Python task

[(g;’j User 2} [% Usga(kn '7 |
AppMaster

CVMFS CERNBox rcn @l P
(Software) (User Files) SpQﬂ(@Inadaop
CERN Resources IT Hadoop and Spark clusters
* User sessions are terminated after 6h of no activity to optimize usage of compute resources . %w

Access to Computing Resources

&d Integration with Spark

> Connection to CERN Spark Clusters

= Spark: general purpose distributed computing
framework

[d‘!" User Notebook
SWAN

> Same environment across platforms
(local/remote) Spark Master

= Software - CVMFS

e v
Spark Worker

> Graphical Jupyter extensions developed
= Spark Connector
= Spark Monitor Python task Python task Python task

> Spark Clusters

= NXCals: — Dedicated cluster for accelerator logging % Op}\ggmem J
» Analytix: — General purpose YARN cluster \ ’ N
» Cloud Containers: — General purpose Kubernetes
cluster "\Z
Spark Cluster SPQ"’(

ER
DN

&» Spark Connector

Spark clusters connection X > Spark ConneCtOr - handling the

ot spark configuration complexity

Envvermant varablos ca be s v ENV_VARLNAME) » Useris presented with Sp ark Session

o (Spark) and Spark Context (sc)

Sundascontursions = Ability to bundle configurations specific to
| user communities

s;idfgc.,tw = Ability to specify additional configuration

false

& spark.driver.memory
29

& spark.executor.instances

CERN
= \W

&d Spark Monitor

> Spark Monitor — jupyter notebook @HSE

extension

» For live monitoring of spark jobs
spawned from the notebook

= Access to Spark WEB Ul from the
notebook

= Several other features to debug and
troubleshoot Spark application

12:54:50

2 EXECUTORS 4 CORES 1 RUNNING
Job ID Job Name Status Stages Tasks Submission Time Duration
» 1 toPandas | RUNNING | 0/2 (1 active) ll a few seconds ago

& How to get help?

> SWAN Community Help
» https://cern.ch/swan-community
= Find solution to the commonly encountered issues / 1. Introduction
questions on the usage of Jupyter notebooks, LCG , What is SWAN
releases, storage and spark > Jupyter notebooks
. . > Cloud storage: CERNBox and EOS
» Report improvements / new features to the service cottare: e

= E£.g: How to install custom user packages

N

Create and manage a SWAN session
> Select a configuration

> Set a configuration as default

> Service Now oo o
. . > SWIICh 10 a new contniguration

= Report issues to the service » Terminate a session
= E.g: Unable to start a session 3. Working with SWAN

> Create a Project
> Create a Notebook

> Help on various functionality of the tool 2]

> Create a Folder

> Open a Terminal

https://cern.ch/swan-community

& How to get started?

> Gallery of sample notebooks for varied usage of SWAN

= Quick way to be productive
= Also accessible from cern.ch/swan

Gallery ®

> Basic Examples :

> ROOT Primer BaS|C Examples

> Accelerator Complex

> FCC This is a gallery of basic example notebooks: click on the images to inspect the underlying document, open in SWAN the single notebooks or the full git
> LHC Signal Monitoring repository!

> Beam Dynamics Many of the notebooks are ROOTbooks, based on the ROOT framework. To know more about ROOT, visit root.cern.ch

> Machine Learning

> Apache Spark

> Outreach Simple ROOTbook (Python Simple ROOTbook (C++) Simple Fitting
> Awake

Where to find us

&» \Where to find us

> Contacts

= swan-admins@cern.ch
= http://cern.ch/swan

> Repository
= https://qgitlab.cern.ch/swan

> Science Box
= https://cern.ch/sciencebox

ER
o (@

NS

mailto:swan-admins@cern.ch
http://cern.ch/swan
https://gitlab.cern.ch/swan
https://cern.ch/sciencebox

SWAN and its analysis ecosystem

Thank you

Prasanth Kothuri
prasanth.kothuri@cern.ch

