Charm rescattering effects in B decays

Patricia C. Magalhães

University of Bristol
seminar @ LHCb UK meeting Huddersfield, 6 Jan 2020

Context

- CP-Violation
- $B^{ \pm} \rightarrow h^{ \pm} h^{-} h^{+}$LHCh massive localized Acp

dynamic effect !!
at low and high mass

LHCb PRD90 (2014) 112004 new one coming soon

- Ist observation in charm LHCD $D^{0}\left(\overline{D^{0}}\right) \rightarrow \pi^{+} \pi^{-}, K^{+} K^{-}$
\longrightarrow can lead to new physics
\hookrightarrow CPV on three-body?

Three-body kinematics : DALITZ plot

- common cartoon to described 3-body decay

- If true, one expect 2-body resonances

image credit:Tom Latham
\longrightarrow But in reality....... not all of them are clearly present

BABAR Phys.Rev. Lett. I05 (2010) 08I803

- $D^{0} \rightarrow K_{s} \pi^{-} \pi^{+}$

- $D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$

image credit:Brian Meadows
\longrightarrow Similar final state but different interference pattern
different dynamics to be understood
\longrightarrow to disentangle the interference we need amplitude analysis
- new hight sample data cannot be described only by adding resonances!

2-body x 3-body phases

- If this picture is the reality: It should only contain 2-body informations!
\rightarrow Is not as simple as it look like!
- Quantum numbers:
- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin! and \neq dynamics
\longrightarrow phase from decay should be the same as scattering

Phys.Rev. D 79 (2009) 032003

- dynamics $D^{+} \rightarrow K^{-} K^{+} K^{-}$

primary vertex - weak -

QCD, CKM coupling and phase

Final State Interactions - strong -

To extract information from data we need an amplitude MODEL

$$
\frac{d \Gamma}{d s_{12} d s_{23}}=\frac{1}{(2 \pi)^{3}} \frac{1}{32 M^{3}}\left(\left.\mathcal{A}\left(s_{12}, s_{23}\right)\right|^{2}\right.
$$

- isobar model: widely used by experimentalists
- ($2+\mathrm{I}$)
approximation:

\rightarrow ignore the 3rd particle (bachelor)
$A=\sum c_{k} A_{k},+$ NR $\left\{\begin{array}{l}\text { non-resonant as constant or exponential! } \\ \text { each resonance as Breit-Wigner } \quad \operatorname{BW}\left(s_{12}\right)=\frac{1}{m_{R}^{2}-s_{12}-i m_{R} \Gamma\left(s_{12}\right)},\end{array}\right.$ weak vertex is not considered explicitly
- worst problems: TTT S-wave

- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory !
movement to use better 2-body (unitarity) inputs in data analysis
- "K-matrix" : דाт S-wave 5 coupled-channel modulated by a production amplitude used by Babar, LHCb, BES III
- rescattering $\pi \pi \rightarrow K K$ contribution in LHCb $\begin{cases}B^{ \pm} \rightarrow \pi^{+} \pi^{-} \pi^{ \pm} & \text {[arXiv: 1909.05212; } \\ B^{ \pm} \rightarrow K^{-} K^{+} \pi^{ \pm} & \text {[arXiv:.190525.09244] }\end{cases}$ new parametrization Pelaez, and Rodas EPJ. C78 (2018) II, 897
\rightarrow other scalar and vector form factors available
Limited to low E (2 GeV)!

```
<\pi\pi|0> scalar Moussallam EPJ C 14,III (2000); Daub, Hanhart, and B. Kubis JHEP 02 (2016)}009
    vector Hanhart, PL B7I5, I70 (2012); Dumm and Roig EPJ C 73, 2528 (2013).
<K\pi|0> scalar Moussallam EPJ C 53,40I (2008); Jamin, Oller and Pich, PRD 74,074009 (2006)
        vector Boito, Escribano, and Jamin EPJ C 59,82I (2009).
<KK|0> Fit from 3-body data PCM, Robilotta + LHCb JHEP 1904 (2019)063
(no data) extrapolate from unitarity model Albaladejo and Moussallam EPJ C 75, 488 (2015).
    quark model with isospin symmetry Bruch,Khodjamirian, and Kühn, EPJ C 39,4I (2005)
```

Final State Interaction in B decays as a source of $C P$ violation

CPV on data: Puzzle!

- Charge Parity Violation

$$
\Gamma(M \rightarrow f) \neq \Gamma(\bar{M} \rightarrow \bar{f})
$$

$$
\left|\xrightarrow{P} \longrightarrow_{f}\right|^{2} \neq\left|\xrightarrow{\bar{P}}{ }^{\bar{f}}\right|^{2}
$$

- condition to CPV
$\rightarrow 2 \neq$ amplitudes, SAME final state with strong $\left(\delta_{i}\right)$ and weak $\left(\phi_{i}\right)$ phase

$$
\begin{gathered}
\langle f| T|M\rangle=A_{1} e^{i\left(\delta_{1}+\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}+\phi_{2}\right)} \\
\downarrow \mathrm{CP} \\
\langle\bar{f}| T|\bar{M}\rangle=A_{1} e^{i\left(\delta_{1}-\phi_{1}\right)}+A_{2} e^{i\left(\delta_{2}-\phi_{2}\right)}
\end{gathered}
$$

$\left.\therefore \Gamma(M \rightarrow f)-\Gamma(\bar{M} \rightarrow \bar{f})=|\langle f| T| M\rangle\left.\right|^{2}-|\langle\bar{f}| T| \bar{M}\right\rangle\left.\right|^{2}=-4 A_{1} A_{2} \sin \left(\delta_{1}-\delta_{2}\right) \sin \left(\phi_{1}-\phi_{2}\right)$

- BSS model $10+$ 鱽

Bander Silverman \& Soni PRL 43 (1979) 242

CPV on data: Puzzle!

- suggest dynamic effect
- middle looks "empty"
\rightarrow CPV
- BSS model not enough!!
hadronic interactions
\rightarrow strong phase

- $B^{ \pm} \rightarrow h^{ \pm} \pi^{-} \pi^{+}$and $B^{ \pm} \rightarrow h^{ \pm} K^{-} K^{+}$ low-energy CPV with opposite signs

$$
\hookrightarrow \pi \pi \rightarrow K K
$$

- $\pi \pi$ scattering data S-Wave
amplitude $\hat{f}_{l}(s)=\left[\frac{\eta_{l} e^{2 i \delta_{l}}-1}{2 i}\right]$.
Pelaez, Yndurain PRD7I(20II) 074016

Inelasticity

$$
\sigma_{l}^{\mathrm{el}}=\frac{1}{2}\left\{\frac{1+\eta_{l}^{2}}{2}-\eta \cos 2 \delta_{l}\right\}
$$

Inelasticityone minus the probability of losing signal (1==elastic)

CPV on data

- low-energy CPV [1-2] GeV

$$
\pi \pi \rightarrow K K
$$

Frederico, Bediaga \& Lourenço
PRD89(2014)0940I3

- FSI \rightarrow strong phase Wolfenstein PRD43 (1991) I5I
- CPT:

$$
\text { Lifetime } \quad \tau=1 / \Gamma_{\text {total }}=1 / \bar{\Gamma}_{\text {total }}
$$

$$
\Gamma_{\text {total }}=\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\ldots
$$

$$
\bar{\Gamma}_{\text {total }}=\bar{\Gamma}_{1}+\bar{\Gamma}_{2}+\bar{\Gamma}_{3}+\bar{\Gamma}_{4}+\bar{\Gamma}_{5}+\bar{\Gamma}_{6}+\ldots
$$

CPV in one channel should be compensated by another one with opposite sign

CPV: amplitude analysis $B^{ \pm}$

$\rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$
LHCb recent Amplitude analysis $B^{ \pm} \rightarrow \pi^{-} \pi^{+} \pi^{ \pm}$[arXiv:1909.05212(PRD); 1909.0521। (PRL)]

O $\left(\pi^{-} \pi^{+}\right)_{S-W \text { ave }} 3$ different model:
$\rightarrow \sigma$ as BW (!) + rescattering;
\leftrightarrows P-vector K-Matrix;
\hookrightarrow binned freed lineshape (QMI);

$m_{\text {low }}\left[\mathrm{GeV} / c^{2}\right]$

$m_{\text {high }}\left[\mathrm{GeV} / c^{2}\right]$

Contribution	Fit fraction $\left(10^{-2}\right)$	$A_{C P}\left(10^{-2}\right)$	B^{+}phase $\left({ }^{\circ}\right)$	B^{-}phase $\left({ }^{\circ}\right)$

Isobar model

$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$	-	-
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19 \pm 6 \pm 1$	$+8 \pm 6 \pm 1$
$f_{2}(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5 \pm 3 \pm 12$	$+53 \pm 2 \pm 12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127 \pm 4 \pm 21$	$+154 \pm 4 \pm 6$
$\rho_{3}(1690)^{0}$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26 \pm 7 \pm 14$	$-47 \pm 18 \pm 25$
S-wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35 \pm 6 \pm 10$	$-4 \pm 4 \pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115 \pm 2 \pm 14$	$+179 \pm 1 \pm 95$
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	-	-
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15 \pm 6 \pm 4$	$+8 \pm 7 \pm 4$
$f_{2}(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^{0}$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_{3}(1690)^{0}$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19 \pm 8 \pm 34$	$+5 \pm 8 \pm 46$
S-wave	$25.7 \pm 0.6 \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	-	-
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	-	-
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25 \pm 6 \pm 27$	$-2 \pm 7 \pm 11$
$f_{2}(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13 \pm 5 \pm 21$	$+68 \pm 3 \pm 66$
$\rho(1450)^{0}$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_{3}(1690)^{0}$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8 \pm 10 \pm 24$	$+36 \pm 26 \pm 46$
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	-	-

ANA for $B^{ \pm} \rightarrow \pi^{ \pm} K^{-} K^{+}[$arXiv:I 1905.09244$]$

Contribution	Fit Fraction(\%)	$A_{C P}(\%)$	Magnitude $\left(B^{+} / B^{-}\right)$	Phase $\left[^{o}\right]\left(B^{+} / B^{-}\right)$
$K^{*}(892)^{0}$	$7.5 \pm 0.6 \pm 0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_{0}^{*}(1430)^{0}$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176 \pm 10 \pm 16$
			$0.82 \pm 0.09 \pm 0.10$	$136 \pm 11 \pm 21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^{0}$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175 \pm 10 \pm 15$
			$1.92 \pm 0.10 \pm 0.07$	$140 \pm 13 \pm 20$
$f_{2}(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106 \pm 11 \pm 10$
			$1.13 \pm 0.08 \pm 0.05$	$-128 \pm 11 \pm 14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81 \pm 14 \pm 15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

CPV high energy

- CPV high mass?

$\sim D \bar{D}$ open channel \rightarrow $-K^{+}, \Pi^{+}$ $\ldots \cdot K^{+}, \pi^{+}$ same observed in coupled-channels
charm intermediate processes as source of strong phase
- $B^{+} \rightarrow K^{-} K^{+} K^{+}$
- high statistic 109 k
- nonresonant \rightarrow all phase-space
- presence of charm resonances: $\chi_{c 0} J / \psi$

- dominated by penguin

charm rescattering!
I. Bediaga, PCM,T Frederico PLB 780 (2018) 357

hadronic loop

$$
\text { form factor for } W^{+} \rightarrow D^{0} K^{+}
$$

$D^{0} \overline{D^{0}} \rightarrow K^{+} K^{-}$scattering amplitude phenomenological:
S- matrix unitarity + Regge theory

- $\operatorname{Br}\left[B \rightarrow D D_{s}^{*}\right] \sim \mathbf{1 \%} \rightarrow \mathbf{1 0 0 0} \mathbf{x} \operatorname{Br}[B \rightarrow K K K]$
- hadronic loop \rightarrow three-body FSI - introduce new complex structures
- $B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}$
- $D^{+} \rightarrow \pi^{+} K^{-} \pi^{+}$

PCM \& I Bediaga arXiv:1512.09284

PCM \& M Robilotta
PRD 92094005 (2015) [arXiv:1504.06346]
PCM et al
PRD 84094001 (2011) [arXiv:1105.5120]

$$
\begin{aligned}
T_{\bar{D}^{0} D^{0} \rightarrow K K}(s) & =\frac{s^{\alpha}}{s_{t h D \bar{D}}^{\alpha}} \frac{2 \kappa_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi+\alpha}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}+\kappa_{2}}{\frac{1}{a}-\kappa_{2}}\right)\right]^{\frac{1}{2}}, s<s_{t h D \bar{D}} \\
& =-i \frac{2 k_{2}}{\sqrt{s_{t h D \bar{D}}}}\left(\frac{s_{t h D \bar{D}}}{s+s_{Q C D}}\right)^{\xi}\left(\frac{m_{0}}{s-m_{0}}\right)^{\beta}\left[\left(\frac{c+b k_{1}^{2}-i k_{1}}{c+b k_{1}^{2}+i k_{1}}\right)\left(\frac{\frac{1}{a}-i k_{2}}{\frac{1}{a}+i k_{2}}\right)\right]^{\frac{1}{2}}, s \geq s_{t h D \bar{D}}
\end{aligned} \quad \text { parameters } \quad \text { fix by data! }
$$

\longrightarrow zero at threshold
discontinuity at threshold

hadronic loop

- Loop $=i \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{\Delta_{D^{0}}+2 \Delta_{\overline{D^{0}}}-2 s_{23}+3 M_{K}^{2}+M_{B}^{2}-l^{2}}{\Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{D *}\left[l^{2}-m_{B^{*}}\right]}$

$\searrow_{\text {discontinuity at threshold }}$

\longrightarrow change sign at threshold

Final Amplitude

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\overline{D^{0} D^{0}} \rightarrow K K}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

\longrightarrow zero in between two bumps
\rightarrow superposition of triangles

rescattering $D^{0} \bar{D}^{0} \rightarrow K^{+} K^{-}$ play a major role

hadronic loop

- $A=i C m_{a}^{2} \int \frac{d^{4} \ell}{(2 \pi)^{4}} \frac{T_{\overline{D^{0} D^{0} \rightarrow K K}}\left(s_{23}\right)\left[-2 p_{3}^{\prime} \cdot\left(p_{2}^{\prime}-p_{1}\right)\right]}{\Delta_{D^{+*}} \Delta_{D^{0}} \Delta_{\overline{D^{0}}} \Delta_{a}}$,

\longrightarrow can explain change CPV signal in DP!!!

Promising mechanism !

Charm rescattering elsewhere

charm rescattering to $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$
I. Bediaga, PCM,T Frederico PLB 785 (2018) 581

$+$

Next: investigating Hadronic effect in $B \rightarrow K \mu \mu$

$\rightarrow \bar{D}^{0} D^{0} \rightarrow \gamma \rightarrow \mu^{+} \mu^{-}$

vector meson dominance $V=$ all vector family psi, \ldots

How much of the anomalies can be understood as hadronic effects?

Charm rescattering

- $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$
- very suppressed direct production (annihilation)
- charm rescattering can be the dominant mechanism

c \qquad c

Charm rescattering $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$

- toy Monte Carlo generator

\&

Toy MC Dalitz plot $\mathrm{B}^{+} \mathrm{C} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$

Toy MC Dalitz plot $\mathrm{B}^{+} \mathrm{c} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{+}$

$\longrightarrow \quad$ leave a signature in the middle of the Dalitz plot

Charm rescattering $B_{c}^{+} \rightarrow K^{-} K^{+} \pi^{+}$

- Amplitudes projections

\longrightarrow minima in different positions (\neq thresholds)
$\longrightarrow \quad \neq$ mass parameters inside triangle and rescattering amplitudes are relevant
Projection $m_{\pi^{+} K}^{2}$

Triangle hadronic loop with charm FSI play an important role!

- $B^{ \pm} \rightarrow K^{+} K^{-} K^{+}$

mechanism to produce
CP asymmetry at high mass
\longrightarrow main mechanism to produce this final state
- If direct production (annihilation) \rightarrow expect resonances in $K K$ and $K \pi$ channels \rightarrow not observed
- real data: interference between \neq triangles $\&$ NR sources $\&$ resonances
\rightarrow canNOT change the signature of a minima between the bumps and phases!
\rightarrow LHCb run 2 to confirm

final remarks

FSI are important and play a major role in hadronic 3-body decays!
\longrightarrow superposition of resonant and non-resonant at low and high energy
\rightarrow Charm rescattering is under intense investigation : CPV on B , exotics, anomalies,
$\longrightarrow \quad$ Will be tested in data ANA!

- Successful examples of cooperation between theory and experiment !!!
\rightarrow Important tool!

Thank you very much!

Backup slides

Backup slides

- not well understand on literature
- important as FSI in B two-body decays

Donoghue et al., PRL 77(I996)2178; Suzuki,Wolfenstein, PRD 60 (I999)0740I9;
Falk et al. PRD 57,4290(I998);
Blok, Gronau, Rosner, PRL 78, 3999 (I997).

- phenomenological amplitude
- unitarity of the S-matrix $\quad S=\left(\begin{array}{cc}\eta e^{2 i \alpha} & \sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} \\ -\sqrt{1-\eta^{2}} e^{i(\alpha+\beta)} & \eta e^{2 i \beta}\end{array}\right)$
- inspired in the damping factor of the S matrix i.e. $\pi \pi \rightarrow K K$

$$
\eta=\mathcal{N} \sqrt{s / s_{t h}-1} /\left(s / s_{t h}\right)^{2.5}
$$

$$
\begin{aligned}
& \mathrm{KK}: e^{2 i \alpha}=1-\frac{2 i k_{1}}{\frac{c}{1-k_{1} / k_{0}}+i k_{1}}, \text { DD: } e^{2 i \beta}=1-\frac{2 i k}{\frac{1}{a}+i k} \\
& k=\sqrt{\frac{s-s_{t h}}{4}}, k_{1}=\sqrt{\frac{s-s_{t h 1}}{4}} \text { and } k_{0}=\sqrt{\frac{s_{0}-s_{t h}}{4}}
\end{aligned}
$$

$S_{\beta, \alpha}=\delta_{\beta, \alpha}+i t_{\beta, \alpha}$

- QCD factorization approach \rightarrow factorize the quark currents

Chau [Phys. Rep. 95, ((1983)]

- challenging for 3-body - not all FSI and 3-body NR - scale issue with charm

$$
\begin{aligned}
& \mathcal{H}_{\text {eff }}^{\Delta B=1}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p q}^{*} V_{p b}\left[C_{1}(\mu) O_{1}^{p}(\mu)+C_{2}(\mu) O_{2}^{p}(\mu)+\sum_{i=3}^{10} C_{i}(\mu) O_{i}(\mu)+C_{7 \gamma}(\mu) O_{\tau \gamma}(\mu)+C_{8 g}(\mu) O_{8 g}(\mu)\right]+\text { h.c. }, \\
& \rightarrow \text { ex: } \quad B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \text {how to describe it? } \\
& \mathbf{A} \sim\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{u} b)_{V-A}\left|B^{-}\right\rangle\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} u)_{V-A}|0\rangle+\left\langle\pi^{-}\left(p_{1}\right)\right|(\bar{d} b)_{s c-p s}\left|B^{-}\right\rangle\left\langle\left[\pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right)\right]\right|(\bar{d} d)_{s c+p s}|0\rangle \\
& \underbrace{}_{R} \\
& \text { R }
\end{aligned}
$$

- naive factorization $\left\{\begin{array}{l}- \text { intermediate by a resonance } R \text {; } \\ - \text { FSI with scalar and vector form factors FF }\end{array}\right.$
parametrizations for B and $D \rightarrow 3 h \quad$ Boito et al. PRD96 | | 3003 (20|7)
modern QDC factorization: improvement to include "long distance" still developing Klein, Mannel,Virto, Keri Vos JHEPIO II7 (2017)

FSI in three-body decay :

references

I. Bediaga, I., T. Frederico, T. and O. Louren Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]
J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren, Phys. Rev. D92, 054010 (2015) [ArXiv:1506.08332].
PC Magalhães and I Bediaga arXiv:1512.09284;
P. C Magalhães and R.Robilotta, Phys. Rev. D92 094005 (2015) [arXiv:1504.06346] ; P.C.Magalhães et. al. Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 (2012).
I. Caprini, Phys. Lett. B 638468 (2006).

Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner, Eur. Phys. J. C 6393 (2009).
F Niecknig and B Kubis - JHEP 10142 (2015) ArXiv:1509.03188
H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).
S. X. Nakamura, arXiv:1504.02557 (2015).
J. -P. Dedonder, A. Furman, R. Kaminski, L. Lesniak, L. and B. Loiseau, Acta Phys. Polon. B42, 2013 (2011), [Arxiv: 1011.0960]
J.-P. Dedonder, R. Kaminski, L. Lesniak, and B. Loiseau, , Phys. Rev.D89, 094018 (2014).

Donoghue et al., Phys. Rev Letters 77(1996) 2178;
Suzuki,Wolfenstein, Phys. Rev. D 60 (1999)074019;
Falk et al. Phys. Rev. D 57,4290(1998);
Blok, Gronau, Rosner, Phys. Rev Letters 78, 3999 (1997).

Kpp

PPP

KKK

KKp

