

Charm rescattering effects in B decays

Patricia C. Magalhães

University of Bristol

seminar @ LHCb UK meeting Huddersfield, 6 Jan 2020

CP-Violation

• $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$ massive localized Acp

dynamic effect !! at low and high mass

LHCb PRD90 (2014) 112004 new one coming soon

Ist observation in charm

$$D^{0}(\bar{D^{0}}) \to \pi^{+}\pi^{-}, K^{+}K^{-}$$

-> can lead to new physics

> CPV on three-body?

Three-body kinematics: DALITZ plot

common cartoon to described 3-body decay

If true, one expect 2-body resonances

image credit:Tom Latham

But in reality.....
not all of them are clearly present

BABAR Phys.Rev. Lett. 105 (2010) 081803

Three-body kinematics: DALITZ plot

•
$$D^0 \to K^- \pi^+ \pi^0$$

image credit:Brian Meadows

- Similar final state but different interference pattern
 - different dynamics to be understood
- > to disentangle the interference we need amplitude analysis
 - new hight sample data cannot be described only by adding resonances!

- If this picture is the reality:
 It should only contain 2-body informations!
- → Is not as simple as it look like!

- Quantum numbers:
- 2-body amplitude: spin and isospin well defined!
- 3-body data: only spin! and \neq dynamics

phase from decay should be the same as scattering

Phys.Rev. D 79 (2009) 032003

• dynamics $D^+ \rightarrow K^-K^+K^-$

-> hadronize

primary vertex - weak -

QCD, CKM coupling and phase

Final State Interactions - strong -

To extract information from data we need an amplitude MODEL

$$\frac{d\Gamma}{ds_{12}ds_{23}} = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{A}(s_{12}, s_{23})|^2$$
 dynamics

- isobar model: widely used by experimentalists
 - (2+1)approximation:

→ ignore the 3rd particle (bachelor)

$$A = \sum c_k A_k$$
, + NR

 $A = \sum c_k \, A_k, \ + \ \mathsf{NR} \quad \left\{ \begin{array}{l} \mathsf{non\text{-}resonant} \ \mathsf{as} \ \mathsf{constant} \ \mathsf{or} \ \mathsf{exponential!} \\ \mathsf{each} \ \mathsf{resonance} \ \mathsf{as} \ \mathsf{Breit\text{-}Wigner} \quad \mathsf{BW}(s_{12}) = \frac{1}{m_R^2 - s_{12} - i m_R \Gamma(s_{12})}, \\ \mathsf{weak} \ \mathsf{vertex} \ \mathsf{is} \ \mathsf{not} \ \mathsf{considered} \ \mathsf{explicitly} \end{array} \right.$

$$BW(s_{12}) = \frac{1}{m_R^2 - s_{12} - im_R \Gamma(s_{12})}$$

worst problems: ππ S-wave

Pelaez, Yndurain PRD71 (2005) 074016

- sum of BW violates two-body unitarity (2 res in the same channel);
- do NOT include rescattering and coupled-channels;
- free parameters are not connected with theory!

Models available

movement to use better 2-body (unitarity) inputs in data analysis

- "K-matrix": ππ S-wave 5 coupled-channel modulated by a production amplitude
 used by Babar, LHCb, BES III
- rescattering $\pi\pi \to KK$ contribution in LHCb $\begin{cases} B^\pm \to \pi^+\pi^-\pi^\pm & \text{[arXiv:1909.05212;} \\ B^\pm \to K^-K^+\pi^\pm & \text{[arXiv:1909.05211]} \end{cases}$ Pelaez, Yndurain PRD71(2005) 074016

new parametrization Pelaez, and Rodas EPJ. C78 (2018) 11,897

> other scalar and vector form factors available

Limited to low E (2 GeV)!

```
<\pi\pi|0> \qquad \text{scalar} \qquad \text{Moussallam EPJ C 14, III (2000); Daub, Hanhart, and B. Kubis JHEP 02 (2016) 009.} \text{Vector} \qquad \text{Hanhart, PL B715, I70 (2012); Dumm and Roig EPJ C 73, 2528 (2013).} < K\pi|0> \qquad \text{scalar} \qquad \text{Moussallam EPJ C 53, 401 (2008); Jamin, Oller and Pich, PRD 74, 074009 (2006)} \text{Vector} \qquad \text{Boito, Escribano, and Jamin EPJ C 59, 821 (2009).} < KK|0> \qquad \text{Fit from 3-body data} \qquad \text{PCM, Robilotta + LHCb JHEP 1904 (2019) 063} \text{extrapolate from unitarity model} \qquad \text{Albaladejo and Moussallam EPJ C 75, 488 (2015).} \text{quark model with isospin symmetry} \qquad \text{Bruch, Khodjamirian, and Kühn , EPJ C 39, 41 (2005)}
```

Final State Interaction in B decays as a source of CP violation

Charge Parity Violation

$$\Gamma(M \to f) \neq \Gamma(\bar{M} \to \bar{f})$$

$$\left| \frac{P}{f} \right|^2 \neq \left| \frac{\overline{P}}{f} \right|^2$$

- condition to CPV
 - \rightarrow 2 \neq amplitudes, SAME final state with strong (δ_i) and weak (ϕ_i) phase

$$\langle f | T | M \rangle = A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)}$$

$$\langle \bar{f} | T | \bar{M} \rangle = A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)}$$

..
$$\Gamma(M \to f) - \Gamma(\bar{M} \to \bar{f}) = |\langle f | T | M \rangle|^2 - |\langle \bar{f} | T | \bar{M} \rangle|^2 = -4A_1A_2\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)$$

BSS model + **

Bander Silverman & Soni PRL 43 (1979) 242

KKK.

• $B^{\pm} \rightarrow h^{\pm}h^{-}h^{+}$ massive localized Acp

 $A_{CP} = \frac{\Gamma(M \to f) - \Gamma(M \to f)}{\Gamma(M \to f) + \Gamma(\bar{M} \to \bar{f})}$

- suggest dynamic effect
- middle looks "empty" \rightarrow CPV
- BSS model

not enough!!

hadronic interactions → strong phase

ullet $B^\pm o h^\pm \pi^- \pi^+$ and $B^\pm o h^\pm K^- K^+$ low-energy CPV with opposite signs

Frederico, Bediaga, Lourenço PRD89(2014)094013

• $\pi\pi$ scattering data S-Wave

Pelaez, Yndurain PRD71(2011) 074016

amplitude
$$\hat{f}_l(s) = \left\lceil \frac{\eta_l e^{2i\delta_l} - 1}{2i} \right\rceil$$
.

Phase-shift 300 250 **CFD** Old K decay data Na48/2 $K \rightarrow 2\pi decay$ 200 Kaminski et al. Grayer et al. Sol.B Grayer et al. Sol. C Grayer et al. Sol. D 150 Hyams et al. 73 100 50

800

 $s^{1/2}$ (MeV)

1000

Inelasticity

$$\sigma_l^{\text{el}} = \frac{1}{2} \left\{ \frac{1 + \eta_l^2}{2} - \eta \cos 2\delta_l \right\},\,$$

Inelasticityone minus the probability of losing signal (1==elastic)

1200

600

1400

low-energy CPV [1 - 2] GeV

Frederico, Bediaga & Lourenço PRD89(2014)094013

- FSI → strong phase
 Wolfenstein PRD43 (1991) 151
- CPT:

CPV in one channel should be compensated by another one with opposite sign

CPV: amplitude analysis $B^{\pm} \to \pi^- \pi^+ \pi^{\pm}$

recent Amplitude analysis $B^{\pm} \rightarrow \pi^- \pi^+ \pi^{\pm}$ [arXiv:1909.05212(PRD); 1909.05211(PRL)]

- $(\pi^-\pi^+)_{S-Wave}$ 3 different model:
 - \hookrightarrow σ as BW (!) + rescattering;
 - → P-vector K-Matrix;
 - binned freed lineshape (QMI);

Contribution	Fit fraction (10^{-2})	$A_{CP} (10^{-2})$	B^+ phase (°)	B^- phase (°)
Isobar model				
$\rho(770)^{0}$	$55.5 \pm 0.6 \pm 2.5$	$+0.7 \pm 1.1 \pm 1.6$		_
$\omega(782)$	$0.50 \pm 0.03 \pm 0.05$	$-4.8 \pm 6.5 \pm 3.8$	$-19\pm6\pm1$	$+8 \pm 6 \pm 1$
$f_2(1270)$	$9.0 \pm 0.3 \pm 1.5$	$+46.8 \pm 6.1 \pm 4.7$	$+5\pm 3\pm 12$	$+53\pm2\pm12$
$\rho(1450)^{0}$	$5.2 \pm 0.3 \pm 1.9$	$-12.9 \pm 3.3 \pm 35.9$	$+127\pm4\pm21$	$+154 \pm 4 \pm 6$
$\rho_3(1690)^0$	$0.5 \pm 0.1 \pm 0.3$	$-80.1 \pm 11.4 \pm 25.3$	$-26\pm7\pm14$	$-47\pm18\pm25$
S-wave	$25.4 \pm 0.5 \pm 3.6$	$+14.4 \pm 1.8 \pm 2.1$		_
Rescattering	$1.4 \pm 0.1 \pm 0.5$	$+44.7 \pm 8.6 \pm 17.3$	$-35\pm6\pm10$	$-4\pm 4\pm 25$
σ	$25.2 \pm 0.5 \pm 5.0$	$+16.0 \pm 1.7 \pm 2.2$	$+115\pm2\pm14$	$+179\pm1\pm95$
K-matrix				
$\rho(770)^{0}$	$56.5 \pm 0.7 \pm 3.4$	$+4.2 \pm 1.5 \pm 6.4$	_	_
$\omega(782)$	$0.47 \pm 0.04 \pm 0.03$	$-6.2 \pm 8.4 \pm 9.8$	$-15\pm6\pm4$	$+8\pm 7\pm 4$
$f_2(1270)$	$9.3 \pm 0.4 \pm 2.5$	$+42.8 \pm 4.1 \pm 9.1$	$+19 \pm 4 \pm 18$	$+80 \pm 3 \pm 17$
$\rho(1450)^0$	$10.5 \pm 0.7 \pm 4.6$	$+9.0 \pm 6.0 \pm 47.0$	$+155 \pm 5 \pm 29$	$-166 \pm 4 \pm 51$
$\rho_3(1690)^0$	$1.5 \pm 0.1 \pm 0.4$	$-35.7 \pm 10.8 \pm 36.9$	$+19\pm8\pm34$	$+5\pm8\pm46$
S-wave	$25.7 \ \pm 0.6 \ \pm 3.0$	$+15.8 \pm 2.6 \pm 7.2$	_	_
QMI				
$\rho(770)^{0}$	$54.8 \pm 1.0 \pm 2.2$	$+4.4 \pm 1.7 \pm 2.8$	_	_
$\omega(782)$	$0.57 \pm 0.10 \pm 0.17$	$-7.9 \pm 16.5 \pm 15.8$	$-25\pm6\pm27$	$-2\pm 7\pm 11$
$f_2(1270)$	$9.6 \pm 0.4 \pm 4.0$	$+37.6 \pm 4.4 \pm 8.0$	$+13\pm5\pm21$	$+68 \pm 3 \pm 66$
$\rho(1450)^0$	$7.4 \pm 0.5 \pm 4.0$	$-15.5 \pm 7.3 \pm 35.2$	$+147 \pm 7 \pm 152$	$-175 \pm 5 \pm 171$
$\rho_3(1690)^0$	$1.0 \pm 0.1 \pm 0.5$	$-93.2 \pm 6.8 \pm 38.9$	$+8\pm10\pm24$	$+36 \pm 26 \pm 46$
S-wave	$26.8 \pm 0.7 \pm 2.2$	$+15.0 \pm 2.7 \pm 8.1$	_	_

• ANA for $B^{\pm} \to \pi^{\pm} K^{-} K^{+}$ [arXiv:1905.09244]

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase ^[o] (B^+/B^-)
$K^*(892)^0$	$7.5 \pm 0.6 \pm 0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5 \pm 0.7 \pm 1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176 \pm 10 \pm 16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138 \pm 7 \pm 5$
			$1.97 \pm 0.12 \pm 0.20$	$166 \pm 6 \pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175 \pm 10 \pm 15$
			$1.92 \pm 0.10 \pm 0.07$	$140 \pm 13 \pm 20$
$f_2(1270)$	$7.5 \pm 0.8 \pm 0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106 \pm 11 \pm 10$
			$1.13 \pm 0.08 \pm 0.05$	$-128 \pm 11 \pm 14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56 \pm 12 \pm 18$
			$0.86 \pm 0.07 \pm 0.04$	$-81 \pm 14 \pm 15$
$\phi(1020)$	$0.3 \pm 0.1 \pm 0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52 \pm 23 \pm 32$
			$0.22 \pm 0.06 \pm 0.04$	$107 \pm 33 \pm 41$

CPV high mass?

~ $D\bar{D}$ open channel \rightarrow \bar{D}

same observed in coupled-channels

charm intermediate processes as source of strong phase

- $B^+ \to K^- K^+ K^+$
 - high statistic 109k
 - nonresonant —> all phase-space
 - presence of charm resonances: χ_{c0} J/ψ

dominated by penguin

charm rescattering!

I. Bediaga, PCM, T Frederico PLB 780 (2018) 357

hadronic loop

I. Bediaga, PCM,T Frederico PLB 780 (2018) 357

0 (2018) 357 $0 \text{ form factor for } W^+ \to D^0 K^+$

 $D^0 \bar{D^0} \to K^+ K^-$ scattering amplitude

phenomenological:

S- matrix unitarity + Regge theory

- ullet $Br\left[B o DD_s^*
 ight]$ ~1% \longrightarrow 1000 x $Br\left[B o KKK
 ight]$
- hadronic loop three-body FSI introduce new complex structures

•• weak transition $B^+ \to W^+ \bar{D^0}$ •• $C_0 \times$ form factor to regulate

•
$$B^+ \to \pi^+ \pi^- \pi^+$$

PCM & I Bediaga arXiv:1512.09284

$$D^+ \to \pi^+ K^- \pi^+$$

PCM & M Robilotta

PRD 92 094005 (2015) [arXiv:1504.06346]

PCM et al

PRD 84 094001 (2011) [arXiv:1105.5120]

$\overline{D^0 D^0} o K^+ K^-$ scattering amplitude

$$T_{\bar{D^0}D^0 \to KK}(s) = \frac{s^{\alpha}}{s^{\alpha}_{th D\bar{D}}} \frac{2\kappa_2}{\sqrt{s_{th D\bar{D}}}} \left(\frac{s_{th D\bar{D}}}{s + s_{QCD}}\right)^{\xi + \alpha} \left[\left(\frac{c + bk_1^2 - ik_1}{c + bk_1^2 + ik_1}\right) \left(\frac{\frac{1}{a} + \kappa_2}{\frac{1}{a} - \kappa_2}\right)\right]^{\frac{1}{2}}, \ s < s_{th D\bar{D}}$$

$$= -i \frac{2k_2}{\sqrt{s_{th D\bar{D}}}} \left(\frac{s_{th D\bar{D}}}{s + s_{QCD}}\right)^{\xi} \left(\frac{m_0}{s - m_0}\right)^{\beta} \left[\left(\frac{c + bk_1^2 - ik_1}{c + bk_1^2 + ik_1}\right) \left(\frac{\frac{1}{a} - ik_2}{\frac{1}{a} + ik_2}\right)\right]^{\frac{1}{2}}, \ s \ge s_{th D\bar{D}}$$
fix by data!

hadronic loop

•
$$Loop = i \int \frac{d^4\ell}{(2\pi)^4} \frac{\Delta_{D^0} + 2\Delta_{\bar{D^0}} - 2s_{23} + 3M_K^2 + M_B^2 - l^2}{\Delta_{D^0} \Delta_{\bar{D^0}} \Delta_{D*} [l^2 - m_{B*}]}$$

discontinuity at threshold

Final Amplitude

$$A = iC \ m_a^2 \int \frac{d^4\ell}{(2\pi)^4} \frac{T_{\bar{D^0}D^0 \to KK}(s_{23}) \left[-2 \, p_3' \cdot (p_2' - p_1) \right]}{\Delta_{D^{+*}} \Delta_{D^0} \, \Delta_{\bar{D^0}} \, \Delta_a} ,$$

zero in between two bumps

rescattering $D^0 \bar{D^0} \rightarrow K^+ K^$ play a major role

superposition of triangles

hadronic loop

•
$$A = iC \ m_a^2 \int \frac{d^4\ell}{(2\pi)^4} \ \frac{T_{\bar{D^0}D^0 \to KK}(s_{23}) \left[-2 \, p_3' \cdot (p_2' - p_1)\right]}{\Delta_{D^{+*}} \Delta_{D^0} \, \Delta_{\bar{D^0}} \, \Delta_a} \ ,$$

can explain change CPV signal in DP!!!

Phase change signal in the same region as Acp data

Promising mechanism!

How much of the anomalies can be understood as hadronic effects?

Charm rescattering

- $B_c^+ \to K^- K^+ \pi^+$
- I. Bediaga, PCM,T Frederico PLB 785 (2018) 581
- very suppressed direct production (annihilation)
- charm rescattering can be the dominant mechanism

toy Monte Carlo generator

change side bands but not the minimum position (thresholds)

leave a signature in the middle of the Dalitz plot

Amplitudes projections

- → minima in different positions (≠ thresholds)
- →> ≠ mass parameters inside triangle and rescattering amplitudes are relevant

Triangle hadronic loop with charm FSI play an important role!

• $B^{\pm} \to K^+ K^- K^+$

 \longrightarrow mechanism to produce CP asymmetry at high mass

• $B_c^+ \to K^- K^+ \pi^+$

 $\stackrel{D^{+}}{\longrightarrow}$ main mechanism to produce this final state

- If direct production (annihilation) \rightarrow expect resonances in KK and K π channels not observed
- real data: interference between \neq triangles & NR sources & resonances
 - canNOT change the signature of a minima between the bumps and phases!
 - → LHCb run 2 to confirm

FSI are important and play a major role in hadronic 3-body decays!

- > superposition of resonant and non-resonant at low and high energy
- Charm rescattering is under intense investigation : CPV on B, exotics, anomalies,
- Will be tested in data ANA!

- Successful examples of cooperation between theory and experiment !!!
 - → Important tool!

Thank you very much!

Backup slides

Backup slides

- not well understand on literature
- important as FSI in B two-body decays

Donoghue et al., PRL 77(1996)2178; Suzuki, Wolfenstein, PRD 60 (1999)074019; Falk et al. PRD 57,4290(1998); Blok, Gronau, Rosner, PRL 78, 3999 (1997).

phenomenological amplitude

Antunes, Bediaga, Frederico, PCM ICHEP2016 - proceedings

- unitarity of the S-matrix $S = \begin{pmatrix} \eta \, e^{2i\alpha} & \sqrt{1-\eta^2} \, e^{i(\alpha+\beta)} \\ -\sqrt{1-\eta^2} \, e^{i(\alpha+\beta)} & \eta \, e^{2i\beta} \end{pmatrix}$
- inspired in the damping factor of the S matrix i.e. $\pi\pi \to KK$

$$\eta = \mathcal{N}\sqrt{s/s_{th} - 1}/(s/s_{th})^{2.5}$$

KK:
$$e^{2i\alpha} = 1 - \frac{2ik_1}{\frac{c}{1 - k_1/k_0} + ik_1}$$
, DD: $e^{2i\beta} = 1 - \frac{2ik}{\frac{1}{a} + ik}$

$$k = \sqrt{\frac{s - s_{th}}{4}}, k_1 = \sqrt{\frac{s - s_{th1}}{4}} \text{ and } k_0 = \sqrt{\frac{s_0 - s_{th}}{4}}$$

$$S_{\beta,\alpha} = \delta_{\beta,\alpha} + it_{\beta,\alpha}$$

$$t_{\beta,\alpha} = \sqrt{1 - \eta^2} e^{i(\alpha + \beta)}$$

QCD factorization approach > factorize the quark currents

Chau [Phys. Rep. 95,1(1983)]

- challenging for 3-body
- not all FSI and 3-body NR
- scale issue with charm

$$\mathcal{H}_{\text{eff}}^{\Delta B=1} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pq}^* V_{pb} \left[C_1(\mu) O_1^p(\mu) + C_2(\mu) O_2^p(\mu) + \sum_{i=3}^{10} C_i(\mu) O_i(\mu) + C_{7\gamma}(\mu) O_{7\gamma}(\mu) + C_{8g}(\mu) O_{8g}(\mu) \right] + \text{ h.c. },$$

- - - \rightarrow parametrizations for B and D \rightarrow 3h Boito et al. PRD96 113003 (2017)
- modern QDC factorization: improvement to include "long distance" still developing Klein, Mannel, Virto, Keri Vos JHEP10 117 (2017)

FSI in three-body decay:

references

- I. Bediaga, I., T. Frederico, T. and O. Louren Phys. Rev. D89, 094013(2014),[arXiv:1307.8164]
- J. H. Alvarenga Nogueira, I. Bediaga, A. B. R. Cavalcante, T. Frederico and O. Louren, Phys. Rev. D92, 054010 (2015) [ArXiv:1506.08332].
- PC Magalhães and I Bediaga arXiv:1512.09284;
- P. C Magalhães and R.Robilotta, Phys. Rev. D92 094005 (2015) [arXiv:1504.06346]; P.C.Magalhães et. al. Phys. Rev. D84 094001 (2011) [arXiv:1105.5120]; P.C. Magalhães and Michael C. Birse, PoS QNP2012, 144 (2012).
- I. Caprini, Phys. Lett. B 638 468 (2006).

Bochao Liu, M. Buescher, Feng-Kun Guo, C. Hanhart, and Ulf-G. Meissner, Eur. Phys. J. C 63 93 (2009).

F Niecknig and B Kubis - JHEP 10 142 (2015) ArXiv:1509.03188

- H. Kamano, S.X. Nakamura, T.-S.H. Lee and T. Sato, Phys. Rev. D 84, 114019 (2011).
- S. X. Nakamura, arXiv:1504.02557 (2015).
- J. -P. Dedonder, A. Furman, R. Kaminski, L. Lesniak, L. and B. Loiseau, Acta Phys. Polon. B42, 2013 (2011), [Arxiv: 1011.0960]
- J.-P. Dedonder, R. Kaminski, L. Lesniak, and B. Loiseau, , Phys. Rev.D89, 094018 (2014).

Donoghue et al., Phys. Rev Letters 77(1996) 2178;

Suzuki, Wolfenstein, Phys. Rev. D 60 (1999)074019; Falk et al. Phys. Rev. D 57,4290(1998); Blok, Gronau, Rosner, *Phys. Rev Letters* 78, 3999 (1997).

many more ...

