ROOT Summer Student Course

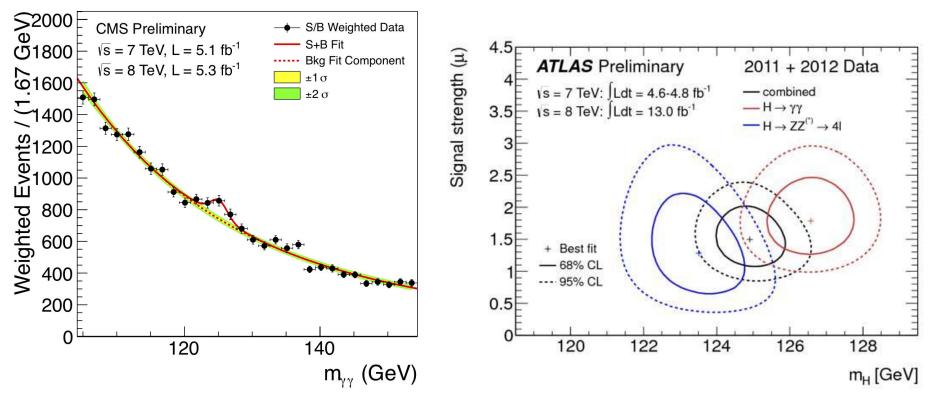
S. Hageboeck, E. Tejedor for the ROOT Team

https://indico.cern.ch/e/ROOTSummer3

Make Sure One of These Works for You!

On Lxplus7/Lxbatch7

- ssh -XY <username>@lxplus7.cern.ch
- source /cvmfs/sft.cern.ch/lcg/app/releases/ROOT/6.16.00/x86_64-centos7-gcc48-opt/bin/thisroot.sh
- On SWAN: <u>https://swan.cern.ch</u>
 - The Jupyter Notebook service of CERN
- On your machine (Linux or Mac)
 - Compiled by yourself from sources
 - Using the binaries we distribute
 - See <u>https://root.cern/releases</u>

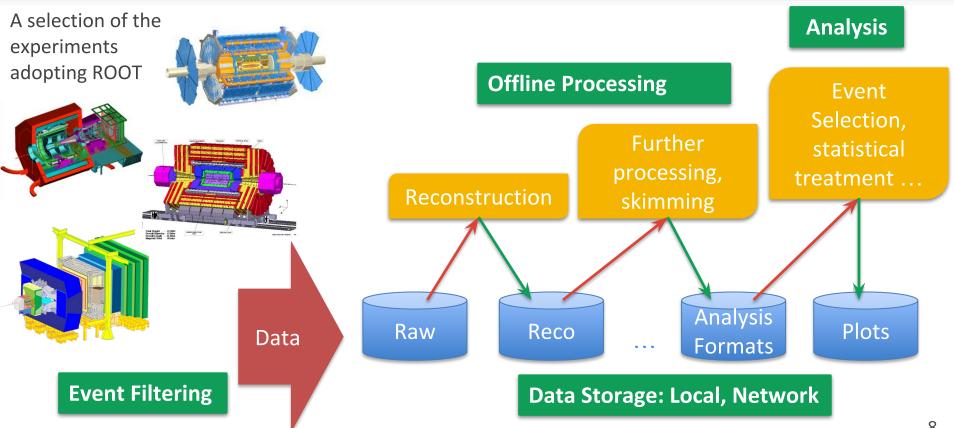

Note: ROOT on Windows is in beta mode.

Introduction

A Quick Tour of ROOT

What can you do with ROOT?

ROOT can be seen as a collection of building blocks for various activities, like:


- Data analysis: histograms, graphs, functions
- I/O: row-wise, column-wise storage of any C++ object
- Statistical tools (RooFit/RooStats): rich modeling and statistical inference
- Math: non-trivial functions (e.g. Erf, Bessel), optimised math functions
- **C++ interpretation**: full language compliance
- Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural Nets
 - Advanced graphics (2D, 3D, event display)
 - Declarative Analysis: RDataFrame
 - And more: HTTP servering, JavaScript visualisation

An Open Source Project

ROOT Application Domains

LHC Data in ROOT Format

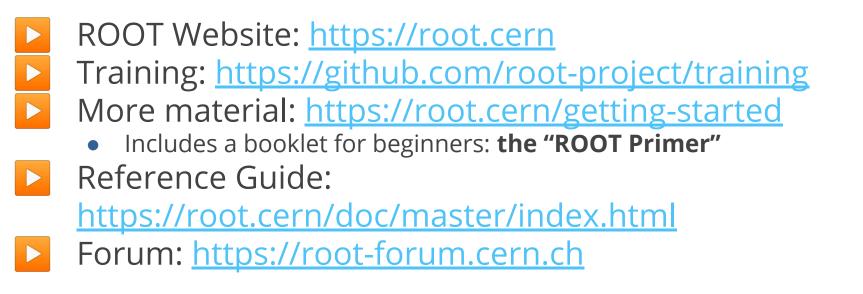
~1 E B

as of 2019

https://root.cern

ROOT web site: **the** source of information and help for ROOT users

- For beginners and experts
- Downloads, installation instructions
- Documentation of all ROOT classes
- Manuals, tutorials, presentations
- Forum


ROOT is ... A modular scientific software framework. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualisation and storage. It is mainly written in C++ but integrated with other languages such as Python and R. Try it in your browser! (Beta) **Previous Pause Next** Downloa Under the Spotlight Other News 16-04-2016 The status of reflection in C++ 16-12-2015 Try the new ROOTbooks on Binder (beta) 05-01-2016 Wanted: A tool to 'warn' user of inefficient Try the new ROOTbooks on Binder (Beta) #I Use ROOT interactively in notebooks (for I/O) construct in data model and explore to the examples. 05-12-2015 ROOT has its Jupyter Kernel! 03-12-2015 ROOT::TSeq::GetSize() or ROOT::seq::size()? 02-09-2015 Wanted: Storage of HEP data via key/value ROOT has its Jupyter kernel! More information here #. storage solutions 15-09-2015 ROOT Users' Workshop 2015 Latest Releases The next ROOT Users' Workshop will celebrate ROOT's 20th anniversary. It will Release 6.06/04 - 2016-05-03 take place on 15-18 Sept 2015 in Saas-Fee, Switzerland # 03-09-2015 The New ROOT Website is Online Release 5.34/36 - 2016-04-05 Release 6.04/16 - 2016-03-17 The new ROOT website is online! Release 6.06/02 - 2016-03-05 SITEMAP Download 800 All Refeater

Download Documentation News Support About Development Contribute

Reference Guid

Getting Started

Resources

From Sources

Expert Level

- git clone <u>http://github.com/root-project/root</u>
- Or visit <u>https://root.cern.ch/content/release-61600</u>
- Create a build directory and configure ROOT:
 - mkdir rootBuild; cd rootBuild
 - cmake ../root
 - <u>https://root.cern.ch/building-root</u> for all the config options
- Start compilation
 - make -j
- Prepare environment:
 - . bin/thisroot.sh

The ROOT Prompt and Macros

The ROOT Prompt

- C++ is a compiled language
 - A compiler is used to translate source code into machine instructions
- ROOT provides a C++ **interpreter**
 - Interactive C++, without the need of a compiler, like Python, Ruby, Haskell ...
 - Code is **Just-in-Time compiled!**
 - Allows reflection (inspect layout of classes at runtime)
 - Is started with the command:

root

• The interactive shell is also called "ROOT prompt" or "ROOT interactive prompt"

ROOT As a Calculator

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots$$
$$= \sum_{n=0}^{\infty} x^n$$

Here we make a step forward. We declare **variables** and use a *for* control structure. root [0] double x=.5
(double) 0.5
root [1] int N=30
(int) 30
root [2] double gs=0;

Special commands which are not C++ can be typed at the prompt, they start with a "."

root [1] .<command>

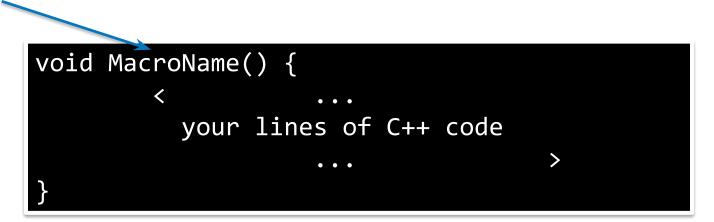
For example:

- To quit root use **.q**
- To issue a shell command use .! <OS_command>
- To load a macro use .L <file_name> (see following slides about macros)
- .help or .? gives the full list

Ex Tempore Exercise

Fire up ROOT

- Verify it works as a calculator
- List the files in /etc from within the ROOT prompt
- Inspect the help
- Quit


Interactivity

<pre>root [0] #include root [1] A o("This ThisName</pre>	"a.h" Name"); o.printName()	a.h
<pre>root [1] dummy()</pre>		
(int) 42	<pre># include <iostream></iostream></pre>	
	class A {	
	public:	
	A(const char * n) : m_name(n) {}
	<pre>void printName() { std::cou</pre>	ut << m_name << std::endl;
	private:	
	<pre>const std::string m_name;</pre>	
	};	
	<pre>int dummy() { return 42; }</pre>	

ROOT Macros

We have seen how to interactively type lines at the prompt
 The next step is to write "ROOT Macros" – lightweight programs
 The general structure for a macro stored in file *MacroName.C* is:

Function, no main, same name as the file

Unnamed ROOT Macros

Macros can also be defined with no name

- Cannot be called as functions!
 - See next slide :)

Running a Macro

A macro is executed at the system prompt by typing:

> root MacroName.C

or executed at the ROOT prompt using .x:

> root
root [0] .x MacroName.C

or it can be loaded into a ROOT session and then be run by typing:

root [0] .L MacroName.C
root [1] MacroName();

Interpretation and Compilation

We have seen how ROOT interprets and "just in time compiles" code. ROOT also allows to compile code "traditionally". At the ROOT prompt:

root [1] .L macro1.C+
root [2] macro1()

Generate shared library and execute function

ROOT libraries can also be used to produce standalone, compiled applications:

Advanced Users

int main() {
 ExampleMacro();
 return 0;

> g++ -o ExampleMacro ExampleMacro.C `root-config --cflags --libs` > ./ExampleMacro

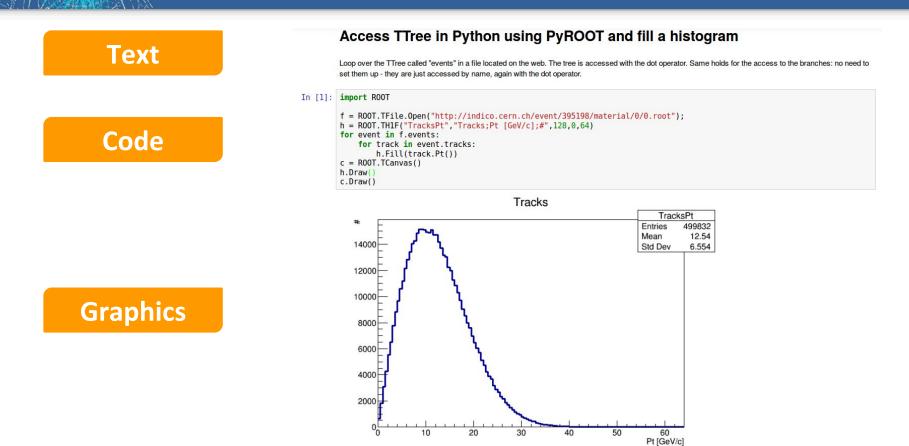
Time For Exercises

Exercises:

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/C++I nterpreter

The ROOTBooks

The Jupyter Notebook


A web-based interactive computing platform that combines code, equations, text and visualisations.

Many supported languages: C++, Python, Haskell, Julia... One generally speaks about a "kernel" for a specific language

In a nutshell: an "interactive shell opened within the browser"

How It Looks Like

Use Notebooks at CERN

SWAN: Service for Web based ANalysis

Get a CERNBox (if you don't have one)

- Visit <u>https://cernbox.cern.ch</u>
- Log in to <u>https://swan.cern.ch</u>
- Create a project and a C++ notebook
 - Type in some code
 - Run it
 - Create markdown cells

Notebooks On Your Machine

Possible to install Jupyter as a package Fire up with the *root --notebook* command

Examples

This is a gallery of basic example notebooks: click on the images to inspect the underlying document, open in SWAN the single notebooks or the full git

Many of the notebooks are ROOTbooks, based on the ROOT framework. To know more about ROOT, visit root.cern.ch.

Simple ROOTbook (Python)

Simple ROOTbook (C++) - servers an analysis taked "Both in "They

Simple Fitting

	[24] Dir. A KRI, MOP optimizer, "Ay statistic mater," and "Adv4, -9 A AUXAMMENT (2007)
***	We have and part IR. ROOT provides a set of productor functions, serving which the Sanakino. This year hand a lock to the "21" case descentation, the base near advantage of the Control o
	We specify the option 'V' is not not the information values to the H in a separate steps), we will report it into
	3+ (4) - 5/86a399+ + 5.607 (per), (1)
m 1893 1096 1995	The other functions in the second sec
	You say any above the indput of the N which conserged. The online versionary and other useful parellaw are reported to each personale. If more should a standard adher information can be estimated for example the final divergence online in the surface of these personaleses.
	In (5) (402, spram + (100wald/90, 602)), "(100wald/90, 40roff-spatial))) and "file from this solar out unit and the safet of the presence on the "4602 sparse.
	The Final (N2) value was 40.56 and the number of Fine parameter's set 5
	To far an arrest New we can drive our West Induced. The Science and articles.

Simple I/O

rath is adjust rate

ingelfile = 800.1911e) h = ingelfile.themiste (= 800.7Gmmil) h.Braci)

Burnlab Elistica 5000 Bitran C.008152 Set Carv 1.005

mß

Approximation and the

C++ from Python w/o bindings

Japan's KEUT
 ADDT glindarspratter Amazona, Jawi Maninako
 ADDT glindarspratter Leadi " J Linea, Dr. W. W. W. W.

1. (1)

14 (1) & Andletic + Mill & Teaster (1)

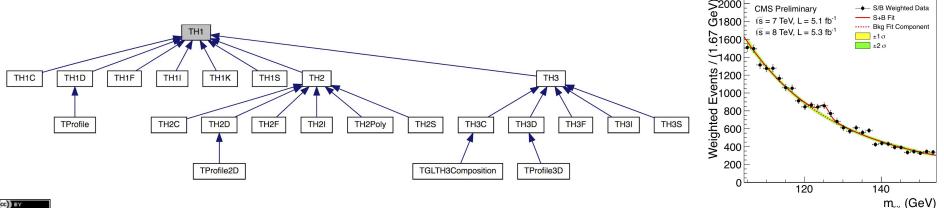
6

More Examples

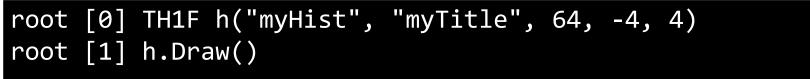
ROOT 6.13/01 Reference Guide					
ROOT Home Page	Main Page	Tutorials	User's Classes	Namespaces	All Classes
Data Frame tutorials					

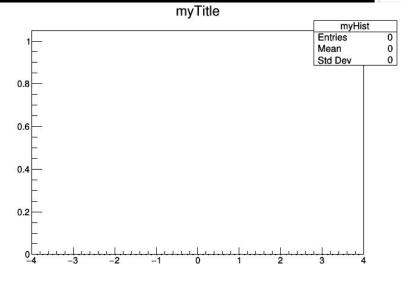
These examples show the functionalities of the TDataFrame class.

Files

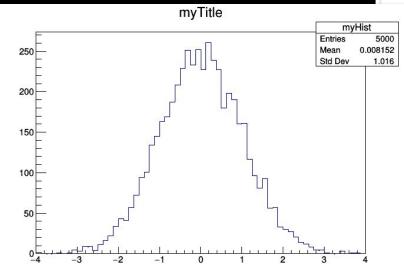

file	tdf001_introduction.C View Notebook Open in SWAN This tutorial illustrates the basic features of the TDataFrame class, a utility w chain like approach.
file	tdf001_introduction.py View Notebook Open in SWAN This tutorial illustrates the basic features of the TDataFrame class, a utility w chain like approach.
file	tdf002_dataModel.C
file	tdf002_dataModel.py
file	tdf003_profiles.C

Histograms, Graphs and Functions


Histograms


Simplest form of data reduction

- Can have billions of collisions, the Physics displayed in a few histograms
- Possible to calculate momenta: mean, rms, skewness, kurtosis ...
- Collect quantities in discrete categories, the bins
- ROOT Provides a rich set of histogram types
 - We'll focus on histogram holding a *float* per bin

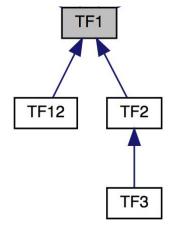

My First Histogram

My First Histogram

root [0] TH1F h("myHist", "myTitle", 64, -4, 4) root [1] h.FillRandom("gaus") root [2] h.Draw()

Interlude: Scope

Bad for graphics:


```
// makeHist.C:
void makeHist() {
  TH1F hist("hist", "My Histogram");
  hist.Draw(); // shows histogram
```

ROOT doesn't show my histogram!

Functions

- Mathematical functions are represented by the TF1 class
 They have names, formulas, line properties, can be evaluated as well as their integrals and derivatives
 - Numerical techniques for the time being

option	description
"SAME"	superimpose on top of existing picture
"L"	connect all computed points with a straight line
"C"	connect all computed points with a smooth curve
"FC"	draw a fill area below a smooth curve

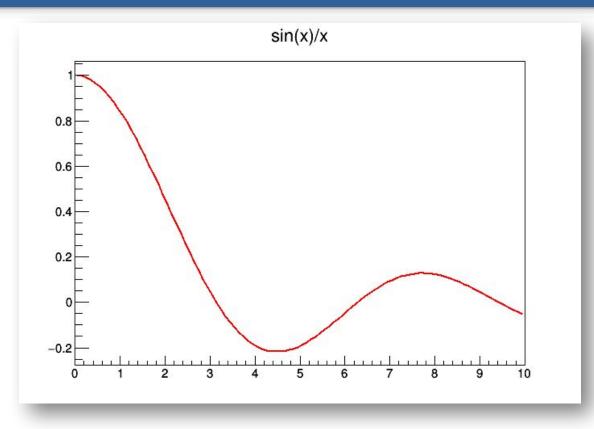
From the TGraphPainter documentation: https://root.cern.ch/doc/master/classTGraphPainter.html

Functions

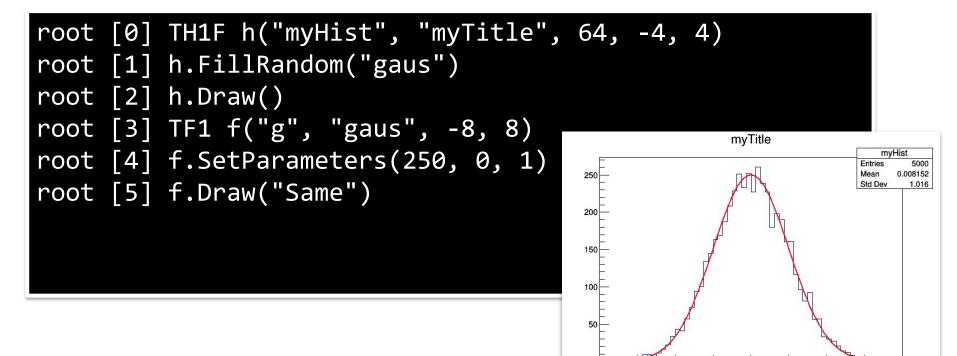
Can describe functions as:

- Formulas (strings)
 - C++ functions/functors/lambdas
 - Implement your highly performant custom function
- With and without parameters
 - Crucial for fits and parameter estimation

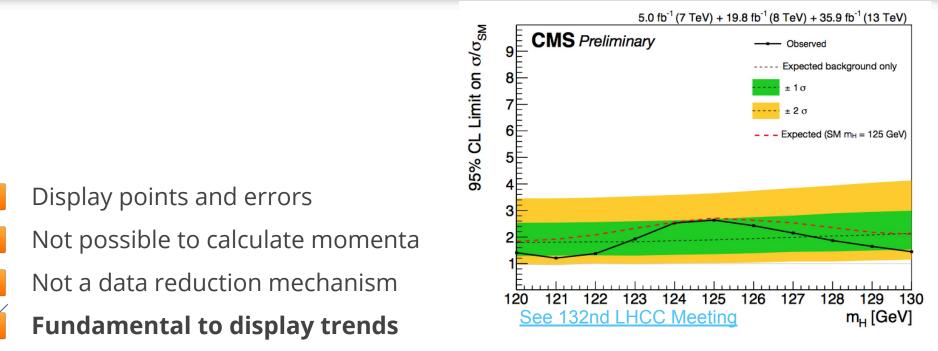
ROOT as a Function Plotter

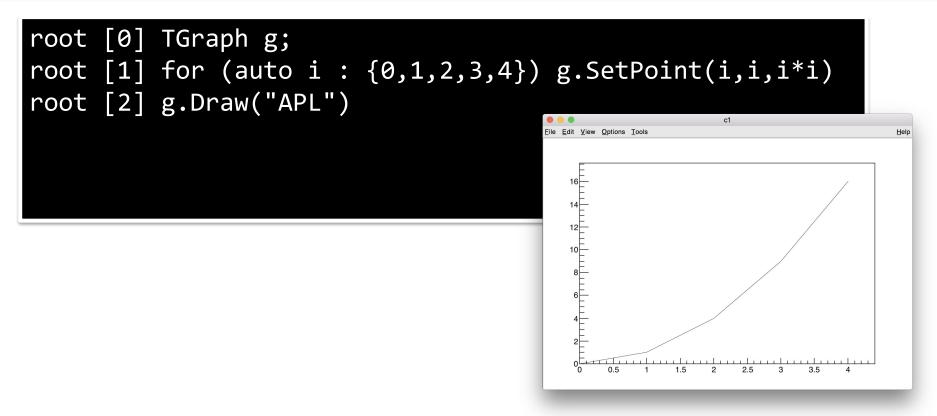

The class TF1 represents one-dimensional functions (e.g. *f(x)*):

root [0] TF1 f1("f1","sin(x)/x",0.,10.); //name,formula,min,max root [1] f1.Draw();


An extended version of this example is the definition of a function with parameters:

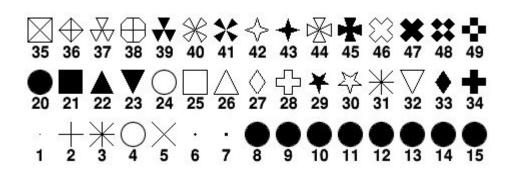
```
root [2] TF1 f2("f2","[0]*sin([1]*x)/x",0.,10.);
root [3] f2.SetParameters(1,1);
root [4] f2.Draw();
```


ROOT as a Function Plotter


Another Example

Graphs

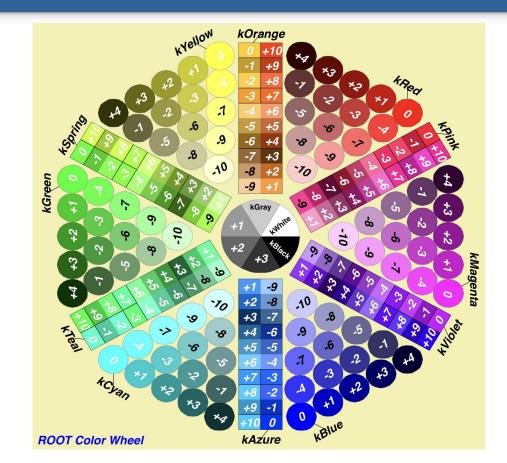
Focus on TGraph and TGraphErrors classes in this course



Creating a Nice Plot: Survival Kit

The Markers

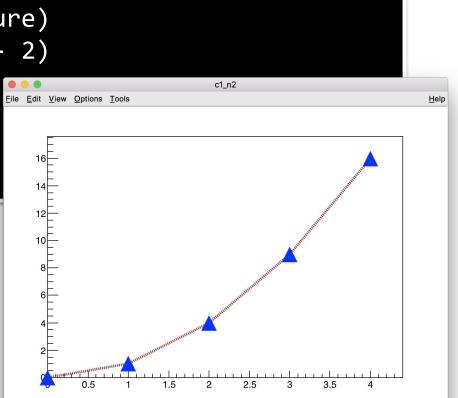
From the TAttMarker documentation: https://root.cern.ch/doc/master/classTAttMarker.html

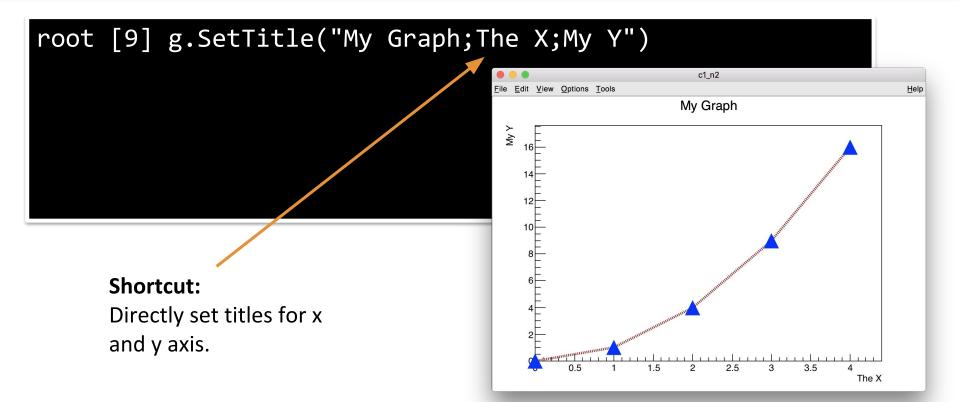

kDot=1, kPlus, kStar, kCircle=4, kMultiply=5, kFullDotSmall=6, kFullDotMedium=7, kFullDotLarge=8, kFullCircle=20, kFullSquare=21, kFullTriangleUp=22, kFullTriangleDown=23, kOpenCircle=24, kOpenSquare=25, kOpenTriangleUp=26, kOpenDiamond=27, kOpenCross=28, kFullStar=29, kOpenStar=30, kOpenTriangleDown=32, kFullDiamond=33, kFullCross=34 etc...

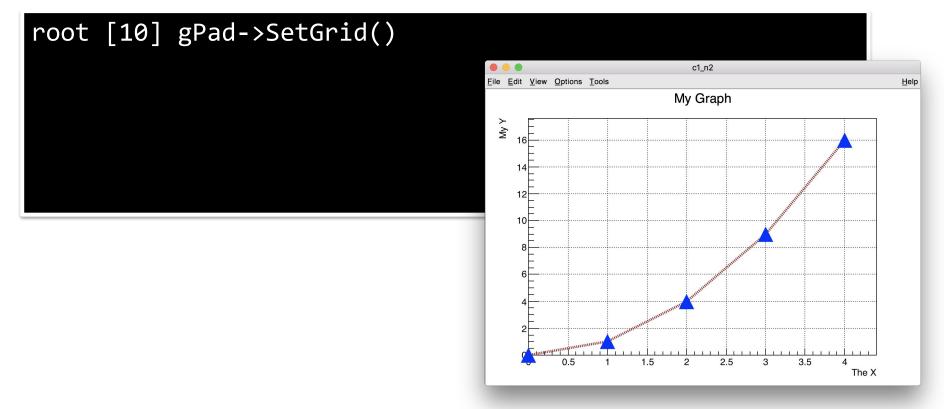
Also available through more friendly names 🙄

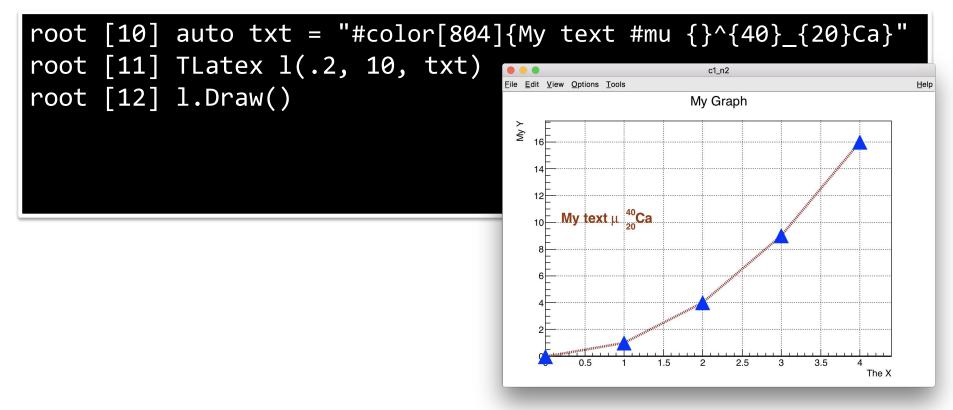
root [3] g.SetMarkerStyle(kFullTriangleUp) c1 File Edit View Options Tools Help 12 0.5 1.5 2 2.5 3 3.5 4

root [3] g.SetMarkerStyle(kTriangleUp) root [4] g.SetMarkerSize(3) c1 File View Options Tools Help Edit 0.5 1.5 2 2.5 3 3.5 4

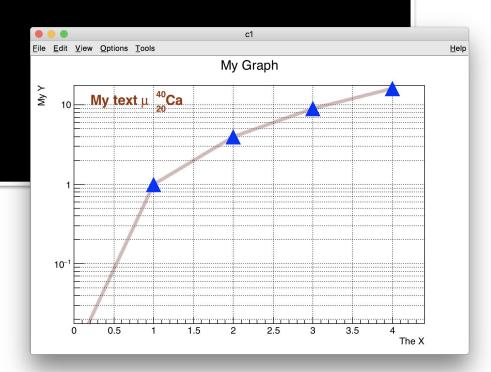

The Colors (TColorWheel)



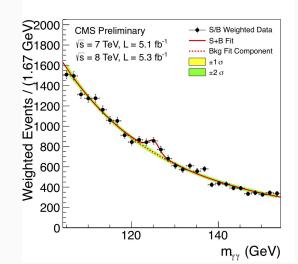

root [5] g.SetMarkerColor(kAzure) root [6] g.SetLineColor(kRed - 2) root [7] g.SetLineWidth(2) root [8] g.SetLineStyle(3)


Question:

How do you find information on line styles?



root [13] gPad->SetLogy();



https://github.com/root-project/training/tree/master/SummerStudentCour se/2019/Exercises/HistogramsGraphsFunctions

Parameter Estimation and Fitting

What is Fitting?

- Estimate parameters of a hypothetical distribution from the observed data distribution
 - $y = f(x | \theta)$ is the fit model function
 - Find the best estimate of the parameters θ assuming f (x | θ) Both Likelihood and Chi2 fitting are supported in ROOT

Example

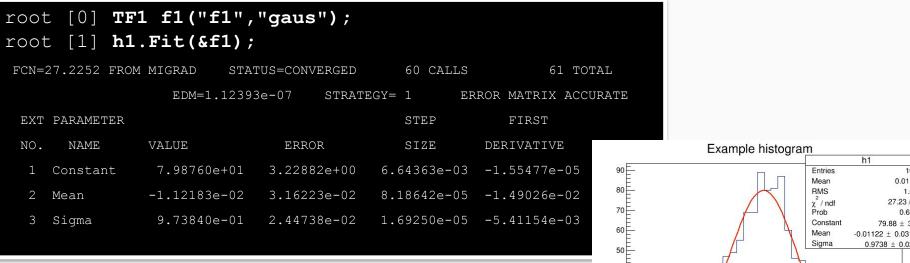
Higgs $\rightarrow \gamma\gamma$ spectrum We can fit for:

- the expected number of Higgs events
- the Higgs mass

Fitting in ROOT

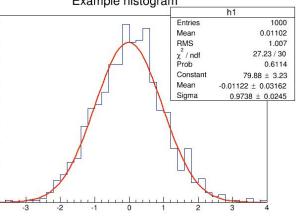
Fitting in ROOT:

Create first a parametric function object, **TF1**, which represents our model


- need to set the initial values of the function parameters.
- Fit the data object (Histogram or Graph):
 - Call the **Fit** method passing the function object
 - various options are possible (see the **<u>TH1::Fit</u>** documentation)

Examine result:

- get parameter values, uncertainties, correlation
- get fit quality estimation
- The resulting fit function is also drawn automatically on top of the Histogram or the Graph when calling **TH1::FitorTGraph::Fit**


Fitting Histograms

We have a histogram, h1, and we want to fit it:

For displaying the fit parameters:

gStyle->SetOptFit(1111);

40 30

20

How to create the parametric function object (**TF1**) :

we can write formula expressions using functions:

we can use the available functions in ROOT library and stl

TF1 f1("f1","[0]*TMath::Gaus(x,[1],[2])");

- [0],[1],[2] indicate the parameters.
- We could also use meaningful names, like [a],[mean],[sigma]
- There are pre-defined functions

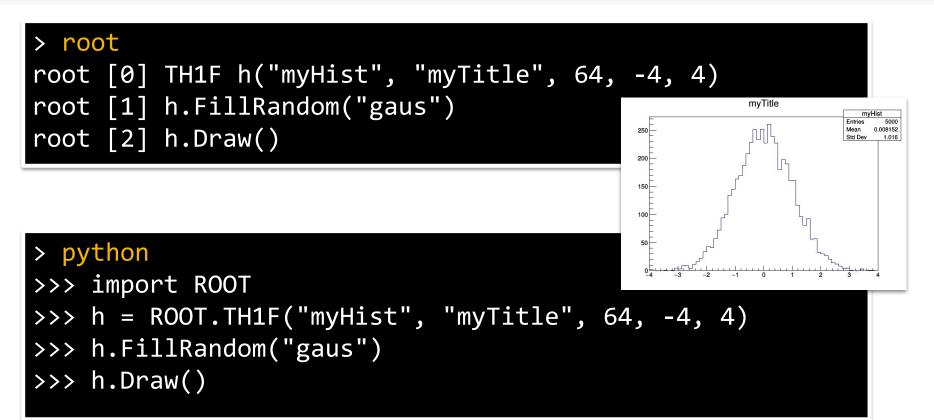
TF1("f1",<mark>"gaus"</mark>);

pre-defined functions available: gaus, expo, landau, breitwigner,crystal_ball,pol{0,1..,10}, cheb{0,1},xygaus,xylanday,bigaus

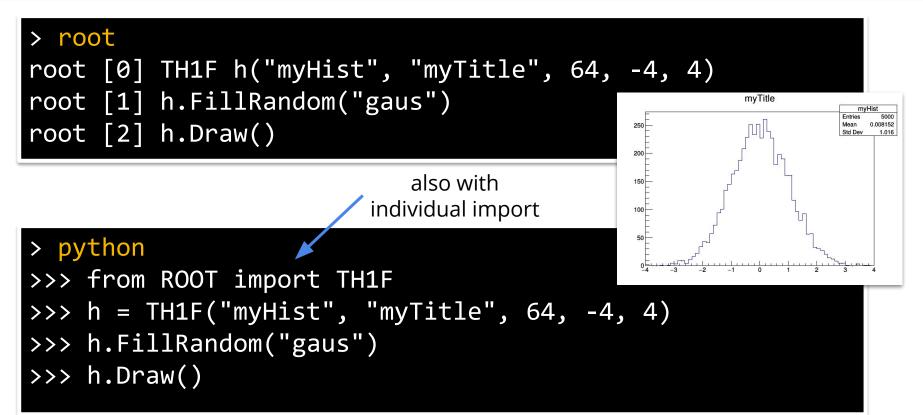
PyROOT: The ROOT Python Bindings

Access all the ROOT C++ functionality from Python

- Benefit from C++ performance
- Dynamic, automatic
- Pythonisations" for specific cases


Entry point to use ROOT from within Python

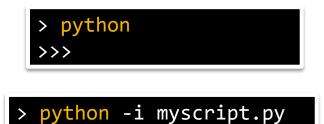
import ROOT


All the ROOT classes you have learned so far can be accessed from Python

ROOT.TH1F ROOT.TGraph

Example: C++ to Python

Example: C++ to Python



Time For Exercises

https://github.com/root-project/training/tree/master/SummerStudentCourse/2019/Exercises/PythonInterface

- In order to run the exercises:
 - Use the Python prompt
 - Run a Python script

- Use SWAN
 - Create a canvas before drawing: c = ROOT.TCanvas()
 - Run c.Draw() at the end to see the plot

Reading and Writing Data

The ROOT File

- In ROOT, objects are written in files*, represented by TFile instances
- TFiles are *binary* and can be compressed (transparently for the user)

TFiles are self-descriptive:

• The information how to retrieve objects from a file is stored with the objects

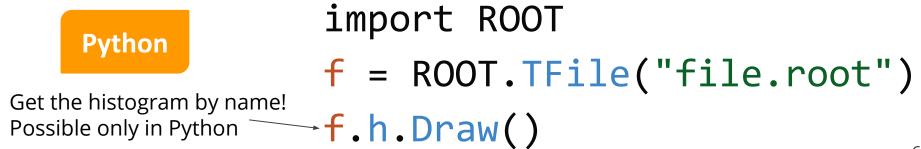
* this is an understatement - we'll not go into the details in this course!

TFile in Action

TFile f("myfile.root", "RECREATE");

Option	Description
NEW or CREATE	Create a new file and open it for writing, if the file already exists the file is not opened.
RECREATE	Create a new file, if the file already exists it will be overwritten.
UPDATE	Open an existing file for writing. If no file exists, it is created.
READ	Open an existing file for reading (default).

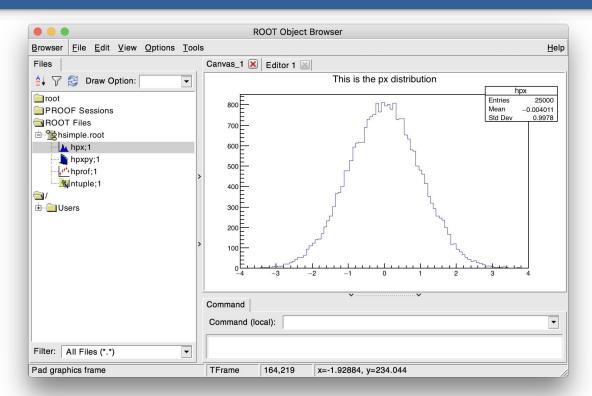
TFile in Action: Writing


the operation succeeded

> rootls -1 myfile.root
TH1F Jun 24 15:02 2019 h "h"

TFile in Action: Reading

TH1F* myHist; TFile f("file.root"); f.GetObject("h", myHist); myHist->Draw();

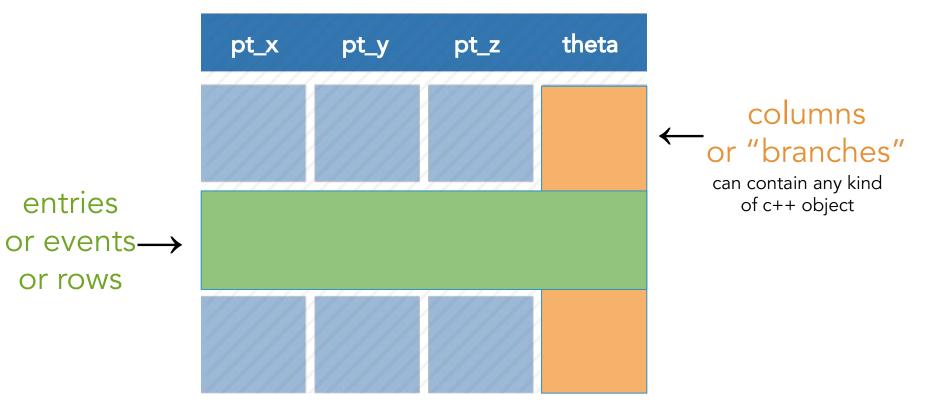


TBrowser interactive tool > root [0] TBrowser t

rootls tool: list content *TFile::ls()*: prints content

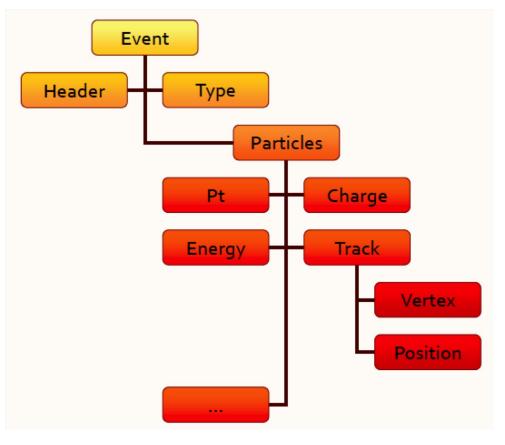
• Great for interactive usage

Listing TFile Content



The ROOT Columnar Format

Columns and Rows


- High Energy Physics: many statistically independent collision events
- Create an event class, serialise and write out N instances into a file?
 - \rightarrow No. Very inefficient!
- Organise the dataset in columns

Columnar Representation

Relations Among Columns

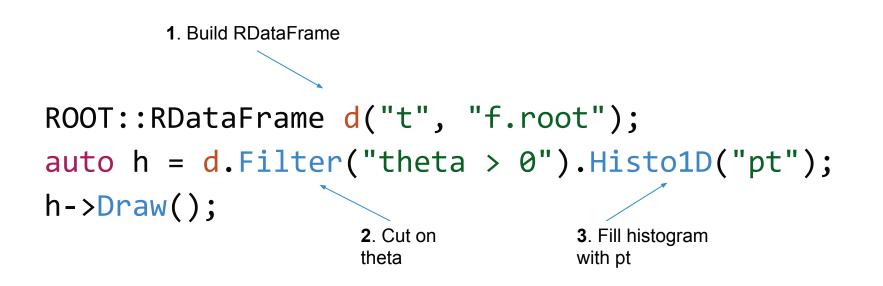
х	у	z
-1.10228	-1.79939	4.452822
1.867178	-0.59662	3.842313
-0.52418	1.868521	3.766139
-0.38061	0.969128	1 084074
0.55. 74	-0.21231	<mark>/ .</mark> 50281
-0.184	1.187305	.443902
0.20564	-0.7701	0.635417
1.079222	137 /	1.271904
-0.27492	43	3.038899
2.047779	-1 268	4.197329
-0.45868	<u> </u>	2.293266
0.304731	0.884	0.875442
-0.7127	-0.2223	0.556881
-0.27	1.181767	470484
0.88 .02	-0.65411	3209
-2.03555	0.527648	4.421883
-1.45905	-0.464	2.344113
1.230661	-0.00565	1.514559
		-3 <u>.562347</u>

The TTree

A columnar dataset in ROOT is represented by the class **TTree**:

- Also called *tree*, columns also called *branches*
 - Columns can contain different types.
 - Support any type of object
- One row per *entry* (or, in collider physics, *event*)

If just a **single number** per column is required, the simpler **TNtuple** <u>can</u> be used.


A modern and simple way to interact with ROOT datasets is to use <u>RDataFrame</u>

Low-level interfaces to deal with datasets do exist but are beyond the scope of this course

RDataFrame: quick how-to

- 1. <u>build a data-frame</u> object by specifying your data-set
- 2. apply a series of transformations to your data
 - o <u>filter</u> (e.g. apply some cuts) or
 - define <u>new columns</u>
- apply actions to the transformed data to produce results (e.g. fill a histogram)

Filling multiple histograms

auto h1 = d.Filter("theta > 0").Histo1D("pt"); auto h2 = d.Filter("theta < 0").Histo1D("pt"); h1->Draw(); // event loop is run lazily once here h2->Draw("SAME"); // no need to run loop again here

Book all your actions upfront. The first time a result is accessed, RDataFrame will fill all booked results.

More on histograms

Expert Feature

You can specify a model histogram with

- a name and a title
- a predefined axis range

Here, the histogram is created with 10 bins ranging from 0 to 1, and the axis is labelled "x".

Define a new column

double m = d.Filter("x > y") .Define("z", "sqrt(x*x + y*y)") .Mean("z");

`Define` takes the name of the new column and its expression. Later you can use the new column as if it was present in your data.

Think of your analysis as data-flow

auto hz = d2.Histo1D("z"); auto hx = d2.Histo1D("x");

> You can store transformed data-frames in variables, then use them as you would use a RDataFrame.

d2

histo

х

define

histo

Cutflow reports

d.Filter("x > 0", "xcut")
 .Filter("y < 2", "ycut");
d.Report()->Print();

<pre>// output</pre>			
xcut	: pass=49	all=100	 49.000 %
ycut	: pass=22	all=49	 44.898 %

When called on the main RDF object, `Report` prints statistics for all filters *with a name*

Saving data to file

auto new_df = df.Filter("x > 0") .Define("z", "sqrt(x*x + y*y)") .Snapshot("tree", "newfile.root");

We filter the data, add a new column, and then save everything to file. No boilerplate code at all.

Using callables instead of strings

Expert Feature

// define a c++11 lambda - an inline function - that checks "x>0"
auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names
auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");
h->Draw();

any callable (function, lambda, functor class) can be used as a filter, as long as it returns a boolean ROOT::RDataFrame d("treename", "file.root"); auto h = d.Filter(IsGoodEntry, {"x","y"}) .Histo1D("x");

- full control over the analysis
- no boilerplate
- common tasks are already implemented
- ? parallelization is not trivial?

A function taking 2 values in input, returns a boolean

RDataFrame: parallelism

ROOT::EnableImplicitMT(); ROOT::RDataFrame d("treename", "file.root"); auto h = d.Filter(IsGoodEntry, {"x","y"}) .Histo1D("x");

- full control over *the analysis*
- no boilerplate
- common tasks are already implemented
- ? parallelization is not trivial?

C++ and just-in-time compiled code d.Filter("th > 0").Snapshot("t","f.root","pt*");

PyROOT -- just leave out the `;` d.Filter("th > 0").Snapshot("t","f.root","pt*")

https://github.com/root-project/training/tree/master/Summer StudentCourse/2019/Exercises/WorkingWithColumnarData

Wrap up