Measuring the interference between the shortand long-distance contributions in

$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$decays with Run2 data
LHCb-UK 2020

Lakshan ${ }^{1}$, Kostas ${ }^{1}$, Patrick ${ }^{2}$, Oliver ${ }^{2}$, Tom ${ }^{3}$ and Ulrik ${ }^{4}$
06-01-2020
${ }^{1}$ University of Bristol
${ }^{2}$ University of Zurich
${ }^{3}$ University of Warwick
${ }^{4}$ Monash University

b \rightarrow sll transitions to probe New Physics

NP searches using observables that,

- Have a small SM contribution,
- Can be measured to a high precision,
- Can be predicted to a high precision.

b \rightarrow sll transitions to probe New Physics

NP searches using observables that,

- Have a small SM contribution,
- Can be measured to a high precision,
- Can be predicted to a high precision.

Flavour Changing Neutral Currents in SM

- GIM suppressed
- Loop level

- Left-handed chirality

NP can easily violate the above.

Effective Field Theory Formalism

- In the Effective Field Theory (EFT), the heavy physics ($>\mathrm{M}_{W}$) is integrated out.
- The Wilson coefficients contain all information about short-distance physics.

Effective Field Theory Formalism

$$
\hat{H}_{e f f}=\frac{G_{F}}{\sqrt{2}} \sum_{i} \lambda_{C K M} C_{i} \hat{O}_{i}\left(\mu_{b}\right) \text { the Effective Field Theory }
$$

$C_{i} \rightarrow$ Perturbative short-distance effects at energy scale μ_{b}. $\hat{O}_{i}\left(\mu_{b}\right) \rightarrow$ Non-perturbative and long-distance effects. son coefficients

contain all information about short-distance physics.

The $\mathbf{b} \rightarrow$ sll Anomaly

$$
\begin{gathered}
R_{K^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)} \\
R_{K}=0.846_{-0.054}^{+0.060}(\text { stat. })_{-0.014}^{+0.016}(\text { syst.). } \\
\text { - Consistent with SM at 2.5 } \sigma .[1903.09252] \\
R_{K^{*}}= \begin{cases}0.666_{-0.07}^{0.11}(\text { stat }) \pm 0.03 \text { (syst) } & \text { for } 0.045<q^{2}<1.1 \mathrm{GeV}^{2} / c^{4}, \\
0.69{ }_{-0.07}^{+0.11} \text { (stat) } \pm 0.05 \text { (syst) } & \text { for } 1.1 \quad<q^{2}<6.0 \mathrm{GeV}^{2} / c^{4} .\end{cases}
\end{gathered}
$$

- Consistent with SM at $\mathbf{2 . 1} \mathbf{- 2 . 3} \sigma$ and $\mathbf{2 . 4 - 2 . 5} \sigma$ respectively. [1705.05802]

The $\mathbf{b} \rightarrow$ sll Anomaly

$$
R_{p K}^{-1}=\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p K^{+} e^{+} e^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p K^{+} \mu^{+} \mu^{-}\right)}=1.17_{-0.16}^{+0.18}(\text { stat. }) \pm 0.07(\text { syst. })
$$

- Consistent with SM at $\mathbf{1} \sigma$. [1912.08139]

The $\mathbf{b} \rightarrow$ sll Anomaly

$$
R_{p K}^{-1}=\frac{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p K^{+} e^{+} e^{-}\right)}{\mathcal{B}\left(\Lambda_{b}^{0} \rightarrow p K^{+} \mu^{+} \mu^{-}\right)}=1.17_{-0.16}^{+0.18}(\text { stat. }) \pm 0.07(\text { syst. })
$$

- Consistent with SM at $\mathbf{1} \sigma$. [1912.08139]

$$
B^{0} \rightarrow K^{*} \mu^{+} \mu^{-} \text {angular mesurements. }
$$

3.4 σ tension with the SM. [1512.04442]

The $\mathbf{b} \rightarrow$ sll Anomaly

- Global fits to the Wilson coefficients C_{9} and C_{10} indicate anomalies in the muon couplings [1903.09578].
- Could be explained by short-distance contributions from NP particles.
- Could also indicate problems in SM predictions for non LFU testing observables.
$\mathrm{C}_{9} \rightarrow$ vector semileptonic coupling.
$\mathrm{C}_{10} \rightarrow$ axial-vector semileptonic coupling.

The short- and long-distance contributions to $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

The short- and long-distance contributions to $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$

- Recent b \rightarrow sll measurements have brought
into question calculations of measurements have brought
into question calculations of the charm loop contributions.
- Although observation of LFUV would be undeniable sign of NP, in order to determine precisely the couplings involved, these hadronic contributions need to be understood.

Phase difference measurement

$$
C_{9}^{e f f}=C_{9}+Y\left(q^{2}\right)
$$

- Non-local contributions could have a large effect in apparent value of C9 depending on the level of the interference.

The phase difference between the resonances and the penguin could account for the anomalies seen in C_{9}.

The Complete Analytical Model

The differential decay rate model for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$as used in the Run1 analysis is given by,

$$
\begin{align*}
\frac{d \Gamma}{d q^{2}}= & \frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{2^{7} \pi^{5}}|k| \beta\left\{\frac{2}{3}|k|^{2} \beta^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}+\frac{m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+|k|^{2}\left[1-\frac{1}{3} \beta^{2}\right]\left|C_{9}^{\text {eff }} f_{+}\left(q^{2}\right)+2 C_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\} \tag{1}
\end{align*}
$$

[1509.06235]

The Complete Analytical Model

The differential decay rate model for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$as used in the Run1 analysis is given by,

$$
\begin{align*}
\frac{d \Gamma}{d q^{2}}= & \frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{2^{7} \pi^{5}}|k| \beta\left\{\frac{2}{3}|k|^{2} \beta^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}+\frac{m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2}\right. \\
& \left.+|k|^{2}\left[1-\frac{1}{3} \beta^{2}\right]\left|C_{9}^{\text {eff }} f_{+}\left(q^{2}\right)+2 C_{7} \frac{m_{b}+m_{s}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right)\right|^{2}\right\} \tag{1}
\end{align*}
$$

[1509.06235]

$$
C_{9}^{\text {eff }}=C_{9}+\sum_{j} \eta_{j} e^{i \delta_{j}} A_{j}^{\text {res }}\left(q^{2}\right)
$$

η_{j} is the magnitude and δ_{j} is the phase. $A^{\text {res }}\left(q^{2}\right)$ is a relativistic Breit-Wigner.

- Magnitude and phase of these contributions are allowed to float in the fit along with $\mathrm{C}_{9}, \mathrm{C}_{10}$ and the $f_{+}\left(q^{2}\right)$ form-factor coefficients.

The Complete Analytical Model

The differential decay rate model for $B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$as used in the Run1 analysis is given by,

$$
\begin{align*}
& \frac{d \Gamma}{d q^{2}}=\frac{G_{F}^{2} \alpha^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{2^{7} \pi^{5}}|k| \beta\left\{\frac{2}{3}|k|^{2} \beta^{2}\left|C_{10} f_{+}\left(q^{2}\right)\right|^{2}+\frac{m_{\mu}^{2}\left(m_{B}^{2}-m_{K}^{2}\right)^{2}}{q^{2} m_{B}^{2}}\left|C_{10} f_{0}\left(q^{2}\right)\right|^{2}\right. \\
& +|k|^{2}\left[1-\frac{1}{3} k\right. \tag{1}\\
& \text { [1509.06235] } \\
& \eta_{j} \text { is the magnitude a } \\
& 000 \\
& \text { :ivistic Breit-Wigner. }
\end{align*}
$$

- Magnitude and phase of these contributions are allowed to float in the fit along with C_{9}, C_{10} and the $f_{+}\left(q^{2}\right)$ form-factor coefficients.

Run1 results [1612.06764]

- The precision of J / ψ and $\psi(2 S)$ is systematically limited.
- Effect from resonance contributions are small far from their pole.
- Will be interesting to look for additional structures in $m_{\mu \mu}$ around $1770 \mathrm{MeV} / \mathrm{c}^{2}$

Run1 results [1612.06764]

- χ^{2} probability intervals with 2 d.o.f.
- The interference with J / ψ does not account for the observed tensions.
- $B \rightarrow K$ hadronic form factors are the dominant uncertainty on Wilson's coefficients.

Run1 results [1612.06764]

$\left(C_{9 \mu}^{N P}, C_{10 \mu}^{N P}\right)=(-0.91,0.18)$

- χ^{2} probability intervals with 2 d.o.f.
- The interference with J / ψ does not account for the observed tensions.
- $B \rightarrow K$ hadronic form factors are the dominant uncertainty on Wilson's coefficients.

Run1 results [1612.06764]

Global fit $\left(C_{9 \mu}, C_{10 \mu}\right)=(3.30,-3.92)$

- More data will help understand this better.
- It will also reduce the hadronic form factor uncertainties.

Run2 Strategy

- Similar strategy as in Run1 analysis for
- Detector Resolution,
- Efficiency Calculation and
- Treatment of Background
- Expecting to see 5M candidates from Run1 + 2016/17/18 data (Increase in data-set by factor 5).

Run2 Strategy

- Similar strategy as in Run1 analysis for
- Detector Resolution,
- Efficiency Calculation and
- Treatment of Background
- Expecting to see 5M candidates from Run1 + 2016/17/18 data (Increase in data-set by factor 5).
- Moved the analysis framework to TensorFlow for it's in-built CPU parellelization and GPU support.

Run2 Strategy

In addition to accounting for the open-charm resonances as relativistic Breit-Wigners, an alternative method will be implemented.

Run2 Strategy

In addition to accounting for the open-charm resonances as relativistic Breit-Wigners, an alternative method will be implemented.

- The charm-loop contribution is calculated through a dispersion relation that uses BESII data on the R-ratio.

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

Run2 Strategy

In addition to accounting for the open-charm resonances as relativistic Breit-Wigners, an alternative method will be implemented.

- The charm-loop contribution is calculated through a dispersion relation that uses BESII data on the R-ratio.

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

- The procedure is similar to the one used in Zwicky et al. [1406.0566].
- Separate mag and phase is included for each resonance for the final fit.

Resolution Effects.

Accounting for the detector's resolution effects.

- Improving the resolution is
 needed to the understand the interference effect.
- When computing $m_{\mu \mu}$, a kinematic fit is performed to the selected candidates. In the fit, the $m_{K \mu \mu}$ mass is constrained to the know B^{+} mass to improve the resolution.

Resolution Effects.

- The convolution of the resolution model with the analytical model gives the reconstructed dimuon mass distribution.

$$
P\left(m_{\mu \mu}^{\text {rec }}\right)=R\left(m_{\mu \mu}^{\text {rec }}, m_{\mu \mu}^{\text {true }}\right) \otimes\left[\epsilon\left(m_{\mu \mu}^{\text {true }}\right) \times 2 m_{\mu \mu}^{\text {true }} \times \frac{d \Gamma}{d q^{2}}\right]
$$

$\epsilon\left(m_{\mu \mu}^{\text {true }}\right)$ is the detector's efficiency.

Resolution Effects.

- The convolution of the resolution model with the analytical model gives the reconstructed dimuon mass distribution.

$$
P\left(m_{\mu \mu}^{\text {rec }}\right)=R\left(m_{\mu \mu}^{\text {rec }}, m_{\mu \mu}^{\text {true }}\right) \otimes\left[\epsilon\left(m_{\mu \mu}^{\text {true }}\right) \times 2 m_{\mu \mu}^{\text {true }} \times \frac{d \Gamma}{d q^{2}}\right]
$$

$\epsilon\left(m_{\mu \mu}^{\text {true }}\right)$ is the detector's efficiency.
Two strategies for the convolution.

- Fast Fourier Transform (FFT) Method
- Performing the convolution integral in steps of $m_{\mu \mu}$

FFT Method

- The dimuon mass distribution is split into three regions and each region is convolved individually with its respective resolution model.
- The convolution is done by TensorFlow's Fast Fourier Transform method.

Convolution Integral

The convolution integral is performed in steps of $m_{\mu \mu}^{\text {true }}$ using TensorFlow.

$$
(f \otimes R)\left(m_{\mu \mu}^{\text {rec }}\right)=\int_{-\infty}^{\infty} f\left(m_{\mu \mu}^{\text {true }}\right) R\left(m_{\mu \mu}^{\text {rec }}-m_{\mu \mu}^{\text {true }}\right) d m_{\mu \mu}^{\text {true }}
$$

Convolution Integral

The convolution integral is performed in steps of $m_{\mu \mu}^{\text {true }}$ using TensorFlow.

$$
(f \otimes R)\left(m_{\mu \mu}^{\text {rec }}\right)=\int_{-\infty}^{\infty} f\left(m_{\mu \mu}^{\text {true }}\right) R\left(m_{\mu \mu}^{\text {rec }}-m_{\mu \mu}^{\text {true }}\right) d m_{\mu \mu}^{\text {true }}
$$

- The latest optimized method still takes about 5 minutes. (An entire fit using the FFT method takes ≈ 3 minutes)
- Currently working on ways to improve the speed.

First look at Run2 data

The J / ψ resonance from 2016/17/18 data.

- Given the very good compatibility between the different years, the plan is to merge the data sets together.
- A weighted efficiency using the expected yields will be calculated from the three years.

Run2 Prospects: Precision in Wilson coefficients

With 5M signal events.
Run1 fit C9 precision: 10\%
Expected C9 precision: 5\%

Run2 Prospects: Form Factor uncertainties.

Form Factor coefficients

Coefficient Prior [Ref] Run1 Fit Result Expected precision (signal only)

b_{0}^{+}	0.466 ± 0.014	0.455 ± 0.013	0.465 ± 0.011
$\mathrm{~b}_{1}^{+}$	-0.89 ± 0.13	-0.78 ± 0.05	-0.889 ± 0.034
$\mathrm{~b}_{2}^{+}$	-0.21 ± 0.55	0.14 ± 0.33	-0.207 ± 0.212

Gaussian constraints are used in the fit for these coefficients.

$$
f_{+}\left(q^{2}\right)=\frac{1}{1-/ m_{B_{s}^{*}}^{2}} \sum_{i=0}^{N-1} b_{i}^{+}\left[z^{i}-(-1)^{i-N}\left(\frac{i}{N}\right) z^{N}\right]
$$

With 5M signal events.

Tau loops contribution

Probing $\mathrm{b} \rightarrow \mathrm{s} \tau \tau$ transitions directly using $B \rightarrow K \tau \tau$ decays is difficult at LHCb due to presence of neutrinos in the final state and lack of information on the B-decay vertex.

Tau loops contribution

Probing $\mathrm{b} \rightarrow \mathrm{s} \tau \tau$ transitions directly using $B \rightarrow K \tau \tau$ decays is difficult at LHCb due to presence of neutrinos in the final state and lack of information on the B-decay vertex.

$$
B^{+}\left\{\begin{array}{l}
Z^{0} / \gamma \\
\bar{b} \longrightarrow \mu^{+} \\
u \longrightarrow \mu^{-}
\end{array}\right\} K^{+}
$$

Idea: Search for loop-contributions to the $b \rightarrow s \mu \mu$ spectrum.
[Talk by Matthias König]

- Will enter as contributions to $C_{9}^{\text {eff }}$.
- Large enhancements to tau-couplings C_{9}^{τ} are motivated by NP explanations to B-anomalies.

Tau loops contribution

Probing $\mathrm{b} \rightarrow \mathrm{s} \tau \tau$ transitions directly using $B \rightarrow K \tau \tau$ decays is difficult at LHCb due to presence of neutrinos in the final state and lack of information on the B-decay vertex.

Idea: Search for loop-contributions to the $b \rightarrow s \mu \mu$ spectrum.
[Talk by Matthias König]

- Will enter as contributions to $C_{9}^{\text {eff }}$.
- Large enhancements to tau-couplings C_{9}^{τ} are motivated by NP explanations to B-anomalies.
- With LHCb's large data set, should be able to see a "cusp" at $m_{\mu \mu}=2 m_{\tau}$.

Summary and Outlook

- Need to understand the non-local hadronic loop contributions to quantify NP effects in $b \rightarrow$ sll transitions.
- Will implement alternative models using dispersion relations to describe the charmonium resonances.
- Account for the detector resolution effects using two methods
- FFT method
- Convolution Integral
- With the large data set available to LHCb, a search for tau loop contributions will be conducted.

Thank You!

Backup Slides

Phase combinations:

- Top Left:

$$
J / \psi \text {-ve; } \psi(2 \mathrm{~S}) \text {-ve }
$$

- Top right:

$$
J / \psi+\text { ve; } \psi(2 \mathrm{~S}) \text {-ve }
$$

- Bottom Left:

$$
J / \psi \text {-ve; } \psi(2 S)+\mathrm{ve}
$$

- Bottom Right:

$$
J / \psi+\mathrm{ve} ; \psi(2 \mathrm{~S})+\mathrm{ve}
$$

Backup Slides

Backup Slide - Tau loop cusp

With the amount of data LHCb has, we can find a bound competitive to the current one!

