
Integrating
CMSSW in SWAN

11.10.2019, 1st SWAN workshop

1

Valentina Avati1, Karol Remigiusz Bak1, Leszek Grzanka1, Maciej Malawski1,
Vincenzo Eduardo Padulano2, Danilo Piparo3, Javier Cervantes Villanueva3

1AGH University of Science and Technology, Krakow, PL
2Universita & INFN, Milano-Bicocca, Italy
3CERN, Switzerland

Leszek.Grzanka@cern.ch

1

Project background and goals

- 2018, summer student project: ↗Analysis with rdf
- rdataFrame & Apache Spark
- 4.7 tb preprocessed data in the NTuple format
- Analysis goal: elastic scattering of protons under small angles
- promising results, need to test on larger data set

- 2019, extending the scope:
- rdataFrame & Apache Spark
- 500 tb in CMSSW RECO format (ctppsReco, TrackReco, VertexRec)
- Analysis goal: selection of events, 2 protons with 2 or 4 central tracks

Project goal: investigate feasibility of RDataFrame + Spark in efficient
processing of RECO data in the TOTEM experiment.

2

https://root.cern/full-totem-analysis-based-rdataframe-and-distributed-big-spark-cluster-pyrdf
https://doi.org/10.1007/978-3-030-29400-7_18

CMSSW and RECO data format
- Analysis use case require detector level

data, available in RECO (not in AOD)

3

CMSSW framework: event processing using series
of modules

- Processing logic: C++ classes + Python config
- cmsRun config.py

CMS Event Data model (EDM):
- Any C++ class serialised, uses ROOT dictionaries
- Data packed in edm:Event container
- Data access via EDM wrapper
- Poor support for reading outside CMSSW

Event data tiers

rdataFrame - introduction

- official root part since v6.14 (June 2018)
- a lot of improvements in ROOT v6.18 (June 2019), development ongoing
- supported in latest cmssw versions: 11_X & 10_6_0_pre3
- scales to many-core architectures
- used by physicists of major lhc experiments

- alice: rdf in the o2 software framework
- atlas: reading xaods with rdf
- cms: real analyses, r&d on reading nanoaods

↗ rdataFrame in the wild – example real life usages

4

https://indico.cern.ch/event/587955/contributions/2938126/
https://gitlab.cern.ch/uworlika/xaod-ds/tree/master
https://github.com/bianchini/Wmass
https://github.com/stwunsch/root-dataframe-nanoaod
https://docs.google.com/presentation/d/1BD1XwoRff3HqS4QTFlOoP29VBNM7u-aOwqSVncrTfog/edit#slide=id.g40de2a6487_0_3

rdataFrame – general ideas
Read a file, create a custom variable and plot an histogram

 Traditional root RDataFrame

5

TFile f(filename);
TTreeReader tree(“treename”, &f);
TTreeReaderArray<double> px(tree, “px”);
TTreeReaderArray<double> py(tree, “py”);
TTreeReaderArray<double> E(tree, “E”);
TH1F h(“pt”, “pt”, 16, 0, 4);

while (tree.Next())
 for (int i = 0; i < px.GetSize(); i++)
 if (E[i] > 100)
 h.Fill(sqrt(px[i]*px[i] + py[i]*py[i]);

h.Draw();

ROOT::EnableImplicitMT();

ROOT::RDataFrame d(“treename”, filename);

d.Filter(“E > 100”)
 .Define(“good_pt”, “sqrt(px*px + py*py)”)
 .Histo1D({“pt”, “pt”, 16, 0, 4}, “good_pt”)
 ->Draw();

rdataFrame – dealing with cms data format

Access to RECO data via calls to class methods. Data is not tabular, each event
contain variable number of tracks.

So, instead of accessing the parameters directly:

ROOT::RDataFrame d(“Events”, filename);
d.Define("pt", "track_pt");

We use nested functions (RVec functionality):

ROOT::RDataFrame d(“Events”, filename);
d.Define("pt", "return Map(tracks, [](Track tr) { return tr.pt(); });")

6↗ https://gitlab.cern.ch/kbak/pyrdf-analysis

https://gitlab.cern.ch/kbak/pyrdf-analysis

Parallelization options

7

Multithreading
➢ Straightforward in CMSSW and

in RDataFrame
➢ Limited by number of available

cores

Apache Spark
➢ Dedicated spark cluster

required
➢ No easy way to parallelize

CMSSW analysis on Spark

CERN spark clusters easily available in
notebook on SWAN instances at CERN

SWAN offers customization of setup
with script

Analysis in CMSSW, using full framework, details
Enable SCRAM build system (scram command):
bash-4.2$ source /cvmfs/cms.cern.ch/cmsset_default.sh

Prepare project area:
bash-4.2$ scram project CMSSW CMSSW_11_0_0_pre5 && cd CMSSW_11_0_0_pre5

Set libraries (i.e. LD_LIBRARY_PATH), gcc (modifications of PATH), python interpreter + modules
(i.e. PYTHONPATH) and ROOT to CMSSW-specific version:
bash-4.2$ cmsenv

Design and implement C++ analysis code, prepare Python config file and finally run it
bash-4.2$ cmsRun myConfig.py

- if we run this in SWAN terminal, it works
- but we need CMSSW libraries inside the notebook
- to be able to run it on Spark cluster (which can be accessed only from

SWAN notebook, not terminal) 8

↗gist.github.com/karolBak/a42fa9096efc9fd29f3dff867e479b5f 9

SWAN - enabling CMSSW environment
Relevant part of what cmsenv command does,
injected as SWAN enviroment script:

https://gist.github.com/karolBak/a42fa9096efc9fd29f3dff867e479b5f

CMSSW forces a software stack incompatible with SWAN

SWAN with “Software stack: 96”:

$ which python
/cvmfs/sft.cern.ch/lcg/views/LCG_96/
x86_64-centos7-gcc8-opt/bin/python

$ which root
/cvmfs/sft.cern.ch/lcg/views/LCG_96/
x86_64-centos7-gcc8-opt/bin/root

After setting up the paths for CMSSW:

$ which python
/cvmfs/cms.cern.ch/slc7_amd64_gcc820/cms/cmssw/
CMSSW_11_0_0_pre5/external/slc7_amd64_gcc820/bin/python

$ which root
/cvmfs/cms.cern.ch/slc7_amd64_gcc820/cms/cmssw/
CMSSW_11_0_0_pre5/external/slc7_amd64_gcc820/bin/root 10

CMSSW software stack -
different python and ROOT
(deeper: different LLVM, gcc,
glibc?), many python packages
missing (i.e. spark connectors).

SWAN software stack - missing dictionaries needed to read
CMS RECO data

SWAN - multithreaded analysis

11

Despite incompatibilities, we are
able to run the analysis on SWAN
instance, not seeing any errors.

SWAN - multithreaded analysis

12

Spark menu is disabled

Hard to debug anything here,
as notebook doesn’t throw any
errors.

Logs are not available as well.

Conclusions

13

- integrating CMSSW in SWAN is only possible if considering it as a terminal

interface, that is picking only ROOT and the CMS data format libraries via

modifying some environment variables

- using the Jupyter notebook and the Spark clusters is incompatible at this

moment with the environment needed for the analysis. Such setup would

involve picking ROOT from the CMS repository and the Jupyter extensions

and Spark framework from the SFT repository

Acknowledgments

This work was partially supported by grant MNiSW DIR/WK/2018/13 by the Polish
Ministry of Science and Higher Education

14

