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Agenda

▶ https://indico.cern.ch/e/ROOTSummer3
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https://indico.cern.ch/e/ROOTSummer3


Make Sure One of These Works for You!

▶ On Lxplus7/Lxbatch7
● ssh -XY <username>@lxplus7.cern.ch
● source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.16.00/x86_64-centos7-gcc48-opt/bin/thisroot.sh

▶ On SWAN: https://swan.cern.ch
● The Jupyter Notebook service of CERN

▶ On your machine (Linux or Mac)
● Compiled by yourself from sources
● Using the binaries we distribute
● See https://root.cern/releases

Note: ROOT on Windows is in beta mode.
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https://swan.cern.ch
https://root.cern/releases


Introduction
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A Quick Tour of ROOT



What can you do with ROOT?

6



ROOT in a Nutshell

ROOT can be seen as a collection of building blocks for various activities, like:
▶ Data analysis: histograms, graphs, functions
▶ I/O: row-wise, column-wise storage of any C++ object
▶ Statistical tools (RooFit/RooStats): rich modeling and statistical inference
▶ Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
▶ C++ interpretation: full language compliance
▶ Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
▶ Advanced graphics (2D, 3D, event display)
▶ Declarative Analysis: RDataFrame
▶ And more: HTTP servering,  JavaScript visualisation
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https://github.com/root-project/root

https://github.com/root-project/root


ROOT Application Domains
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…

…



LHC Data in ROOT Format
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~1EB   
as of 2019



https://root.cern

▶ ROOT web site: the source of 
information and help for ROOT users
● For beginners and experts
● Downloads, installation instructions
● Documentation of all ROOT classes
● Manuals, tutorials, presentations
● Forum
● ...
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Resources

▶ ROOT Website: https://root.cern
▶ Training: https://github.com/root-project/training
▶ More material: https://root.cern/getting-started

● Includes a booklet for beginners: the “ROOT Primer”
▶ Reference Guide: 

https://root.cern/doc/master/index.html
▶ Forum: https://root-forum.cern.ch

11

https://root.cern
https://github.com/root-project/training
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://root-forum.cern.ch


From Sources

▶ Get the ROOT sources: 
● git clone http://github.com/root-project/root
● Or visit https://root.cern.ch/content/release-61600

▶ Create a build directory and configure ROOT:
● mkdir rootBuild; cd rootBuild
● cmake ../root
● https://root.cern.ch/building-root for all the config options

▶ Start compilation
● make -j

▶ Prepare environment:
● . bin/thisroot.sh
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Expert Level

http://github.com/root-project/root
https://root.cern.ch/content/release-61600
https://root.cern.ch/building-root


The ROOT Prompt and Macros
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The ROOT Prompt
▶ C++ is a compiled language

● A compiler is used to translate source code into machine instructions

▶ ROOT provides a C++ interpreter
● Interactive C++, without the need of a compiler, like Python, Ruby, 

Haskell …
◼ Code is Just-in-Time compiled!

● Allows reflection (inspect layout of classes at runtime)
● Is started with the command:

● The interactive shell is also called “ROOT prompt” or “ROOT interactive 
prompt”
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root



ROOT As a Calculator
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Here we make a step forward. 
We declare variables and use a for 
control structure. 

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09



Controlling ROOT

▶ Special commands which are not C++ can be typed at the 
prompt, they start with a “.”

▶ For example:
● To quit root use .q
● To issue a shell command use .! <OS_command>
● To load a macro use .L <file_name> (see following slides about macros)
● .help or .? gives the full list
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root [1] .<command>



Ex Tempore Exercise
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▶ Fire up ROOT

▶ Verify it works as a calculator

▶ List the files in /etc from within the ROOT prompt

▶ Inspect the help

▶ Quit



Interactivity

18

root [0] #include "a.h"
root [1] A o("ThisName"); o.printName()
ThisName
root [1] dummy()
(int) 42  # include <iostream>

 class A {
 public:
   A(const char* n) : m_name(n) {}
   void printName() { std::cout << m_name << std::endl; }
 private:
   const std::string m_name;
 };

 int dummy() { return 42; }

a.h



▶ We have seen how to interactively type lines at the prompt
▶ The next step is to write “ROOT Macros” – lightweight programs
▶ The general structure for a macro stored in file MacroName.C is:

ROOT Macros
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void MacroName() {
        <          ...
          your lines of C++ code
                   ...             >
}



▶ Macros can also be defined with no name

▶ Cannot be called as functions!
● See next slide :)

Unnamed ROOT Macros
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{
        <          ...
          your lines of C++ code
                   ...             >
}



▶ A macro is executed at the system prompt by typing:

▶ or executed at the ROOT prompt using .x:

▶ or it can be loaded into a ROOT session and then be run by typing:

Running a Macro
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> root MacroName.C

> root
root [0] .x MacroName.C

root [0] .L MacroName.C
root [1] MacroName();



▶ We have seen how ROOT interprets and “just in time compiles” code. 
ROOT also allows to compile code “traditionally”. At the ROOT 
prompt:

Interpretation and Compilation
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root [1] .L macro1.C+
root [2] macro1()

int main() {
  ExampleMacro();
  return 0;
}

> g++ -o ExampleMacro ExampleMacro.C `root-config --cflags --libs`
> ./ExampleMacro

▶ ROOT libraries can also be 
used to produce standalone, 
compiled applications:

Advanced Users



Time For Exercises

▶ Exercises:
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C++I
nterpreter

▶ You like don’t have time to complete all
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https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C%2B%2BInterpreter
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C%2B%2BInterpreter


The ROOTBooks
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The Jupyter Notebook
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A web-based interactive computing platform that combines code, 
equations, text and visualisations.

Many supported languages: C++, Python, Haskell, Julia… 
One generally speaks about a “kernel” for a specific 
language

In a nutshell: an “interactive shell opened within the browser”

http://www.jupyter.org

http://www.jupyter.org
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How It Looks Like



Use Notebooks at CERN

▶ SWAN: Service for Web based ANalysis

▶ Get a CERNBox (if you don’t have one)
● Visit https://cernbox.cern.ch

▶ Log in to https://swan.cern.ch
▶ Create a project and a C++ notebook

● Type in some code
● Run it
● Create markdown cells
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https://cernbox.cern.ch
https://swan.cern.ch


Notebooks On Your Machine

▶ Possible to install Jupyter as a package
▶ Fire up with the  root --notebook  command

28



Examples
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More Examples
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Histograms, Graphs and Functions
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Histograms
▶ Simplest form of data reduction

● Can have billions of collisions, the Physics displayed in a few histograms
● Possible to calculate momenta: mean, rms, skewness, kurtosis ...

▶ Collect quantities in discrete categories, the bins
▶ ROOT Provides a rich set of histogram types

● We’ll focus on histogram holding a float per bin
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My First Histogram

33

root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.Draw()



My First Histogram
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root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()



Interlude: Scope

Bad for graphics:

ROOT doesn’t show my histogram!
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// makeHist.C:
void makeHist() {
  TH1F hist("hist", "My Histogram");
  hist.Draw(); // shows histogram
}



Functions

▶ Mathematical functions are represented by the TF1 class
▶ They have names, formulas, line properties, can be 

evaluated as well as their integrals and derivatives
● Numerical techniques for the time being

36
From the TGraphPainter documentation:
https://root.cern.ch/doc/master/classTGraphPainter.html

https://root.cern.ch/doc/master/classTGraphPainter.html


Functions

Can describe functions as:

▶ Formulas (strings)
▶ C++ functions/functors/lambdas

● Implement your highly performant custom function

▶ With and without parameters
● Crucial for fits and parameter estimation
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▶ The class TF1 represents one-dimensional functions (e.g. f(x) ):

▶ An extended version of this example is the definition of a function 
with parameters:

ROOT as a Function Plotter
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root [0] TF1 f1("f1","sin(x)/x",0.,10.); //name,formula,min,max

root [1] f1.Draw();

root [2] TF1 f2("f2","[0]*sin([1]*x)/x",0.,10.);

root [3] f2.SetParameters(1,1);

root [4] f2.Draw();

Try it!



ROOT as a Function Plotter
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Another Example
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root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()
root [3] TF1 f("g", "gaus", -8, 8)
root [4] f.SetParameters(250, 0, 1)
root [5] f.Draw("Same")



Graphs

▶ Display points and errors

▶ Not possible to calculate momenta

▶ Not a data reduction mechanism

▶ Fundamental to display trends

▶ Focus on TGraph and TGraphErrors classes in this course
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See 132nd LHCC Meeting

https://indico.cern.ch/event/679087/


My First Graph
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root [0] TGraph g;
root [1] for (auto i : {0,1,2,3,4}) g.SetPoint(i,i,i*i)
root [2] g.Draw("APL")



Creating a Nice Plot: Survival Kit

43Credit: https://www.swissknifeshop.com



The Markers
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kDot=1, kPlus, kStar, kCircle=4, kMultiply=5,
kFullDotSmall=6, kFullDotMedium=7, kFullDotLarge=8,
kFullCircle=20, kFullSquare=21, kFullTriangleUp=22,
kFullTriangleDown=23, kOpenCircle=24, kOpenSquare=25,
kOpenTriangleUp=26, kOpenDiamond=27, kOpenCross=28,
kFullStar=29, kOpenStar=30, kOpenTriangleDown=32,
kFullDiamond=33, kFullCross=34 etc…

☺

From the TAttMarker documentation:
https://root.cern.ch/doc/master/classTAttMarker.html

https://root.cern.ch/doc/master/classTAttMarker.html


My First Graph
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root [3] g.SetMarkerStyle(kFullTriangleUp)



My First Graph
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root [3] g.SetMarkerStyle(kTriangleUp)
root [4] g.SetMarkerSize(3)



The Colors (TColorWheel)
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My First Graph
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root [5] g.SetMarkerColor(kAzure)
root [6] g.SetLineColor(kRed - 2)
root [7] g.SetLineWidth(2)
root [8] g.SetLineStyle(3)



My First Graph
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root [9] g.SetTitle("My Graph;The X;My Y")



My First Graph
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root [10] gPad->SetGrid()



My First Graph
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root [10] auto txt = "#color[804]{My text #mu {}^{40}_{20}Ca}"
root [11] TLatex l(.2, 10, txt)
root [12] l.Draw() 



My First Graph
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root [13] gPad->SetLogy();



Time for Exercises!
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https://github.com/root-project/training/tree/master/SummerStudentCour
se/2019/Exercises/HistogramsGraphsFunctions

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/HistogramsGraphsFunctions
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/HistogramsGraphsFunctions


Parameter Estimation and Fitting

54



▶ Estimate parameters of a hypothetical distribution from the 
observed data distribution
● y = f ( x |  θ ) is the fit model function

▶ Find the best estimate of the parameters θ assuming f ( x |  θ )
▶ Both Likelihood and Chi2 fitting are supported in ROOT

What is Fitting ?

55

Example 
Higgs ➞ γγ  spectrum
We can fit for:
• the expected number of Higgs events
• the Higgs mass



Fitting in ROOT
Fitting in ROOT:
▶ Create first a parametric function object, TF1, which represents our model

● need to set the initial values of the function parameters.
▶ Fit the data object (Histogram or Graph):

● Call the Fit method passing the function object
● various options are possible (see the TH1::Fit documentation) 

▶ Examine result:
● get parameter values, uncertainties, correlation
● get fit quality estimation

▶ The resulting fit function is also drawn automatically on top of the Histogram or the Graph 

when calling TH1::Fit or TGraph::Fit
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https://root.cern.ch/doc/master/classTH1.html#a63eb028df86bc86c8e20c989eb23fb2a


Fitting Histograms

▶ We have a histogram, h1, and we want to fit it:

57

For displaying the fit parameters:

root [0] TF1 f1("f1","gaus");
root [1] h1.Fit(&f1); 
 FCN=27.2252 FROM MIGRAD    STATUS=CONVERGED      60 CALLS          61 TOTAL

                     EDM=1.12393e-07    STRATEGY= 1      ERROR MATRIX ACCURATE 

  EXT PARAMETER                                   STEP         FIRST   

  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 

   1  Constant     7.98760e+01   3.22882e+00   6.64363e-03  -1.55477e-05

   2  Mean        -1.12183e-02   3.16223e-02   8.18642e-05  -1.49026e-02

   3  Sigma        9.73840e-01   2.44738e-02   1.69250e-05  -5.41154e-03       

gStyle->SetOptFit(1111);



Creating the Fit Function

▶ How to create the parametric function object (TF1) :
◼ we can write formula expressions using functions:

- we can use the available functions in ROOT library and stl
- [0],[1],[2] indicate the parameters. 
- We could also use meaningful names, like [a],[mean],[sigma]

◼ There are pre-defined functions

◼ pre-defined functions available: gaus, expo, landau, 
breitwigner,crystal_ball,pol{0,1..,10}, cheb{0,1},xygaus,xylanday,bigaus

58

TF1 f1("f1","[0]*TMath::Gaus(x,[1],[2])");

TF1("f1","gaus");



PyROOT: The ROOT Python Bindings
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PyROOT
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▶ Python bindings for ROOT

▶ Access all the ROOT C++ functionality from Python
● Benefit from C++ performance

▶ Dynamic, automatic

▶ "Pythonisations" for specific cases



Using PyROOT
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▶ Entry point to use ROOT from within Python

▶ All the ROOT classes you have learned so far can be 
accessed from Python

 import ROOT

 ROOT.TH1F
 ROOT.TGraph
 ...



Example: C++ to Python
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> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

> python
>>> import ROOT
>>> h = ROOT.TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()



Example: C++ to Python
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> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

> python
>>> from ROOT import TH1F
>>> h = TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()

also with
individual import



Time For Exercises

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/PythonInterface

▶ In order to run the exercises:

● Use the Python prompt

● Run a Python script

● Use SWAN
◼ Create a canvas before drawing: c = ROOT.TCanvas()
◼ Run c.Draw() at the end to see the plot

64

> python
>>> 

> python -i myscript.py

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/PythonInterface


Reading and Writing Data
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The ROOT File

▶ In ROOT, objects are written in files*, represented by 
TFile instances

▶ TFiles are binary and can be compressed (transparently 
for the user)

▶ TFiles are self-descriptive:
● The information how to retrieve objects from a file is stored with the 

objects

* this is an understatement - we’ll not go into the details in this course!
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TFile in Action
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TFile f("myfile.root", "RECREATE");



TFile in Action: Writing
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TFile f("myfile.root", "RECREATE");

TH1F h("h", "h", 64, 0, 8);

h.Write("h");

f.Close(); ▶ Write to a file
▶ Close the file and make sure 

the operation succeeded
> rootls -l myfile.root
TH1F  Jun 24 15:02 2019 h  "h"



TFile in Action: Reading
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TH1F* myHist;

TFile f("file.root");

f.GetObject("h", myHist);

myHist->Draw();

import ROOT

f = ROOT.TFile("file.root")

f.h.Draw()
Get the histogram by name! 
Possible only in Python



Listing TFile Content
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▶ TBrowser interactive tool
> root [0] TBrowser t      

▶ rootls tool: list content
▶ TFile::ls(): prints content 

● Great for interactive usage



Time For Exercises
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https://github.com/root-project/training/tree/master/SummerStudentCourse/20
19/Exercises/WorkingWithFiles

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithFiles
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithFiles


The ROOT Columnar Format
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Columns and Rows

▶ High Energy Physics: many statistically independent 
collision events

▶ Create an event class, serialise and write out N instances 
into a file?
→ No. Very inefficient!

▶ Organise the dataset in columns
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Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→ 

columns
or “branches”← 

74

can contain any kind
of c++ object
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Relations Among Columns



The TTree
A columnar dataset in ROOT is represented by the class TTree:

▶ Also called tree, columns also called branches
▶ Columns can contain different types.
▶ Support any type of object
▶ One row per entry (or, in collider physics, event)

If just a single number per column is required, the simpler TNtuple can 
be used.

A modern and simple way to interact with ROOT datasets is to use 
RDataFrame

▶ Low-level interfaces to deal with datasets do exist but are beyond 
the scope of this course
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https://root.cern/doc/master/classROOT_1_1RDataFrame.html


RDataFrame: quick how-to
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1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce results 

(e.g. fill a histogram) 



Simple Code Example
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ROOT::RDataFrame d("t", "f.root");

auto h = d.Filter("theta > 0").Histo1D("pt");

h->Draw();
2. Cut on 
theta

3. Fill histogram 
with pt

1. Build RDataFrame



Filling multiple histograms
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auto h1 = d.Filter("theta > 0").Histo1D("pt");

auto h2 = d.Filter("theta < 0").Histo1D("pt");

h1->Draw();       // event loop is run lazily once here 

h2->Draw("SAME"); // no need to run loop again here 

Book all your actions upfront. The first time a result is 
accessed, RDataFrame will fill all booked results.
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More on histograms

auto h = d.Histo1D({"myName","Title;x",10,0.,1.},

                      "x");

You can specify a model histogram with
● a name and a title
● a predefined axis range
Here, the histogram is created with 10 bins ranging from 0 to 1, 
and the axis is labelled “x”.

Expert Feature
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Define a new column

double m = d.Filter("x > y")

            .Define("z", "sqrt(x*x + y*y)")

            .Mean("z");

`Define` takes the name of the new column and its 
expression. Later you can use the new column as if it 

was present in your data. 
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Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")    

           .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hx = d2.Histo1D("x");

You can store transformed data-frames in variables, 
then use them as you would use a RDataFrame. 

data

filter
x > 0

histo 
x

histo 
z

define
z

d

d2
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d.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut");

d.Report()->Print();

Cutflow reports

// output
xcut      : pass=49         all=100        --   49.000 %
ycut      : pass=22         all=49         --   44.898 %

When called on the main RDF object, `Report` prints 
statistics for all filters with a name
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auto new_df = df.Filter("x > 0")

                .Define("z", "sqrt(x*x + y*y)")

                .Snapshot("tree", "newfile.root");

Saving data to file

We filter the data, add a new column, and then save 
everything to file. No boilerplate code at all.



Using callables instead of strings
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// define a c++11 lambda - an inline function - that checks “x>0”

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");

h->Draw();

any callable (function, lambda, functor class) can be 
used as a filter, as long as it returns a boolean

Expert Feature



RDataFrame: declarative analyses
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● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ?   parallelization is not trivial?

ROOT::RDataFrame d("treename", "file.root");

auto h = d.Filter(IsGoodEntry, {"x","y"})

          .Histo1D("x");

A function taking 2 
values in input, returns
a boolean



RDataFrame: parallelism
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● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ?   parallelization is not trivial?

ROOT::EnableImplicitMT();

ROOT::RDataFrame d("treename", "file.root");

auto h = d.Filter(IsGoodEntry, {"x","y"})

          .Histo1D("x");
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C++ / JIT / PyROOT

d.Filter("th > 0").Snapshot("t","f.root","pt*");
C++ and just-in-time compiled code

PyROOT -- just leave out the `;`
d.Filter("th > 0").Snapshot("t","f.root","pt*")



89

Time For Exercises

https://github.com/root-project/training/tree/master/Summer
StudentCourse/2019/Exercises/WorkingWithColumnarData

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithColumnarData
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithColumnarData


Wrap up
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