
PYTHON MODELING & FITTING PACKAGES
Christoph Deil, MPIK Heidelberg  

Deil.Christoph@gmail.com  
HSF PyHEP WG call

Sep 11, 2019

�1

mailto:deil.Christoph@gmail.com

MY KEY POINTS

1. Python is great for modeling & fitting.

2. Python is terrible for modeling & fitting.

3. We should make it better and collaborate more.

�2

ABOUT ME
➤ Christoph Deil, gamma-ray astronomer from Heidelberg

➤ Started with C++ & ROOT, discovered Python 10 years ago.

➤ Heavy user and very interested in modeling & fitting in Python

➤ Use many packages: scipy, iminuit, scikit-learn, Astropy, Sherpa, …

➤ Develop Gammapy for modeling & fitting gamma-ray astronomy data

�3

GAMMA-RAY ASTRONOMY
➤ High-level analysis similar to HEP?

➤ Data: unbinned event lists (lon, lat, energy,
time), or binned 1d, 2d, 3d counts

➤ Instrument response: effective area, plus
spatial (PSF) and energy dispersion

➤ Models: Spatial (lon/lat) and spectra (energy)

➤ Fitting: Forward-fold model with instrument
response. Poisson likelihood.

➤ Goal: inference about models & parametersA&A proofs: manuscript no. output

Fig. 3. One-standard-deviation likelihood contours (68 % probability content) of spectral parameters (�0,�, �) for the likelihood in Eq. 1. Results
from the individual instruments and from the joint-fit are displayed.

Fig. 4. Error estimation methods for the measured SED using the
VERITAS dataset, as example case. The solid black lines display the
upper and lower limits of the error band estimated with the multivari-
ate sampling. They represent the 68% containment of 500 spectral
realizations (100 displayed as gray lines) whose parameters are sam-
pled from a multivariate distribution defined by the fit results.

a standard deviation given by the systematic uncertainty on393
the energy scale provided by the single experiment, �i. Here-394
after we will refer to this likelihood fit as stat.+syst. likelihood395
that is the generalized version of Eq. 1 (obtainable from Eq. 5396
simply fixing all zi = 0). The result of the stat.+syst. likeli-397
hood joint fit is shown in Fig. 5 in blue against the result of398
the stat. likelihood (Eq. 1) fit in red. We note that in this work399
we only account for the energy scale systematic uncertainty,400
as an example of a modified likelihood. A full treatment of the401
systematic uncertainty goes beyond the scope of this paper. It402
is possible to reproduce interactively the systematic fit in the403
online material (3_systematics.ipynb).404

4. Reproducibility405

This work presents a first reproducible multi-instrument406
gamma-ray analysis, achieved by using the common DL3 data407
format and the open-source gammapy software package. We408
provide public access to the DL3 observational data, scripts409
used and obtained results with the GitHub repository men-410

tioned in the introduction, along with a Docker container9 on411
DockerHub, and a Zenodo record (Nigro et al. 2018), that pro-412
vides a Digital Object Identifier (DOI). The user access to the413
repository hosting data and analysis scripts represents a nec-414
essary, but not su�cient condition to accomplish the exact415
reproducibility of the results. We deliver a conda10 configu-416
ration file to build a virtual computing environment, defined417
with a special care in order to address the internal dependen-418
cies among the versions of the software used. Furthermore,419
since the availability of all the external software dependencies420
is not assured in the future, we also provide a joint-crab421
docker container, to guarantee a mid-term preservation of the422
reproducibility. The main results published in this work may423
be reproduced executing the make.py command. This script424
works as a documented command line interface tool, wrap-425
ping a set of actions in di↵erent option commands that either426
extract or run the likelihood minimization or reproduce the427
figures presented in the paper.428

The documentation is provided in the form of Jupyter429
notebooks. These notebooks can also be run through430
Binder11 public service to access via web browser the whole431
joint-crab working execution environment in the Binder432
cloud infrastructure. The Zenodo joint-crab record, the joint-433
crab docker container, and the joint-crab working environment434
in Binder may be all synchronized if needed, with the content435
present in the joint-crab GitHub repository. Therefore, if even-436
tual improved versions of the joint-crab bundle are needed437
(i.e. comments from referees, improved algorithms or analysis438
methods, etc.), they may be published in the GitHub repository439
and then propagated them from GitHub to the other joint-crab440
repositories in Zenodo, DockerHub and Binder. All these ver-441
sions would be kept synchronized in their respective reposito-442
ries.443

5. Extensibility444

Another significant advantage of the common-format, open-445
source and reproducible approach we propose to the VHE446
gamma-ray community is the possibility to access the ON447
and OFF events distributions and the IRFs, i.e. the results of448

9
https://hub.docker.com/r/gammapy/joint-crab

10
https://conda.io

11
https://mybinder.org/v2/gh/open-gamma-ray-astro/

joint-crab/master?urlpath=lab/tree/joint-crab

Article number, page 6 of 8

�4

PYTHON IS GREAT FOR MODELING & FITTING
➤ Very dynamic and easy language

➤ Many packages available:

➤ low-level optimisation packages: scipy.optimize, emcee, …

➤ mid-level fitting packages: lmfit, statsmodels, scikit-learn, iminuit

➤ high-level modeling frameworks: Sherpa, astropy.modeling, …

➤ all-inclusive solutions: RooFit, Tensorflow, pytorch, pymc, …

➤ Can write very complex analyses in a day.

➤ Can write general or domain-specific modeling & fitting package in a week.

�5

PYTHON IS TERRIBLE FOR MODELING AND FITTING
➤ Eco-system is fractured, a lot of duplication of effort and little interoperability. 

Hard to use scipy.optimize & iminuit & pymc & tensorflow & … together. 
Have to choose one framework and write all models & analysis code there.

➤ As a user (astronomer): what to use to implement my analysis?

➤ As a domain-specific package developer (Gammapy): what packages to build on?

➤ As a potential framework contributor: where to put my effort?

�6

FRACTURED COMMUNITY
➤ Matthew Rocklin at Scipy 2019 

"Refactoring the Ecosystem for Heterogeneity” 
See slides and video.

➤ Matthew talks about scientific computing
in Python, but I think the same
comments apply for modeling & fitting

➤ Even before Tensorflow et al., there never
was a common standard or leading
Python package for modeling & fitting 
(beyond scipy.optimize, which is very low-level)

�7

https://matthewrocklin.com/slides/scipy-2019#/
https://youtu.be/Q0DsdiY-jiw

INTERFACES, LIBRARIES AND FRAMEWORKS
➤ Why are the Python modelling & fitting packages so fragmented?

➤ Scientific computing packages like scipy, scikit-image, scikit-learn, Astropy, … are
interoperable because they are libraries using common objects (Python & Numpy)
or at least common compatible interfaces (Numpy & dark arrays).

➤ The one clear interface that exists is the cost function passed to an optimiser. 
See e.g. scipy.optimize.minimize and iminuit.minimize and emcee.

➤ As soon as a Model or Parameter class is introduced, a framework is created. 
And it’s incompatible with any other existing framework for modeling & fitting.

➤ It’s very hard to impossible to avoid creating a framework, if you want things like
parameter limits, linked parameters, units, compound models, 1D/2D/3D data, …

�8

EXISTING PACKAGES
Quick overview of a few that I’ve used (astronomer bias). There are 100s in widespread use.

�9

SCIPY.OPTIMIZE
➤ https://docs.scipy.org/doc/scipy/reference/

tutorial/optimize.html

➤ Wraps and re-implements some common
optimisation algorithms.

➤ Doesn’t do likelihood profile analysis or
parameter error estimation (apart from
least_square and curve_fit special case)

➤ Single-Function API

➤ User interface is the cost function, 
either with Python or Numpy objects 
(optional; can use analytical gradient)

➤ A low-level library, not a framework. 
Wrapped by others (lmfit, statsmodels, …)

�10

https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html

STATSMODELS & SCIKIT-LEARN
➤ https://www.statsmodels.org  

- Statistical models & tests 
- Big focus on parameter error estimation

➤ https://scikit-learn.org  
- Machine learning 
- Little or no parameter error estimation

➤ Focus on specific pre-defined very
commonly used models.

➤ Not clear to me if useful for more general
applications, like in HEP & astro.

➤ Partly scipy.optimize based, partly custom
optimisers used in the background

�11

https://www.statsmodels.org
https://scikit-learn.org

LMFIT
➤ https://lmfit.github.io/lmfit-py/

➤ Thin layer on top of scipy.optimize, a mini
framework with classes: 
Parameter, Parameters, Model

➤ Handles parameter bounds, constraints,
computes errors via likelihood profile
analysis.

➤ Not clear to me if it’s a general framework
we could use for any analysis, or if parts
are hard-coded on least squares and
Levenberg-Marquardt method

➤ Developed & maintained by a physicist:
Matt Newville (Chicago).

�12

https://lmfit.github.io/lmfit-py/

IMINUIT
➤ https://iminuit.readthedocs.io

➤ Python wrapper for MINUIT C++ library

➤ Single-class API

➤ User interface is the cost function, 
either with Python or Numpy objects 
(optional; can use analytical gradient)

➤ Great if it does what you need.

➤ Not easy to build upon: stateful interface
and API is not a layered and extensible.

➤ Mini framework: the Minuit object has
methods to handle parameters or make
likelihood profiles and plots

�13

https://iminuit.readthedocs.io/

ASTROPY.MODELING
➤ https://docs.astropy.org/en/latest/modeling/

➤ A framework: Parameter, Model,
FittableModel, Fittable1DModel, …

➤ Some Fitter classes (mostly connecting to
scipy.optimize), no Data classes

➤ Supports complex models: linked parameters,
compound models, transformations, units, …

➤ Recently simplified Parameter and compound
model design, see here.

➤ Could also be interesting for others: ASDF
(Advanced Scientific Data Format) for model
serialisation, see https://asdf.readthedocs.io

�14

https://docs.astropy.org/en/latest/modeling/
https://docs.astropy.org/en/latest/modeling/changes_for_4.html
https://asdf.readthedocs.io/

SHERPA
➤ https://sherpa.readthedocs.io  

https://github.com/sherpa/sherpa

➤ Modeling & fitting package for Chandra X-
ray satellite. Started 20 years ago with S-
lang, migrated to Python in 2007, moved to
Github in 2015, continually improved …

➤ Built-in optimisers, error estimators,
plotting code … a full framework.

➤ Based on Numpy. Object-oriented,
extensible API, and procedural session-
based user interface on top.

➤ Bridge to astropy: SABA

➤ References: Scipy 2009, Scipy 2011, 1, 2

�15

https://sherpa.readthedocs.io
https://github.com/sherpa/sherpa
https://saba.readthedocs.io/
http://conference.scipy.org/proceedings/SciPy2009/paper_8/full_text.pdf
http://conference.scipy.org/proceedings/scipy2011/pdfs/brefsdal.pdf
https://indico.cern.ch/event/783425/contributions/3356857/attachments/1815704/2967917/Sherpa_PyGamma19_aneta.pdf
https://indico.cern.ch/event/783425/contributions/3364291/attachments/1815919/2967921/Gammapy19_omar.pdf

GAMMAPY
➤ Gammapy code, docs, example

➤ What I work on, very domain-specific package.

➤ Currently we roll our own mini framework:
Parameter, Parameters, Model, Dataset, Datasets
and Fit classes, most code in built-in models.

➤ Idea: Dataset has list of model components and data
and defines the likelihood. Fit class is the manager and
interface to optimiser and error estimator backends.
Linked parameters across datasets via multiple
references to Python Parameter objects.

➤ Very much work in progress, feedback welcome. Would
like to switch to a solution that supports parallelism
(multi-core, maybe CPUs), and gradients, ideally with
autodiff. Sounds like Tensorflow, but is it stable enough
for us and can we teach our users & devs?

�16

https://github.com/gammapy/gammapy/tree/master/gammapy/modeling
https://docs.gammapy.org/dev/modeling/index.html#classes
https://docs.gammapy.org/dev/notebooks/analysis_3d_joint.html

QUO VADIS?
➤ Contribute to existing packages?

➤ Create new packages?

➤ Create a standard and abstract interfaces?

➤ Seems possible, but difficult. 
Both technically and sociologically.

➤ Significant effort exists based on
Tensorflow (e.g. tensorflow probability)
or in other languages (e.g. Julia, Swift)

➤ But what about Numpy & pytorch & … ?

https://xkcd.com/927/

http://www.juliaopt.org �17

https://xkcd.com/927/
http://www.juliaopt.org

SUMMARY & DISCUSSION

1. Python is great for modeling & fitting.

2. Python is terrible for modeling & fitting.

3. Can we make it better and collaborate on a few standards or packages? 
 Or are use cases and requirements in various domains too different to converge?

�18

