

$B \to \gamma$ Form Factors @ NLO

LHCb UK Annual Meeting Huddersfield '20

Tadeusz Janowski, Ben Pullin, Roman Zwicky

University of Edinburgh

Motivation

Reasons to look at $B \to \gamma$ FF's...

- $B_s \to \ell^+ \ell^- \gamma$ as a test of Lepton Flavour Universality.
 - Sensitive to the same set of operators as $b \to s \ \ell^+ \ell^-$ due to identical effective Hamiltonian.
 - Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $R_{K(*)}$).
 - Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18

Motivation

Reasons to look at $B \to \gamma$ FF's...

- $B_s \to \ell^+ \ell^- \gamma$ as a test of Lepton Flavour Universality.
 - Sensitive to the same set of operators as $b \to s \ell^+ \ell^-$ due to identical effective Hamiltonian.
 - Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $R_{\kappa(*)}$).
 - Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18
- Determination of the first inverse moment of the leading B-meson distribution amplitude, λ_B .
 - · Currently a large source of uncertainty in B-meson DA calculations.
 - · Lots of indirect determinations with results ranging from $\lambda_B=200$
 - 600 MeV ...Descotes-G. Sachrajda '02, Rohrwild, Beneke '11, Braun, Khodjamirian '12, Wang '16, Braun, Beneke, Ji, Wei '18 and more.
 - Should be able to give competitive results by extending the work of Ball & Kou '03 to NLO.

Motivation

Reasons to look at $B \to \gamma$ FF's...

- $B_s \to \ell^+ \ell^- \gamma$ as a test of Lepton Flavour Universality.
 - Sensitive to the same set of operators as $b \to s \ell^+ \ell^-$ due to identical effective Hamiltonian.
 - Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $R_{K(*)}$).
 - Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18
- Determination of the first inverse moment of the leading B-meson distribution amplitude, λ_B .
 - · Currently a large source of uncertainty in B-meson DA calculations.
 - · Lots of indirect determinations with results ranging from $\lambda_B=200$
 - 600 MeV ...Descotes-G. Sachrajda '02, Rohrwild, Beneke '11, Braun, Khodjamirian '12, Wang '16, Braun, Beneke, Ji, Wei '18 and more.
 - Should be able to give competitive results by extending the work of Ball & Kou '03 to NLO.
- · An input for flavoured axion searches. Albrecht, Stamou, Ziegler, Zwicky '19.

Definition of the Form Factors

Form factors of interest parameterise the hadronic matrix elements of operators from the effective weak Hamiltonian.

$$\langle \gamma(k,\epsilon) | \mathcal{O}_{\mu}^{V} | \bar{B}_{q}(p_{B}) \rangle = P_{\mu}^{\perp} V_{\perp}(q^{2}) - P_{\mu}^{\parallel} V_{\parallel}(q^{2}) \qquad \mathcal{O}_{\mu}^{V} = -\frac{m_{B}}{e} \bar{q} \gamma_{\mu} (1 - \gamma_{5}) b,$$

$$\langle \gamma(k,\epsilon) | \mathcal{O}_{\mu}^{\mathsf{T}} | \bar{B}_{q}(p_{B}) \rangle = P_{\mu}^{\perp} T_{\perp}(q^{2}) - P_{\mu}^{\parallel} T_{\parallel}(q^{2}) \qquad \mathcal{O}_{\mu}^{\mathsf{T}} = \frac{1}{e} \bar{q} i q^{\nu} \sigma_{\mu\nu} (1 + \gamma_{5}) b$$

Two independent structures

$$P_{\mu}^{\perp} = \varepsilon_{\mu\alpha\beta\gamma} \, \epsilon^{*\alpha} p_{\mathsf{B}}^{\beta} k^{\gamma}, \qquad \qquad P_{\mu}^{\parallel} = \mathsf{i}(p_{\mathsf{B}} \cdot k \, \epsilon_{\mu}^{*} - p_{\mathsf{B}} \cdot \epsilon^{*} \, k_{\mu}).$$

Definition of the Form Factors

Form factors of interest parameterise the hadronic matrix elements of operators from the effective weak Hamiltonian.

$$\begin{split} &\langle \gamma(k,\epsilon)|\,\mathcal{O}_{\mu}^{V}\,|\bar{B}_{q}(p_{B})\rangle = P_{\mu}^{\perp}V_{\perp}(q^{2}) - P_{\mu}^{\parallel}V_{\parallel}(q^{2}) \qquad \mathcal{O}_{\mu}^{V} = -\frac{m_{B}}{e}\bar{q}\gamma_{\mu}(1-\gamma_{5})b, \\ &\langle \gamma(k,\epsilon)|\,\mathcal{O}_{\mu}^{T}\,|\bar{B}_{q}(p_{B})\rangle = P_{\mu}^{\perp}T_{\perp}(q^{2}) - P_{\mu}^{\parallel}T_{\parallel}(q^{2}) \qquad \mathcal{O}_{\mu}^{T} = \frac{1}{e}\bar{q}iq^{\nu}\sigma_{\mu\nu}(1+\gamma_{5})b \end{split}$$

Two independent structures

$$P_{\mu}^{\perp} = \varepsilon_{\mu\alpha\beta\gamma} \, \epsilon^{*\alpha} p_{\rm B}^{\beta} k^{\gamma}, \qquad \qquad P_{\mu}^{\parallel} = i(p_{\rm B} \cdot k \, \epsilon_{\mu}^* - p_{\rm B} \cdot \epsilon^* \, k_{\mu}).$$

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

 Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

- Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.
- Light-Cone: OPE expansion of light-like separated operators $x^2 \sim 0$.
 - Expansion in twist = \dim spin \rightarrow parameterised by photon DA.
 - Light-cone contributions dominant in the kinematic region $q^2 \ll m_b^2$.

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

- Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.
- Light-Cone: OPE expansion of light-like separated operators $x^2 \sim 0$.
 - Expansion in twist = \dim spin \rightarrow parameterised by photon DA.
 - Light-cone contributions dominant in the kinematic region $q^2 \ll m_b^2$.
- Photon DA: Photon is not exactly point-like (hard) but also has a (soft) hadronic contribution.
 - Hadronic contribution related to probability for photon to dissociate into partons.
 - Reminiscent of massless vector mesons → description in terms of DA.

Information on the FF is contained in the correlation function:

$$\begin{split} \Pi^{\Gamma}_{\mu}(p_B^2, q^2) &= i \int_{x} e^{-ip_B \cdot x} \left\langle \gamma(k, \epsilon) \right| T\{J_B(x) \mathcal{O}^{\Gamma}_{\mu}(0)\} \left| 0 \right\rangle, \\ &= P^{\perp}_{\mu} \Pi^{\Gamma}_{\perp}(p_B^2, q^2) - P^{\parallel}_{\mu} \Pi^{\Gamma}_{\parallel}(p_B^2, q^2) \end{split}$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_y e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_\psi \bar{\psi} \gamma_\rho \psi(y)$$

Information on the FF is contained in the correlation function:

$$\Pi_{\mu}^{\Gamma}(p_{B}^{2}, q^{2}) = i \int_{X} e^{-ip_{B} \cdot X} \langle \gamma(k, \epsilon) | T\{J_{B}(X)\mathcal{O}_{\mu}^{\Gamma}(0)\} | 0 \rangle,
= P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}(p_{B}^{2}, q^{2}) - P_{\mu}^{\parallel} \Pi_{\parallel}^{\Gamma}(p_{B}^{2}, q^{2})$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_{y} e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$$

Step-by-step:

• Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and $O(\alpha_s)$ for twist-1&2.

Information on the FF is contained in the correlation function:

$$\Pi_{\mu}^{\Gamma}(p_{B}^{2}, q^{2}) = i \int_{X} e^{-ip_{B} \cdot X} \langle \gamma(k, \epsilon) | T\{J_{B}(X)\mathcal{O}_{\mu}^{\Gamma}(0)\} | 0 \rangle,
= P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}(p_{B}^{2}, q^{2}) - P_{\mu}^{\parallel} \Pi_{\parallel}^{\Gamma}(p_{B}^{2}, q^{2})$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_{y} e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$$

Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and $O(\alpha_s)$ for twist-1&2.
- Write LCOPE expansion as a dispersion integral in p_B & match to the physical hadronic dispersion relation.

Information on the FF is contained in the correlation function:

$$\Pi_{\mu}^{\Gamma}(p_{B}^{2}, q^{2}) = i \int_{X} e^{-ip_{B} \cdot X} \langle \gamma(k, \epsilon) | T\{J_{B}(X)\mathcal{O}_{\mu}^{\Gamma}(0)\} | 0 \rangle,
= P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}(p_{B}^{2}, q^{2}) - P_{\mu}^{\parallel} \Pi_{\parallel}^{\Gamma}(p_{B}^{2}, q^{2})$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_{y} e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$$

Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and $O(\alpha_s)$ for twist-1&2.
- Write LCOPE expansion as a dispersion integral in p_B & match to the physical hadronic dispersion relation.
- Employ quark-hardron duality.

Information on the FF is contained in the correlation function:

$$\Pi_{\mu}^{\Gamma}(p_{B}^{2}, q^{2}) = i \int_{X} e^{-ip_{B} \cdot X} \langle \gamma(k, \epsilon) | T\{J_{B}(X)\mathcal{O}_{\mu}^{\Gamma}(0)\} | 0 \rangle,
= P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}(p_{B}^{2}, q^{2}) - P_{\mu}^{\parallel} \Pi_{\parallel}^{\Gamma}(p_{B}^{2}, q^{2})$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_{y} e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$$

Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and $O(\alpha_s)$ for twist-1&2.
- Write LCOPE expansion as a dispersion integral in p_B & match to the physical hadronic dispersion relation.
- Employ quark-hardron duality.
- Apply Borel transform reduces contributions from higher resonances.

Information on the FF is contained in the correlation function:

$$\Pi_{\mu}^{\Gamma}(p_{B}^{2},q^{2}) = i \int_{x} e^{-ip_{B} \cdot x} \langle \gamma(k,\epsilon) | T\{J_{B}(x)\mathcal{O}_{\mu}^{\Gamma}(0)\} | 0 \rangle,$$

$$= P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}(p_{B}^{2},q^{2}) - P_{\mu}^{\parallel} \Pi_{\parallel}^{\Gamma}(p_{B}^{2},q^{2})$$

Interpolating operator for the *B*-meson $J_B=m_b\bar{b}\gamma_5q$, $\Gamma=T,V$.

For the perturbative photon contribution:

$$\langle \gamma(k,\epsilon)|
ightarrow -ie \int_{y} e^{ik\cdot y} \langle 0| \sum_{\psi=b,q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$$

Sum rule:

$$\Gamma_{\perp,\parallel}(q^2) = \frac{1}{m_B f_B} \int_{m_b^2}^{s_0} \mathrm{d}s \, \frac{1}{\pi} \mathrm{Im}[\Pi_{\perp,\parallel}^{\Gamma}(s,q^2)] e^{(m_B^2 - s)/M^2}.$$

Leading contributions to the correlation function:

Pertubative

Leading contributions to the correlation function:

Pertubative

· Soft*

^{*}soft contribution proportional to Q_b is treated using local OPE

 $O(\alpha_s)$ corrections to twist-2 have been computed:

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

• Compute traces (FeynCalc) \rightarrow Scalar integrals

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $H \to WW$ Di Vita, Mastrolia, Primo, Schubert '17

- Compute traces (FeynCalc) → Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method
 - → Expression in terms of Goncharov functions .

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

- Compute traces (FeynCalc) → Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method
 Expression in terms of Goncharov functions.
- Transform to dispersive representation \rightarrow take Im

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

- Compute traces (FeynCalc) → Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method
 Expression in terms of Goncharov functions.
- \cdot Transform to dispersive representation o take Im
- Goncharov functions → Classical polylogs (PolyLogTools)

- Main focus has been on calculating the $O(\alpha_s)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for H → WW
 Di Vita, Mastrolia, Primo, Schubert '17

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method
 Expression in terms of Goncharov functions.
- Transform to dispersive representation ightarrow take Im
- Goncharov functions → Classical polylogs (PolyLogTools)
- Numerical tests (SecDec, PolyLogTools)

Sanity Checks

1) Any FF determination has to obey the EOM:

$$ar{q}i(D^{
u}i\sigma_{\mu
u}+\overleftrightarrow{D_{\mu}})[\gamma_5]b+(m_q\mp m_b)ar{q}\gamma_{\mu}[\gamma_5]b=0$$

Tensor "New" Vector

→ Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.

Sanity Checks

1) Any FF determination has to obey the EOM:

$$ar{q}i(D^{
u}i\sigma_{\mu
u}+\overleftrightarrow{D_{\mu}})[\gamma_5]b+(m_q\mp m_b)ar{q}\gamma_{\mu}[\gamma_5]b=0$$

Tensor "New" Vector

→ Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.

2) Algebraic Identity:

$$T_{\perp}(0) = T_{\parallel}(0)$$

ightarrow Checks consistency of γ_5 prescription

Sanity Checks

1) Any FF determination has to obey the EOM:

$$ar{q}i(D^{
u}i\sigma_{\mu
u}+\overleftrightarrow{D_{\mu}})[\gamma_5]b+(m_q\mp m_b)ar{q}\gamma_{\mu}[\gamma_5]b=0$$

Tensor "New" Vector

→ Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.

2) Algebraic Identity:

$$T_{\perp}(0) = T_{\parallel}(0)$$

 \rightarrow Checks consistency of γ_5 prescription

3) Renormalisation:

- → Non-trivial mixing of operators
- → Cancellation of thousands of Goncharov functions
- ightarrow Cancellation of explicit scale dependence at NLO

g

Scale Dependence

Cancellation of explicit scale dependence at NLO

Similar results for the other FF

Breakdown and Borel stability

Breakdown			
	$V_u^{\perp}(0)$	$V_d^{\perp}(0)$	
Tw=1, LO	82%	85%	
Tw=1, NLO	-11%	-10 %	
Tw=2, LO	49%	41%	
Tw=2, NLO	-11%	-9%	
Tw=3, LO	-1%	<1%	
Tw=4, LO	-8%	-6%	

- Both charged and neutral FF has similar breakdown with reasonable convergence
- Appears that radiative corrections act to reduce FF but the relative sign depends on the scale/mass scheme.

Breakdown and Borel stability

Breakdown			
	$V_u^{\perp}(0)$	$V_d^{\perp}(0)$	
Tw=1, LO	82%	85%	
Tw=1, NLO	-11%	-10 %	
Tw=2, LO	49%	41%	
Tw=2, NLO	-11%	-9%	
Tw=3, LO	-1%	<1%	
Tw=4, LO	-8%	-6%	

- Both charged and neutral FF has similar breakdown with reasonable convergence
- Appears that radiative corrections act to reduce FF but the relative sign depends on the scale/mass scheme.

- Stability under variation of Borel parameter signals "good" sum rule.
- Variation increases with q^2 but stays under control (< 10%).

Preliminary Plots - Vector

 \cdot Q_q Dominates o difference between charged and neutral

Preliminary Plots - Tensor

• Recall
$$T_{\perp}(0) = T_{\parallel}(0)$$

Summary

- $B_{uds} \rightarrow \gamma$ FF have been computed @ NLO for low $q^2 << m_b^2$. \rightarrow Full numerics with z-expansion fit and error correlation are on the way.
- $D_{uds} \rightarrow \gamma$ FF can also be extracted but only for a very small kinematic range.
- · NLO corrections significantly reduce the scale dependence.
- · Should be able to provide a competitive $1/\lambda_B$.
- Experimental data on $B_{\rm s} \to \ell\ell\gamma$ and $B \to \ell^+\nu\gamma$ anticipated.

Summary

- $B_{uds} \rightarrow \gamma$ FF have been computed @ NLO for low $q^2 << m_b^2$. \rightarrow Full numerics with z-expansion fit and error correlation are on the way.
- $D_{uds} \rightarrow \gamma$ FF can also be extracted but only for a very small kinematic range.
- · NLO corrections significantly reduce the scale dependence.
- · Should be able to provide a competitive $1/\lambda_B$.
- Experimental data on $B_{\rm S} \to \ell\ell\gamma$ and $B \to \ell^+\nu\gamma$ anticipated.

Thanks for you attention!