
https://root.cern

ROOT
Data Analysis Framework

ROOT Summer Student
Course

S. Hageboeck, E. Tejedor for the ROOT Team

https://root.cern

Agenda

▶ https://indico.cern.ch/e/ROOTSummer3

2

https://indico.cern.ch/e/ROOTSummer3

Make Sure One of These Works for You!

▶ On Lxplus7/Lxbatch7
● ssh -XY <username>@lxplus7.cern.ch
● source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.16.00/x86_64-centos7-gcc48-opt/bin/thisroot.sh

▶ On SWAN: https://swan.cern.ch
● The Jupyter Notebook service of CERN

▶ On your machine (Linux or Mac)
● Compiled by yourself from sources
● Using the binaries we distribute
● See https://root.cern/releases

Note: ROOT on Windows is in beta mode.

3

https://swan.cern.ch
https://root.cern/releases

Introduction

4

5

A Quick Tour of ROOT

What can you do with ROOT?

6

ROOT in a Nutshell

ROOT can be seen as a collection of building blocks for various activities, like:
▶ Data analysis: histograms, graphs, functions
▶ I/O: row-wise, column-wise storage of any C++ object
▶ Statistical tools (RooFit/RooStats): rich modeling and statistical inference
▶ Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
▶ C++ interpretation: full language compliance
▶ Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
▶ Advanced graphics (2D, 3D, event display)
▶ Declarative Analysis: RDataFrame
▶ And more: HTTP servering, JavaScript visualisation

7
https://github.com/root-project/root

https://github.com/root-project/root

ROOT Application Domains

8

…

…

LHC Data in ROOT Format

9

~1EB
as of 2019

https://root.cern

▶ ROOT web site: the source of
information and help for ROOT users
● For beginners and experts
● Downloads, installation instructions
● Documentation of all ROOT classes
● Manuals, tutorials, presentations
● Forum
● ...

10

Resources

▶ ROOT Website: https://root.cern
▶ Training: https://github.com/root-project/training
▶ More material: https://root.cern/getting-started

● Includes a booklet for beginners: the “ROOT Primer”
▶ Reference Guide:

https://root.cern/doc/master/index.html
▶ Forum: https://root-forum.cern.ch

11

https://root.cern
https://github.com/root-project/training
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://root-forum.cern.ch

From Sources

▶ Get the ROOT sources:
● git clone http://github.com/root-project/root
● Or visit https://root.cern.ch/content/release-61600

▶ Create a build directory and configure ROOT:
● mkdir rootBuild; cd rootBuild
● cmake ../root
● https://root.cern.ch/building-root for all the config options

▶ Start compilation
● make -j

▶ Prepare environment:
● . bin/thisroot.sh

12

Expert Level

http://github.com/root-project/root
https://root.cern.ch/content/release-61600
https://root.cern.ch/building-root

The ROOT Prompt and Macros

13

The ROOT Prompt
▶ C++ is a compiled language

● A compiler is used to translate source code into machine instructions

▶ ROOT provides a C++ interpreter
● Interactive C++, without the need of a compiler, like Python, Ruby,

Haskell …
◼ Code is Just-in-Time compiled!

● Allows reflection (inspect layout of classes at runtime)
● Is started with the command:

● The interactive shell is also called “ROOT prompt” or “ROOT interactive
prompt”

14

root

ROOT As a Calculator

15

Here we make a step forward.
We declare variables and use a for
control structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Controlling ROOT

▶ Special commands which are not C++ can be typed at the
prompt, they start with a “.”

▶ For example:
● To quit root use .q
● To issue a shell command use .! <OS_command>
● To load a macro use .L <file_name> (see following slides about macros)
● .help or .? gives the full list

16

root [1] .<command>

Ex Tempore Exercise

17

▶ Fire up ROOT

▶ Verify it works as a calculator

▶ List the files in /etc from within the ROOT prompt

▶ Inspect the help

▶ Quit

Interactivity

18

root [0] #include "a.h"
root [1] A o("ThisName"); o.printName()
ThisName
root [1] dummy()
(int) 42 # include <iostream>

 class A {
 public:
 A(const char* n) : m_name(n) {}
 void printName() { std::cout << m_name << std::endl; }
 private:
 const std::string m_name;
 };

 int dummy() { return 42; }

a.h

▶ We have seen how to interactively type lines at the prompt
▶ The next step is to write “ROOT Macros” – lightweight programs
▶ The general structure for a macro stored in file MacroName.C is:

ROOT Macros

19

void MacroName() {
 < ...
 your lines of C++ code
 ... >
}

▶ Macros can also be defined with no name

▶ Cannot be called as functions!
● See next slide :)

Unnamed ROOT Macros

20

{
 < ...
 your lines of C++ code
 ... >
}

▶ A macro is executed at the system prompt by typing:

▶ or executed at the ROOT prompt using .x:

▶ or it can be loaded into a ROOT session and then be run by typing:

Running a Macro

21

> root MacroName.C

> root
root [0] .x MacroName.C

root [0] .L MacroName.C
root [1] MacroName();

▶ We have seen how ROOT interprets and “just in time compiles” code.
ROOT also allows to compile code “traditionally”. At the ROOT
prompt:

Interpretation and Compilation

22

root [1] .L macro1.C+
root [2] macro1()

int main() {
 ExampleMacro();
 return 0;
}

> g++ -o ExampleMacro ExampleMacro.C `root-config --cflags --libs`
> ./ExampleMacro

▶ ROOT libraries can also be
used to produce standalone,
compiled applications:

Advanced Users

Time For Exercises

▶ Exercises:
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C++I
nterpreter

▶ You like don’t have time to complete all

23

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C%2B%2BInterpreter
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C%2B%2BInterpreter

The ROOTBooks

24

The Jupyter Notebook

25

A web-based interactive computing platform that combines code,
equations, text and visualisations.

Many supported languages: C++, Python, Haskell, Julia…
One generally speaks about a “kernel” for a specific
language

In a nutshell: an “interactive shell opened within the browser”

http://www.jupyter.org

http://www.jupyter.org

26

How It Looks Like

Use Notebooks at CERN

▶ SWAN: Service for Web based ANalysis

▶ Get a CERNBox (if you don’t have one)
● Visit https://cernbox.cern.ch

▶ Log in to https://swan.cern.ch
▶ Create a project and a C++ notebook

● Type in some code
● Run it
● Create markdown cells

27

https://cernbox.cern.ch
https://swan.cern.ch

Notebooks On Your Machine

▶ Possible to install Jupyter as a package
▶ Fire up with the root --notebook command

28

Examples

29

More Examples

30ht
tp

s:
//r

oo
t.c

er
n/

do
c/

m
as

te
r/g

ro
up

__
Tu

to
ria

ls
.h

tm
l

https://root.cern/doc/master/group__Tutorials.html

Histograms, Graphs and Functions

31

Histograms
▶ Simplest form of data reduction

● Can have billions of collisions, the Physics displayed in a few histograms
● Possible to calculate momenta: mean, rms, skewness, kurtosis ...

▶ Collect quantities in discrete categories, the bins
▶ ROOT Provides a rich set of histogram types

● We’ll focus on histogram holding a float per bin

32

My First Histogram

33

root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.Draw()

My First Histogram

34

root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

Interlude: Scope

Bad for graphics:

ROOT doesn’t show my histogram!

35

// makeHist.C:
void makeHist() {
 TH1F hist("hist", "My Histogram");
 hist.Draw(); // shows histogram
}

Functions

▶ Mathematical functions are represented by the TF1 class
▶ They have names, formulas, line properties, can be

evaluated as well as their integrals and derivatives
● Numerical techniques for the time being

36
From the TGraphPainter documentation:
https://root.cern.ch/doc/master/classTGraphPainter.html

https://root.cern.ch/doc/master/classTGraphPainter.html

Functions

Can describe functions as:

▶ Formulas (strings)
▶ C++ functions/functors/lambdas

● Implement your highly performant custom function

▶ With and without parameters
● Crucial for fits and parameter estimation

37

▶ The class TF1 represents one-dimensional functions (e.g. f(x)):

▶ An extended version of this example is the definition of a function
with parameters:

ROOT as a Function Plotter

38

root [0] TF1 f1("f1","sin(x)/x",0.,10.); //name,formula,min,max

root [1] f1.Draw();

root [2] TF1 f2("f2","[0]*sin([1]*x)/x",0.,10.);

root [3] f2.SetParameters(1,1);

root [4] f2.Draw();

Try it!

ROOT as a Function Plotter

39

Another Example

40

root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()
root [3] TF1 f("g", "gaus", -8, 8)
root [4] f.SetParameters(250, 0, 1)
root [5] f.Draw("Same")

Graphs

▶ Display points and errors

▶ Not possible to calculate momenta

▶ Not a data reduction mechanism

▶ Fundamental to display trends

▶ Focus on TGraph and TGraphErrors classes in this course

41

See 132nd LHCC Meeting

https://indico.cern.ch/event/679087/

My First Graph

42

root [0] TGraph g;
root [1] for (auto i : {0,1,2,3,4}) g.SetPoint(i,i,i*i)
root [2] g.Draw("APL")

Creating a Nice Plot: Survival Kit

43Credit: https://www.swissknifeshop.com

The Markers

44

kDot=1, kPlus, kStar, kCircle=4, kMultiply=5,
kFullDotSmall=6, kFullDotMedium=7, kFullDotLarge=8,
kFullCircle=20, kFullSquare=21, kFullTriangleUp=22,
kFullTriangleDown=23, kOpenCircle=24, kOpenSquare=25,
kOpenTriangleUp=26, kOpenDiamond=27, kOpenCross=28,
kFullStar=29, kOpenStar=30, kOpenTriangleDown=32,
kFullDiamond=33, kFullCross=34 etc…

☺

From the TAttMarker documentation:
https://root.cern.ch/doc/master/classTAttMarker.html

https://root.cern.ch/doc/master/classTAttMarker.html

My First Graph

45

root [3] g.SetMarkerStyle(kFullTriangleUp)

My First Graph

46

root [3] g.SetMarkerStyle(kTriangleUp)
root [4] g.SetMarkerSize(3)

The Colors (TColorWheel)

47

My First Graph

48

root [5] g.SetMarkerColor(kAzure)
root [6] g.SetLineColor(kRed - 2)
root [7] g.SetLineWidth(2)
root [8] g.SetLineStyle(3)

My First Graph

49

root [9] g.SetTitle("My Graph;The X;My Y")

My First Graph

50

root [10] gPad->SetGrid()

My First Graph

51

root [10] auto txt = "#color[804]{My text #mu {}^{40}_{20}Ca}"
root [11] TLatex l(.2, 10, txt)
root [12] l.Draw()

My First Graph

52

root [13] gPad->SetLogy();

Time for Exercises!

53

https://github.com/root-project/training/tree/master/SummerStudentCour
se/2019/Exercises/HistogramsGraphsFunctions

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/HistogramsGraphsFunctions
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/HistogramsGraphsFunctions

Parameter Estimation and Fitting

54

▶ Estimate parameters of a hypothetical distribution from the
observed data distribution
● y = f (x | θ) is the fit model function

▶ Find the best estimate of the parameters θ assuming f (x | θ)
▶ Both Likelihood and Chi2 fitting are supported in ROOT

What is Fitting ?

55

Example
Higgs ➞ γγ spectrum
We can fit for:
• the expected number of Higgs events
• the Higgs mass

Fitting in ROOT
Fitting in ROOT:
▶ Create first a parametric function object, TF1, which represents our model

● need to set the initial values of the function parameters.
▶ Fit the data object (Histogram or Graph):

● Call the Fit method passing the function object
● various options are possible (see the TH1::Fit documentation)

▶ Examine result:
● get parameter values, uncertainties, correlation
● get fit quality estimation

▶ The resulting fit function is also drawn automatically on top of the Histogram or the Graph

when calling TH1::Fit or TGraph::Fit

56

https://root.cern.ch/doc/master/classTH1.html#a63eb028df86bc86c8e20c989eb23fb2a

Fitting Histograms

▶ We have a histogram, h1, and we want to fit it:

57

For displaying the fit parameters:

root [0] TF1 f1("f1","gaus");
root [1] h1.Fit(&f1);
 FCN=27.2252 FROM MIGRAD STATUS=CONVERGED 60 CALLS 61 TOTAL

 EDM=1.12393e-07 STRATEGY= 1 ERROR MATRIX ACCURATE

 EXT PARAMETER STEP FIRST

 NO. NAME VALUE ERROR SIZE DERIVATIVE

 1 Constant 7.98760e+01 3.22882e+00 6.64363e-03 -1.55477e-05

 2 Mean -1.12183e-02 3.16223e-02 8.18642e-05 -1.49026e-02

 3 Sigma 9.73840e-01 2.44738e-02 1.69250e-05 -5.41154e-03

gStyle->SetOptFit(1111);

Creating the Fit Function

▶ How to create the parametric function object (TF1) :
◼ we can write formula expressions using functions:

- we can use the available functions in ROOT library and stl
- [0],[1],[2] indicate the parameters.
- We could also use meaningful names, like [a],[mean],[sigma]

◼ There are pre-defined functions

◼ pre-defined functions available: gaus, expo, landau,
breitwigner,crystal_ball,pol{0,1..,10}, cheb{0,1},xygaus,xylanday,bigaus

58

TF1 f1("f1","[0]*TMath::Gaus(x,[1],[2])");

TF1("f1","gaus");

PyROOT: The ROOT Python Bindings

59

PyROOT

60

▶ Python bindings for ROOT

▶ Access all the ROOT C++ functionality from Python
● Benefit from C++ performance

▶ Dynamic, automatic

▶ "Pythonisations" for specific cases

Using PyROOT

61

▶ Entry point to use ROOT from within Python

▶ All the ROOT classes you have learned so far can be
accessed from Python

 import ROOT

 ROOT.TH1F
 ROOT.TGraph
 ...

Example: C++ to Python

62

> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

> python
>>> import ROOT
>>> h = ROOT.TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()

Example: C++ to Python

63

> root
root [0] TH1F h("myHist", "myTitle", 64, -4, 4)
root [1] h.FillRandom("gaus")
root [2] h.Draw()

> python
>>> from ROOT import TH1F
>>> h = TH1F("myHist", "myTitle", 64, -4, 4)
>>> h.FillRandom("gaus")
>>> h.Draw()

also with
individual import

Time For Exercises

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/PythonInterface

▶ In order to run the exercises:

● Use the Python prompt

● Run a Python script

● Use SWAN
◼ Create a canvas before drawing: c = ROOT.TCanvas()
◼ Run c.Draw() at the end to see the plot

64

> python
>>>

> python -i myscript.py

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/PythonInterface

Reading and Writing Data

65

The ROOT File

▶ In ROOT, objects are written in files*, represented by
TFile instances

▶ TFiles are binary and can be compressed (transparently
for the user)

▶ TFiles are self-descriptive:
● The information how to retrieve objects from a file is stored with the

objects

* this is an understatement - we’ll not go into the details in this course!

66

TFile in Action

67

TFile f("myfile.root", "RECREATE");

TFile in Action: Writing

68

TFile f("myfile.root", "RECREATE");

TH1F h("h", "h", 64, 0, 8);

h.Write("h");

f.Close(); ▶ Write to a file
▶ Close the file and make sure

the operation succeeded
> rootls -l myfile.root
TH1F Jun 24 15:02 2019 h "h"

TFile in Action: Reading

69

TH1F* myHist;

TFile f("file.root");

f.GetObject("h", myHist);

myHist->Draw();

import ROOT

f = ROOT.TFile("file.root")

f.h.Draw()
Get the histogram by name!
Possible only in Python

Listing TFile Content

70

▶ TBrowser interactive tool
> root [0] TBrowser t

▶ rootls tool: list content
▶ TFile::ls(): prints content

● Great for interactive usage

Time For Exercises

71

https://github.com/root-project/training/tree/master/SummerStudentCourse/20
19/Exercises/WorkingWithFiles

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithFiles
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithFiles

The ROOT Columnar Format

72

Columns and Rows

▶ High Energy Physics: many statistically independent
collision events

▶ Create an event class, serialise and write out N instances
into a file?
→ No. Very inefficient!

▶ Organise the dataset in columns

73

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

74

can contain any kind
of c++ object

75

Relations Among Columns

The TTree
A columnar dataset in ROOT is represented by the class TTree:

▶ Also called tree, columns also called branches
▶ Columns can contain different types.
▶ Support any type of object
▶ One row per entry (or, in collider physics, event)

If just a single number per column is required, the simpler TNtuple can
be used.

A modern and simple way to interact with ROOT datasets is to use
RDataFrame

▶ Low-level interfaces to deal with datasets do exist but are beyond
the scope of this course

76

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

RDataFrame: quick how-to

77

1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce results

(e.g. fill a histogram)

Simple Code Example

78

ROOT::RDataFrame d("t", "f.root");

auto h = d.Filter("theta > 0").Histo1D("pt");

h->Draw();
2. Cut on
theta

3. Fill histogram
with pt

1. Build RDataFrame

Filling multiple histograms

79

auto h1 = d.Filter("theta > 0").Histo1D("pt");

auto h2 = d.Filter("theta < 0").Histo1D("pt");

h1->Draw(); // event loop is run lazily once here

h2->Draw("SAME"); // no need to run loop again here

Book all your actions upfront. The first time a result is
accessed, RDataFrame will fill all booked results.

80

More on histograms

auto h = d.Histo1D({"myName","Title;x",10,0.,1.},

 "x");

You can specify a model histogram with
● a name and a title
● a predefined axis range
Here, the histogram is created with 10 bins ranging from 0 to 1,
and the axis is labelled “x”.

Expert Feature

81

Define a new column

double m = d.Filter("x > y")

 .Define("z", "sqrt(x*x + y*y)")

 .Mean("z");

`Define` takes the name of the new column and its
expression. Later you can use the new column as if it

was present in your data.

82

Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hx = d2.Histo1D("x");

You can store transformed data-frames in variables,
then use them as you would use a RDataFrame.

data

filter
x > 0

histo
x

histo
z

define
z

d

d2

83

d.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut");

d.Report()->Print();

Cutflow reports

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

When called on the main RDF object, `Report` prints
statistics for all filters with a name

84

auto new_df = df.Filter("x > 0")

 .Define("z", "sqrt(x*x + y*y)")

 .Snapshot("tree", "newfile.root");

Saving data to file

We filter the data, add a new column, and then save
everything to file. No boilerplate code at all.

Using callables instead of strings

85

// define a c++11 lambda - an inline function - that checks “x>0”

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");

h->Draw();

any callable (function, lambda, functor class) can be
used as a filter, as long as it returns a boolean

Expert Feature

RDataFrame: declarative analyses

86

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

ROOT::RDataFrame d("treename", "file.root");

auto h = d.Filter(IsGoodEntry, {"x","y"})

 .Histo1D("x");

A function taking 2
values in input, returns
a boolean

RDataFrame: parallelism

87

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

ROOT::EnableImplicitMT();

ROOT::RDataFrame d("treename", "file.root");

auto h = d.Filter(IsGoodEntry, {"x","y"})

 .Histo1D("x");

88

C++ / JIT / PyROOT

d.Filter("th > 0").Snapshot("t","f.root","pt*");
C++ and just-in-time compiled code

PyROOT -- just leave out the `;`
d.Filter("th > 0").Snapshot("t","f.root","pt*")

89

Time For Exercises

https://github.com/root-project/training/tree/master/Summer
StudentCourse/2019/Exercises/WorkingWithColumnarData

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithColumnarData
https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/WorkingWithColumnarData

Wrap up

90

