

LHCD

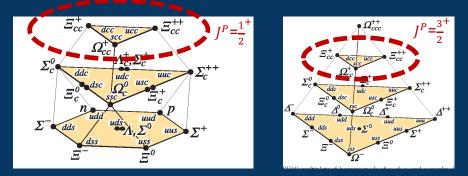
Doubly charmed baryons searches and studies

at LHCb

Dana Seman Bobulska, University of Glasgow

LHCb UK Annual Meeting 06 – 07 January 2020, University of Huddersfield

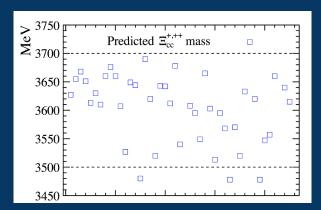
Overview


Doubly charmed baryons

- Introduction & Motivation
- Experimental status
 - Ξ_{cc}^{++} baryon studies
 - \circ Ξ_{cc}^+ baryon searches
- My contribution
- Summary & future prospects

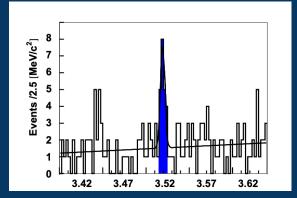
Introduction

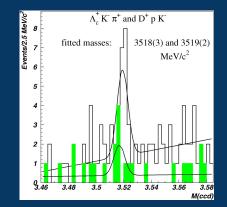
Doubly charmed baryons


- Doubly charmed baryons baryons containing two charm quarks and one lighter quark
- Quark model predicts the existence of three doubly charmed baryons:
 - Ξ_{cc} isodoublet (ccu and ccd states)
 - Ω_{cc}^+ isosinglet (ccs)

Doubly heavy baryons provide a unique platform to study the nonperturbative dynamics in the presence of heavy quarks.

Motivation

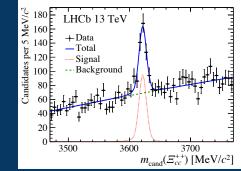

- Experimental results (masses, lifetimes, branching fractions) are an important input for testing QCD predictions based on different calculation techniques (HQET, lattice QCD, etc.)
- Many potential decay channels, however branching fractions difficult to predict
- Theory predictions for lifetimes and are in wide range (<u>Eur. Phys. J.C13,551(2000</u>):
 - $\circ \quad \tau(\Xi_{cc}^{++}) > \tau(\Omega_{cc}^{+}) > \tau(\Xi_{cc}^{+})$
 - $\tau(\Xi_{cc}^{++}) \approx 200-700$ fs
 - $\circ \quad \tau(\Xi_{cc}^{++}) \approx 3-4 \text{ times } \tau(\Xi_{cc}^{+})$
- Many theory predictions for masses (<u>Phys. Rev. D 90, 094007 (2014)</u>)



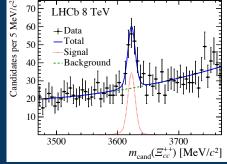
Experimental status

First results on Ξ_{cc}^+ baryon

- The first published evidence of the doubly charmed baryons existence (<u>Phys.Rev.Lett.89:112001,2002</u>, <u>Phys.Lett.B628:18-24,2005</u>) was the observation of the E⁺_{cc} baryon reported by the SELEX collaboration in 2002
 - Some unexpected properties were reported very low UL on the measured lifetime (33 fs at 90% CL) and unexpectedly high production rate;
 - Not confirmed by any other experiment (BaBar, Belle, FOCUS, LHCb).



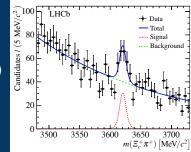
First observation of the Ξ_{cc}^{++} baryon by the LHCb

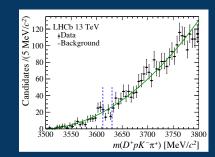

- In 2017, the first observation of the doubly charmed baryon Ξ_{cc}^{++} (ccu) in the final state of $\Lambda_c^+ K^- \pi^+ \pi^+$ was announced by the LHCb collaboration (<u>Phys.Rev.Lett.119,112001(2017)</u>)
- Candidates saved by the Turbo¹ stream
- 313 ± 33 signal candidates observed, local significance of >12 σ using 2016 data (1.67 fb⁻¹)
- Measured mass:

 $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.14 \text{ (}\Lambda_c^+\text{)} \text{ MeV/c}^2$

Confirmation by the Run 1 dataset \Rightarrow

¹Candidates fully reconstructed and ready for offline analysis already at the trigger level

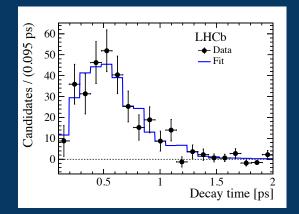

Ξ_{cc}^{++} baryon studies


Ξ_{cc}^{++} decays

- More searches for the Ξ_{cc}^{++} baryon performed at the LHCb using 2016 data to confirm the observation and better understand decay dynamics of the Ξ_{cc}^{++} baryon
- Confirmation in $\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+}\pi^{+}$ decay mode (<u>Phys.Rev.Lett.121,162002(2018)</u>)
 - Significance of 5.9 σ , measured mass in agreement with observation decay channel $\frac{\Im(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) \times \Im(\Xi_{c}^{+} \to pK^{-}\pi^{+})}{\Im(\Xi_{cc}^{++} \to \Delta_{c}^{+}K^{-}\pi^{+}\pi^{+}) \times \Im(\Delta_{c}^{+} \to pK^{-}\pi^{+})} = 0.035 \pm 0.009 \text{ (stat)} \pm 0.003 \text{ (syst)}$
- Search for $\mathcal{Z}_{cc}^{++} \rightarrow D^+ p K^- \pi^+$ decays (<u>arXiv:1905.02421v3</u>)
 - Search motivated by the excellent $D^+ \rightarrow K^- \pi^+ \pi^+$ trigger and long D^+ lifetime
 - No significant Ξ_{cc}^{++} signal observed
 - Upper limit on the BF ratio using CLs method:

 $\frac{\mathfrak{B}(\Xi_{cc}^{++}\to D^+pK^-\pi^+)\times\mathfrak{B}(\Xi_{c}^{+}\to K^-\pi^+\pi^+)}{\mathfrak{B}(\Xi_{cc}^{++}\to\Lambda_c^+K^-\pi^+\pi^+)\times\mathfrak{B}(\Lambda_c^+\to pK^-\pi^+)} < 1.7\% (2.1\%) \text{ at } 90\% (95\%) \text{ CL}$

• Theoretical understanding needed to explain a surprisingly large difference in branching fractions



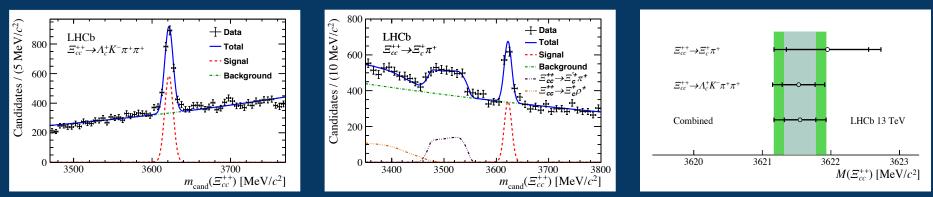
Ξ_{cc}^{++} lifetime measurement

- First lifetime measurement of the doubly charmed baryon (<u>Phys.Rev.Lett.121,052002(2018)</u>)
- Using observation decay channel $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- Decay time measured relatively to Λ_b^0 baryon which has a well known lifetime of 1.470 ± 0.010 ps
- Acceptance correction based on MC
- Weighted unbinned maximum likelihood fit

$$f_{\Xi_{cc}^{++}}(t) = f_{\Lambda_b^0}(t) \times \frac{\varepsilon_{\Xi_{cc}^{++}}}{\varepsilon_{\Lambda_b^0}} \times e^{-\left(\frac{t}{\tau_{\Xi_{cc}^{++}}} - \frac{t}{\tau_{\Lambda_b^0}}\right)}$$
$$\tau(\Xi_{cc}^{++}) = 0.256^{+0.024}_{-0.022} \text{ (stat)} \pm 0.014 \text{ (syst) ps}$$

Confirmation of the weak nature of this decay.

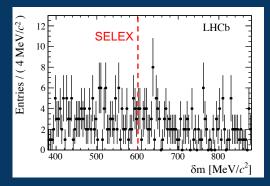
Ξ_{cc}^{++} production measurement

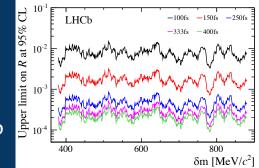

- Production of the Ξ⁺⁺_{cc} baryon relatively to prompt Λ⁺_c production using 2016 data (1.7 fb⁻¹) (arXiv:1910.11316v1)
- Measurement performed in the transverse momentum range of $4 < p_T < 15$ GeV/c and the rapidity range of 2.0 < y < 4.5
- Separation of prompt and non-prompt Λ_c^+ decays challenging
 - Two steps fit mass spectrum fit, followed by the log χ_{IP}^2 fit of background subtracted data

 $\frac{\sigma(\Xi_{cc}^{++}) \times \mathfrak{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}{\sigma(\Lambda_c^+)} = (2.22 \pm 0.27 (\text{stat}) \pm 0.29 (\text{syst})) \times 10^{-4}$

Ξ_{cc}^{++} mass measurement

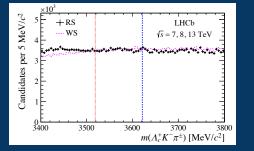
- The most precise mass measurement of the doubly charmed baryon mass to date (arXiv:1911.08594)
- Using 2016-2018 data and combination of both observed decay modes of Ξ_{cc}^{++} baryon
- Signal selection optimised on 2016 data with $S/\sqrt{(S+B)}$ merit and applied on full dataset
- Each decay mode fitted independently, results combined by the <u>BLUE method</u>:

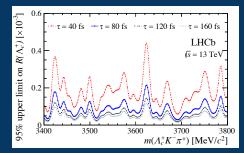

 $m(\Xi_{cc}^{++}) = 3621.55 \pm 0.23 \text{ (stat)} \pm 0.30 \text{ (syst)} \text{ MeV/c}^2$



Ξ_{cc}^+ baryon searches

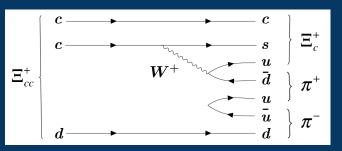
Search for the Ξ_{cc}^+ baryon


- Production cross-section and mass of the Ξ⁺_{cc} baryon are expected to be similar to its isospin partner Ξ⁺⁺_{cc}
- \(\mathcal{E}_{cc}^+\) lifetime is predicted to be ~3-4 times shorter than the lifetime of \(\mathcal{E}_{cc}^+\) (measured to be 256 fs) more experimentally challenging
- Shorter lifetime of the Ξ_{cc}^+ baryon is due to the:
 - Destructive Pauli interference in Ξ_{cc}^{++} decays;
 - W⁺ exchange between c and d quarks only in Ξ_{cc}^+ decays.
- First search for the Ξ⁺_{cc} baryon in the decay to Λ⁺_c K⁻π⁺ performed by the LHCb using 2011 data (0.65 fb⁻¹) reported no signal observation (<u>JHEP 1312 (2013) 090</u>)



New results on search for the Ξ_{cc}^+ baryon

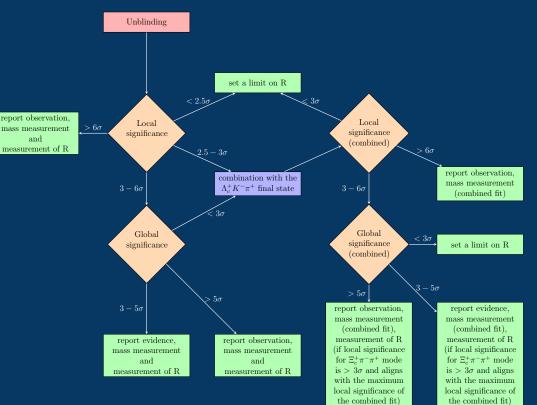
- Subsequent search in the same decay channel ($\Lambda_c^+ K^- \pi^+$) using significantly larger dataset (arXiv:Sci.China-Phys.Mech.Astron.63,221062(2020)):
 - Selection A : Signal search & mass measurement (using all available data 2011, 2012, 2015–2018)
 Selection B : Production rate measurement (2012, 2016–2018 data)
- No significant signal observed
 - Global significance (evaluated in the 3.5–3.7 GeV/c² mass range) 1.7σ
- Upper limit on the ratio of production cross-section times branching fraction to Λ_c^+ and Ξ_{cc}^{++} has been set as a function of lifetime and mass hypotheses
- The limits are significantly below the value of $R(\Lambda_c^+)$ reported by the SELEX collaboration



My contribution

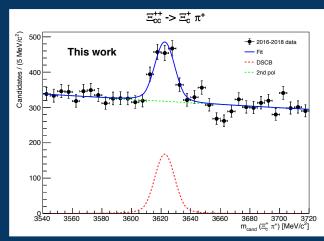
Main focus of my analysis

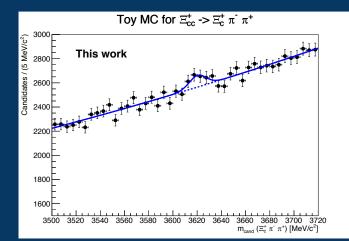
- Search for the Ξ_{cc}^+ baryon in two decay modes:
 - $\circ \quad \Xi_{cc}^+ \to (\Xi_c^+ \to pK^-\pi^+) \pi^-\pi^+$
 - $\circ \quad \Xi_{cc}^+ \to (\Xi_c^0 \to p K^- K^- \pi^+) \pi^+$


- Normalisation channel already observed decay of the doubly charged state: $\circ \quad \Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$
- According to some theoretical prediction, studied modes could have a relatively large branching fraction (<u>Eur.Phys.J.C77(2017)no.11,781</u>, <u>Eur.Phys.J.C78(2018)no.11,961</u>)

$\Xi_{cc}^+ \rightarrow (\Xi_c^+ \rightarrow p K^- \pi^+) \pi^- \pi^+$ analysis overview

- Blinded analysis using 2016-2018 data (blinded mass window 3.3-3.8 MeV/c²)
- Studies of the ±⁺_{cc} baryon selection and efficiency based on a simulated Monte Carlo (MC) data, wrong sign (unphysical) combinations of final state particles used as a background proxy
- The final two stage selection for the Ξ_{cc}^+ baryon in the $\Xi_{cc}^+ \to \Xi_c^+ \pi^- \pi^+$ decay channel is developed:
 - Cut based pre-selection (based on kinematic, vertex, PID cuts)
 - Multivariate analysis (MVA) based selection (using discriminatory kinematic and vertexing variables)
- Mass / lifetime of the Ξ_{cc}^+ baryon a priori unknown efficiency (needed for the UL measurement) evaluated as a function of different mass and lifetime hypotheses


Analysis Strategy


- Two cases:
 - Observation/Evidence: measurements of the mass and production branching fraction w.r.t. the control channel
 - Non-significant signal: Setting an upper limit on the production cross section times branching fraction relative to the control channel
- Strategies defined and procedures developed for both cases prior to unblinding

Sensitivity studies

- Toy MC for the $\Xi_{cc}^+ \to \Xi_c^+ \pi^- \pi^+$ decay channel:
 - Based on the efficiency studies of the signal and normalisation modes;
 - Number of expected background events and background shape based on a study of the WS sample;
 - Assumption for the same BF as $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ decay.

Summary and outlook

- LHCb is building a comprehensive picture of the doubly charmed baryons
 - Observation and confirmation of the Ξ_{cc}^{++} baryon state, followed by its lifetime, mass and production studies
 - Searches for the Ξ_{cc}^+ and Ω_{cc}^+ baryons performed in several decay modes are in progress
- More to do with a larger dataset accumulated in Run 3
 - Increase of the luminosity by a factor of 5 with a fully software trigger trigger studies ongoing to ensure full potential for doubly charmed baryons searches and studies is in place for Run3 data taking
 - Searches for the excited states, measurement of quantum numbers, ...

Stay tuned for more doubly charmed baryon results from LHCb this year and in a near future!

Thank you for your attention!