$B \rightarrow \gamma$ Form Factors @ NLO
LHCb UK Annual Meeting Huddersfield '20

Tadeusz Janowski, Ben Pullin, Roman Zwicky

University of Edinburgh

Motivation

Reasons to look at $B \rightarrow \gamma$ FF's...

- $B_{s} \rightarrow \ell^{+} \ell^{-} \gamma$ as a test of Lepton Flavour Universality.
- Sensitive to the same set of operators as $b \rightarrow s \ell^{+} \ell^{-}$due to identical effective Hamiltonian.
- Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $\left.R_{K^{(*)}}\right)$.
- Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18

Motivation

Reasons to look at $B \rightarrow \gamma$ FF's...

- $\mathrm{B}_{\mathrm{s}} \rightarrow \ell^{+} \ell^{-} \gamma$ as a test of Lepton Flavour Universality.
- Sensitive to the same set of operators as $b \rightarrow s \ell^{+} \ell^{-}$due to identical effective Hamiltonian.
- Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $\left.R_{K^{(*)}}\right)$.
- Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18
- Determination of the first inverse moment of the leading B-meson distribution amplitude, λ_{B}.
- Currently a large source of uncertainty in B-meson DA calculations.
- Lots of indirect determinations with results ranging from $\lambda_{B}=200$
- 600 MeV ...Descotes-G. Sachrajda '02, Rohrwild,Beneke '11, Braun,Khodjamirian '12, Wang '16, Braun, Beneke, Ji, Wei '18 and more.
- Should be able to give competitive results by extending the work of Ball \& Kou '03 to NLO.

Motivation

Reasons to look at $B \rightarrow \gamma$ FF's...

- $\mathrm{B}_{\mathrm{s}} \rightarrow \ell^{+} \ell^{-} \gamma$ as a test of Lepton Flavour Universality.
- Sensitive to the same set of operators as $b \rightarrow s \ell^{+} \ell^{-}$due to identical effective Hamiltonian.
- Shifts in the Wilson coefficient of these operators could explain anomalies in flavour data (e.g. $\left.R_{K^{(*)}}\right)$.
- Guadagnioli, Reboud, Detori '16, Hazard, Petrov, '17, Kozachuk, Melikhov, Nikitin, '18, Guadagnioli, Reboud, Zwicky, '18
- Determination of the first inverse moment of the leading B-meson distribution amplitude, λ_{B}.
- Currently a large source of uncertainty in B-meson DA calculations.
- Lots of indirect determinations with results ranging from $\lambda_{B}=200$
- 600 MeV ...Descotes-G. Sachrajda '02, Rohrwild,Beneke '11, Braun,Khodjamirian '12, Wang '16, Braun, Beneke, Ji, Wei '18 and more.
- Should be able to give competitive results by extending the work of Ball \& Kou '03 to NLO.
- An input for flavoured axion searches. Albrecht, Stamou, Ziegler, Zwicky '19.

Definition of the Form Factors

Form factors of interest parameterise the hadronic matrix elements of operators from the effective weak Hamiltonian.

$$
\begin{array}{ll}
\langle\gamma(k, \epsilon)| \mathcal{O}_{\mu}^{\vee}\left|\bar{B}_{q}\left(p_{B}\right)\right\rangle=P_{\mu}^{\perp} V_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} V_{\|}\left(q^{2}\right) & \mathcal{O}_{\mu}^{V}=-\frac{m_{B}}{e} \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b, \\
\langle\gamma(k, \epsilon)| \mathcal{O}_{\mu}^{\top}\left|\bar{B}_{q}\left(p_{B}\right)\right\rangle=P_{\mu}^{\perp} T_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} T_{\|}\left(q^{2}\right) & \mathcal{O}_{\mu}^{\top}=\frac{1}{e} \bar{q} i q^{\nu} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) b
\end{array}
$$

Two independent structures

$$
P_{\mu}^{\perp}=\varepsilon_{\mu \alpha \beta \gamma} \epsilon^{* \alpha} p_{B}^{\beta} k^{\gamma}, \quad P_{\mu}^{\|}=i\left(p_{B} \cdot k \epsilon_{\mu}^{*}-p_{B} \cdot \epsilon^{*} k_{\mu}\right) .
$$

Definition of the Form Factors

Form factors of interest parameterise the hadronic matrix elements of operators from the effective weak Hamiltonian.
$\langle\gamma(k, \epsilon)| \mathcal{O}_{\mu}^{V}\left|\bar{B}_{q}\left(p_{B}\right)\right\rangle=P_{\mu}^{\perp} V_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} V_{\|}\left(q^{2}\right)$

$$
\mathcal{O}_{\mu}^{\vee}=-\frac{m_{B}}{e} \bar{q} \gamma_{\mu}\left(1-\gamma_{5}\right) b,
$$

$\langle\gamma(k, \epsilon)| \mathcal{O}_{\mu}^{\top}\left|\bar{B}_{q}\left(p_{B}\right)\right\rangle=P_{\mu}^{\perp} T_{\perp}\left(q^{2}\right)-P_{\mu}^{\|} T_{\|}\left(q^{2}\right)$

$$
\mathcal{O}_{\mu}^{T}=\frac{1}{e} \bar{q} i q^{\nu} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) b
$$

Two independent structures

$$
P_{\mu}^{\perp}=\varepsilon_{\mu \alpha \beta \gamma} \epsilon^{* \alpha} p_{B}^{\beta} k^{\gamma}, \quad P_{\mu}^{\|}=i\left(p_{B} \cdot k \epsilon_{\mu}^{*}-p_{B} \cdot \epsilon^{*} k_{\mu}\right) .
$$

$B \rightarrow \gamma \ell \bar{\nu}$

Light-Cone Sum Rules

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

Light-Cone Sum Rules

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

- Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.

Light-Cone Sum Rules

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

- Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.
- Light-Cone: OPE expansion of light-like separated operators $x^{2} \sim 0$.
- Expansion in twist = dim - spin \rightarrow parameterised by photon DA.
- Light-cone contributions dominant in the kinematic region $q^{2} \ll m_{b}^{2}$.

Light-Cone Sum Rules

Form factors computed within the framework of Light-Cone Sum Rules (LCSR) using photon distribution amplitudes (DA).

- Sum Rule: Relate an OPE expansion to a sum over a hadronic spectral density to form a link between QCD and hadrons.
- Light-Cone: OPE expansion of light-like separated operators $x^{2} \sim 0$.
- Expansion in twist = dim - spin \rightarrow parameterised by photon DA.
- Light-cone contributions dominant in the kinematic region $q^{2} \ll m_{b}^{2}$.
- Photon DA: Photon is not exactly point-like (hard) but also has a (soft) hadronic contribution.
- Hadronic contribution related to probability for photon to dissociate into partons.
- Reminiscent of massless vector mesons \rightarrow description in terms of DA.

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\ulcorner }\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$
Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and $O\left(\alpha_{s}\right)$ for twist-1\&2.

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\ulcorner }\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$
Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and O $\left(\alpha_{s}\right)$ for twist-1\&2.
- Write LCOPE expansion as a dispersion integral in p_{B} \& match to the physical hadronic dispersion relation.

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\ulcorner }\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$
Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and O $\left(\alpha_{\mathrm{s}}\right)$ for twist-1\&2.
- Write LCOPE expansion as a dispersion integral in p_{B} \& match to the physical hadronic dispersion relation.
- Employ quark-hardron duality.

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\ulcorner }\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$
Step-by-step:

- Compute the LCOPE expansion \rightarrow Up to twist-4 3-particle and O $\left(\alpha_{\mathrm{s}}\right)$ for twist-1\&2.
- Write LCOPE expansion as a dispersion integral in p_{B} \& match to the physical hadronic dispersion relation.
- Employ quark-hardron duality.
- Apply Borel transform - reduces contributions from higher resonances.

The Computation

Information on the FF is contained in the correlation function:

$$
\begin{aligned}
\Pi_{\mu}^{\Gamma}\left(p_{B}^{2}, q^{2}\right) & =i \int_{x} e^{-i p_{B} \cdot x}\langle\gamma(k, \epsilon)| T\left\{J_{B}(x) \mathcal{O}_{\mu}^{\Gamma}(0)\right\}|0\rangle, \\
& =P_{\mu}^{\perp} \Pi_{\perp}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)-P_{\mu}^{\|} \Pi_{\|}^{\Gamma}\left(p_{B}^{2}, q^{2}\right)
\end{aligned}
$$

Interpolating operator for the B-meson $J_{B}=m_{b} \bar{b} \gamma_{5} q, \Gamma=T, V$.
For the perturbative photon contribution:
$\langle\gamma(k, \epsilon)| \rightarrow-i e \int_{y} e^{i k \cdot y}\langle 0| \sum_{\psi=b, q} Q_{\psi} \bar{\psi} \gamma_{\rho} \psi(y)$

Sum rule:

$$
\Gamma_{\perp, \|}\left(q^{2}\right)=\frac{1}{m_{B} f_{B}} \int_{m_{b}^{2}}^{s_{0}} \mathrm{ds} \frac{1}{\pi} \operatorname{Im}\left[\Pi_{\perp, \|}^{\ulcorner }\left(s, q^{2}\right)\right] e^{\left(m_{B}^{2}-s\right) / M^{2}}
$$

OPE Expansion @ LO

Leading contributions to the correlation function:

- Pertubative

b)

OPE Expansion @ LO

Leading contributions to the correlation function:

- Pertubative

- Soft*

*soft contribution proportional to Q_{b} is treated using local OPE

OPE Expansion @ NLO

$O\left(\alpha_{s}\right)$ corrections to twist-2 have been computed:

a)

d)

b)

e)

c)

f)

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $\mathrm{H} \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $\mathrm{H} \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

- Compute traces (FeynCalc) \rightarrow Scalar integrals

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $\mathrm{H} \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $H \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method \rightarrow Expression in terms of Goncharov functions.

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $H \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method \rightarrow Expression in terms of Goncharov functions .
- Transform to dispersive representation \rightarrow take Im

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $H \rightarrow$ WW Di Vita, Mastrolia, Primo, Schubert '17

Work-flow:

- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method \rightarrow Expression in terms of Goncharov functions .
- Transform to dispersive representation \rightarrow take Im
- Goncharov functions \rightarrow Classical polylogs (PolyLogTools)

OPE Expansion @ NLO

- Main focus has been on calculating the $O\left(\alpha_{s}\right)$ corrections to the perturbative contribution.
- Achieved by using and extending the basis of master integrals for $H \rightarrow$ WW
Di Vita, Mastrolia, Primo, Schubert '17
Work-flow:
- Compute traces (FeynCalc) \rightarrow Scalar integrals
- Reduction to master integrals (Kira, LiteRed)
- Master integrals computed using differential equation method \rightarrow Expression in terms of Goncharov functions .
- Transform to dispersive representation \rightarrow take Im
- Goncharov functions \rightarrow Classical polylogs (PolyLogTools)
- Numerical tests (SecDec, PolyLogTools)

Sanity Checks

1) Any FF determination has to obey the EOM:

$$
\begin{gathered}
\bar{q} i\left(D^{\nu} i \sigma_{\mu \nu}+\overleftrightarrow{B_{\mu}}\right)\left[\gamma_{5}\right] b+\left(m_{q} \mp m_{b}\right) \bar{q} \gamma_{\mu}\left[\gamma_{5}\right] b=0 \\
\text { Tensor "New" }
\end{gathered}
$$

\rightarrow Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.

Sanity Checks

1) Any FF determination has to obey the EOM:

$$
\begin{gathered}
\bar{q} i\left(D^{\nu} i \sigma_{\mu \nu}+\overleftrightarrow{D_{\mu}}\right)\left[\gamma_{5}\right] b+\left(m_{q} \mp m_{b}\right) \bar{q} \gamma_{\mu}\left[\gamma_{5}\right] b=0 \\
\text { Tensor "New" }
\end{gathered}
$$

\rightarrow Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.
2) Algebraic Identity:

$$
T_{\perp}(0)=T_{\|}(0)
$$

\rightarrow Checks consistency of γ_{5} prescription

Sanity Checks

1) Any FF determination has to obey the EOM:

$$
\begin{gathered}
\bar{q} i\left(D^{\nu} i \sigma_{\mu \nu}+\overleftrightarrow{D_{\mu}}\right)\left[\gamma_{5}\right] b+\left(m_{q} \mp m_{b}\right) \bar{q} \gamma_{\mu}\left[\gamma_{5}\right] b=0 \\
\text { Tensor "New" }
\end{gathered}
$$

\rightarrow Provides non-trival check of the photon DA classification of Ball, Braun, Kivel '02.
2) Algebraic Identity:

$$
T_{\perp}(0)=T_{\|}(0)
$$

\rightarrow Checks consistency of γ_{5} prescription
3) Renormalisation:
\rightarrow Non-trivial mixing of operators
\rightarrow Cancellation of thousands of Goncharov functions
\rightarrow Cancellation of explicit scale dependence at NLO

Scale Dependence

Cancellation of explicit scale dependence at NLO

Similar results for the other FF

Breakdown and Borel stability

Breakdown

	$V_{u}^{\perp}(0)$	$V_{d}^{\perp}(0)$
$T w=1, L O$	82%	85%
$T w=1$, NLO	-11%	-10%
$T w=2, L O$	49%	41%
$T w=2$, NLO	-11%	-9%
$T w=3, L O$	-1%	$<1 \%$
$T w=4, L O$	-8%	-6%

- Both charged and neutral FF has similar breakdown with reasonable convergence
- Appears that radiative corrections act to reduce FF but the relative sign depends on the scale/mass scheme.

Breakdown and Borel stability

Breakdown		
	$V_{\frac{\perp}{u}}^{\perp}(0)$	$V_{d}^{\perp}(0)$
$T w=1, L O$	82%	85%
$T w=1$, NLO	-11%	-10%
$T w=2$, LO	49%	41%
$T w=2$, NLO	-11%	-9%
$T w=3, L O$	-1%	$<1 \%$
$T w=4, L O$	-8%	-6%

- Both charged and neutral FF has similar breakdown with reasonable convergence
- Appears that radiative corrections act to reduce FF but the relative sign depends on the scale/mass scheme.

- Stability under variation of Borel parameter signals "good" sum rule.
- Variation increases with q^{2} but stays under control (<10\%).

Preliminary Plots - Vector

- Q_{q} Dominates \rightarrow difference between charged and neutral

Preliminary Plots - Tensor

Summary

- Buds $\rightarrow \gamma$ FF have been computed @ NLO for low $q^{2} \ll m_{b}^{2}$. \rightarrow Full numerics with z-expansion fit and error correlation are on the way.
- $D_{\text {uds }} \rightarrow \gamma$ FF can also be extracted but only for a very small kinematic range.
- NLO corrections significantly reduce the scale dependence.
- Should be able to provide a competitive $1 / \lambda_{B}$.
- Experimental data on $B_{s} \rightarrow \ell \ell \gamma$ and $B \rightarrow \ell^{+} \nu \gamma$ anticipated.

Summary

- Buds $\rightarrow \gamma$ FF have been computed @ NLO for low $q^{2} \ll m_{b}^{2}$. \rightarrow Full numerics with z-expansion fit and error correlation are on the way.
- $D_{\text {uds }} \rightarrow \gamma$ FF can also be extracted but only for a very small kinematic range.
- NLO corrections significantly reduce the scale dependence.
- Should be able to provide a competitive $1 / \lambda_{B}$.
- Experimental data on $B_{s} \rightarrow \ell \ell \gamma$ and $B \rightarrow \ell^{+} \nu \gamma$ anticipated.

Thanks for you attention!

