
T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

B→ γ Form Factors @ NLO
LHCb UK Annual Meeting Huddersfield ’20

Tadeusz Janowski, Ben Pullin, Roman Zwicky

University of Edinburgh



Motivation

Reasons to look at B→ γ FF’s...

• Bs → ℓ+ℓ−γ as a test of Lepton Flavour Universality.
• Sensitive to the same set of operators as b→ s ℓ+ℓ− due to
identical effective Hamiltonian.

• Shifts in the Wilson coefficient of these operators could explain
anomalies in flavour data (e.g. RK(∗) ).

• Guadagnioli, Reboud, Detori ’16, Hazard, Petrov, ’17, Kozachuk, Melikhov, Nikitin, ’18,

Guadagnioli, Reboud, Zwicky, ’18

• Determination of the first inverse moment of the leading
B-meson distribution amplitude, λB.

• Currently a large source of uncertainty in B-meson DA calculations.
• Lots of indirect determinations with results ranging from λB = 200
- 600 MeV ...Descotes-G. Sachrajda ’02, Rohrwild,Beneke ’11, Braun,Khodjamirian ’12,

Wang ’16, Braun, Beneke, Ji, Wei ’18 and more.

• Should be able to give competitive results by extending the work
of Ball & Kou ’03 to NLO.

• An input for flavoured axion searches. Albrecht, Stamou, Ziegler, Zwicky ’19.
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Definition of the Form Factors

Form factors of interest parameterise the hadronic matrix elements
of operators from the effective weak Hamiltonian.

⟨γ(k, ϵ)| OVµ |B̄q(pB)⟩ = P⊥µ V⊥(q2)− P∥µV∥(q2) OVµ = −mB
e q̄γµ(1− γ5)b,

⟨γ(k, ϵ)| OTµ |B̄q(pB)⟩ = P⊥µ T⊥(q2)− P∥µT∥(q2) OTµ =
1
e q̄iq

νσµν(1+ γ5)b

Two independent structures

P⊥µ = εµαβγ ϵ
∗αpβBk

γ , P∥µ = i(pB · k ϵ∗µ − pB · ϵ∗ kµ).

B→ γℓν̄
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Light-Cone Sum Rules

Form factors computed within the framework of Light-Cone Sum
Rules (LCSR) using photon distribution amplitudes (DA).

• Sum Rule: Relate an OPE expansion to a sum over a hadronic
spectral density to form a link between QCD and hadrons.

• Light-Cone: OPE expansion of light-like separated operators
x2 ∼ 0.

• Expansion in twist = dim - spin→ parameterised by photon DA.
• Light-cone contributions dominant in the kinematic region
q2 << m2

b.

• Photon DA: Photon is not exactly point-like (hard) but also has a
(soft) hadronic contribution.

• Hadronic contribution related to probability for photon to
dissociate into partons .

• Reminiscent of massless vector mesons→ description in terms of
DA.
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The Computation

Information on the FF is contained in the correlation function:

ΠΓ
µ(p2B,q2) = i

∫
x
e−ipB·x ⟨γ(k, ϵ)| T{JB(x)OΓ

µ(0)} |0⟩ ,

= P⊥µΠΓ
⊥(p2B,q2)− P∥µΠΓ

∥(p2B,q2)

Interpolating operator for the B-meson JB = mbb̄γ5q, Γ = T, V.

For the perturbative photon contribution:
⟨γ(k, ϵ)| → −ie

∫
y e

ik·y ⟨0|
∑
ψ=b,q Qψψ̄γρψ(y)

Step-by-step:

• Compute the LCOPE expansion→ Up to twist-4 3-particle and
O(αs) for twist-1&2.

• Write LCOPE expansion as a dispersion integral in pB & match to
the physical hadronic dispersion relation.

• Employ quark-hardron duality.
• Apply Borel transform - reduces contributions from higher
resonances.
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∫
y e

ik·y ⟨0|
∑
ψ=b,q Qψψ̄γρψ(y)

Sum rule:

Γ⊥,∥(q2) =
1

mBfB

∫ s0

m2
b

ds 1
π
Im[ΠΓ

⊥,∥(s,q2)]e(m
2
B−s)/M

2
.
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OPE Expansion @ LO

Leading contributions to the correlation function:

• Pertubative

• Soft*

*soft contribution proportional to Qb is treated using local OPE
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OPE Expansion @ NLO

O(αs) corrections to twist-2 have been computed:

γ

γ γγ

γγ

a) b) c)

d) e) f)
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OPE Expansion @ NLO

• Main focus has been on calculating the
O(αs) corrections to the perturbative
contribution.

• Achieved by using and extending the basis
of master integrals for H→ WW
Di Vita, Mastrolia, Primo, Schubert ’17

Work-flow:

• Compute traces (FeynCalc)→ Scalar integrals

• Reduction to master integrals (Kira, LiteRed)
• Master integrals computed using differential equation method
→ Expression in terms of Goncharov functions .

• Transform to dispersive representation→ take Im
• Goncharov functions→ Classical polylogs (PolyLogTools)
• Numerical tests (SecDec, PolyLogTools)
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Sanity Checks

1) Any FF determination has to obey the EOM:

q̄i(Dν iσµν +
←→Dµ)[γ5]b+ (mq ∓mb)q̄γµ[γ5]b = 0

Tensor “New” Vector

→ Provides non-trival check of the photon DA classification of Ball, Braun,
Kivel ’02.

2) Algebraic Identity:
T⊥(0) = T∥(0)

→ Checks consistency of γ5 prescription

3) Renormalisation:
→ Non-trivial mixing of operators
→ Cancellation of thousands of Goncharov functions
→ Cancellation of explicit scale dependence at NLO
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Scale Dependence

Cancellation of explicit scale dependence at NLO

Similar results for the other FF

10



Breakdown and Borel stability

Breakdown
V⊥u (0) V⊥d (0)

Tw=1, LO 82% 85%
Tw=1, NLO -11% -10 %
Tw=2, LO 49% 41%
Tw=2, NLO -11% -9%
Tw=3, LO -1% <1%
Tw=4, LO -8% -6%

• Both charged and neutral FF has
similar breakdown with reasonable
convergence

• Appears that radiative corrections
act to reduce FF but the relative sign
depends on the scale/mass scheme.

• Stability under variation of Borel
parameter signals “good” sum rule.

• Variation increases with q2 but stays
under control (< 10%).
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Preliminary Plots - Vector

• Qq Dominates→ difference between charged and neutral

12



Preliminary Plots - Tensor

• Recall T⊥(0) = T∥(0)
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Summary

• Buds → γ FF have been computed @ NLO for low q2 << m2
b.

→ Full numerics with z-expansion fit and error correlation are
on the way.

• Duds → γ FF can also be extracted but only for a very small
kinematic range.

• NLO corrections significantly reduce the scale dependence.
• Should be able to provide a competitive 1/λB.
• Experimental data on Bs → ℓℓγ and B→ ℓ+νγ anticipated.

Thanks for you attention!
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