Lifetimes of Charmed Hadrons

Christos Vlahos

Institute of Particle Physics Phenomenology

Durham University In collaboration with A. Lenz and D. Wang

> LHCb UK Annual Meeting 2020 University of Huddersfield

Durham University

• □ > < □ > < Ξ</p>

January 6, 2020

Christos Vlahos

Motivation	Framework	Preliminary Results	Cor

Motivation

Framework

Preliminary Results

Conclusion

・ロト ・回 ト ・ヨト ・ヨト ・ヨー うへの

Christos Vlahos Lifetimes of Charmed Hadrons

Motivation	Framework	Preliminary Results	Conclusion
0000			

Motivation

Framework

Preliminary Results

Conclusion

Christos Vlahos Lifetimes of Charmed Hadrons

 Motivation
 Framework
 Preliminary Results
 Conclusion

 0●00
 0000000000
 000
 000

Motivation from ΔA_{CP}

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

where

$$A_{CP}(f,t) = \frac{\Gamma(D^{0}(t) \rightarrow f) - \Gamma(\bar{D}^{0}(t) \rightarrow f)}{\Gamma(D^{0}(t) \rightarrow f) + \Gamma(\bar{D}^{0}(t) \rightarrow f)}$$

• Current value: $\Delta A_{CP} = (15.6 \pm 2.9) \times 10^{-4}$

[arXiv:1903.08726]

Durham University

Image: A math a math

- This is a 5.3 σ deviation from SM
- What could be missing?
 - i Statistics
 - ii Big non perturbative effects
 - iii New physics

Christos Vlahos

Motivation from ΔA_{CP}

What does this have to do with lifetimes?

- We want to constrain further the three possible explanations
- Inclusive decays are easier than exclusive ones
- If a theory is working well for the easy case then it could work also for the complicated case - BUT this is not a proof

< 口 > < 同 >

Charm Baryon Lifetimes

The last couple of years LHCb published papers on precision measurements of Ω⁰_c, Λ⁺_c, Ξ⁺_c and Ξ⁰_c [arXiv:1807.02024]

i
$$\tau(\Omega_c^0) = 268 \pm 24 \pm 10 \pm 2$$
fs
ii $\tau(\Lambda_c^+) = 203.5 \pm 1 \pm 1.3 \pm 1.4$ fs
ii $\tau(\Xi_c^-) = 456.8 \pm 3.5 \pm 2.9 \pm 3.1$ fs
v $\tau(\Xi_c^0) = 154.5 \pm 1.7 \pm 1.6 \pm 1$ fs

- Theoretical predictions are far less precise
- Test framework on simpler cases (mesons) and then apply them to baryons

Durham University

[arXiv:1906.08350]

Image: A math a math

Motivation	Framework	Preliminary Results	Conclusion
	•000000000		

Motivation

Framework

Preliminary Results

Conclusion

Christos Vlahos Lifetimes of Charmed Hadrons

Motivation	Framework	Preliminary Results	Conclusion
0000	o●ooooooooo	000	000

Framework

Effective Hamiltonian: $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \left[C_1 Q_1 + C_2 Q_2 + Q_e + Q_\mu \right]$ $Q_1 = \bar{s}'_j \gamma_\mu (1 - \gamma_5) c_i \bar{u}_i \gamma^\mu (1 - \gamma_5) d'_j$ $Q_2 = \bar{s}'_i \gamma_\mu (1 - \gamma_5) c_i \bar{u}_j \gamma^\mu (1 - \gamma_5) d'_j$ $Q_l = \bar{s}' \gamma_\mu (1 - \gamma_5) c \bar{l} \gamma^\mu (1 - \gamma_5) \nu$

Image: A math a math

- Q_i involves long distance physics
- C_i involves short distance physics

Heavy Quark Expansion(HQE)

$$\Gamma(H \to X) = \frac{1}{2m_H} \sum_X \int_{\text{PS}} (2\pi)^4 \delta^{(4)} \left(p_H - p_X \right) \left| \langle X \left| \mathcal{H}_{\text{eff}} \right| H \rangle \right|^2$$

• Using the Optical Theorem: $\Gamma(H \to X) = \frac{1}{2m_B} \langle H | T | H \rangle$ where

$$\mathcal{T} = \operatorname{Im} i \int d^4 x T \left[\mathcal{H}_{eff}(x) \mathcal{H}_{eff}(0) \right]$$

Finally expanding in inverse powers of m_Q we get:

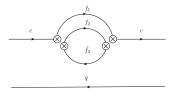
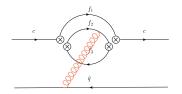

Durham University

Image: A math a math

Christos Vlahos

Preliminary Results

Dimension 3 contribution



- The leading term comes from the decay of the charm quark
- Diagrams appear at 2-loop level
- We want to consider all possible decay channels
- By adding all possible fermion combinations: $c_3 \approx 6.5$

Preliminary Results

Image: Image:

Dimension 5 Contribution

First correction in HQE: soft interaction with spectator quark

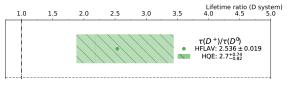
• In the charm system $c_5 \approx -0.6$

Durham University

Lifetimes of Charmed Hadrons

Christos Vlahos

Motivation 0000	Framework 0000000	Preliminary Results 000	Conclusion 000
Dime	nsion 6 Contrib	c s c s c c s c c c c c c c c c c c c c	


Next correction: Interaction involving the spectator quark (3 topologies)

イロト イポト イヨト イヨト

- ► Diagrams appear at 1-loop level \Rightarrow enhancement by $16\pi^2$ compared to previous diagrams
- Non-perturbative effects: $B_{1,2}$ and $\epsilon_{1,2}$

Non-perturbative effects

First calculation of bag parameters for D mesons was completed in 2018:

[Kirk, Lenz, Rauh, '18]

Image: A math a math

Durham University

Christos Vlahos

Preliminary Results

Non-perturbative effects

Obs.	$\Gamma_3^{(0)}$	$\Gamma_3^{(1)}$	$\Gamma_3^{(2)}$	$\langle O^{d=6} \rangle$	$\Gamma_4^{(0)}$	$\Gamma_4^{(1)}$	$\langle O^{d=7}\rangle$	Σ	
$\tau(B^+)/\tau(B_d)$	++	++	0	+	++	0	0	**	(7+)
$\tau(B_s)/\tau(B_d)$	++	++	0	$\frac{\pm}{2}$	++	0	0	**	(6.5+)
$ au(\Lambda_b)/ au(B_d)$	++	$\frac{\pm}{2}$	0	$\frac{\pm}{2}$	+	0	0	**	(4+)
$\tau(b - baryon)/\tau(B_d)$	++	0	0	0	+	0	0	*	(3+)
$ au(B_c)$	+	0	0	+	0	0	0	*	(2+)
$ au(D^+)/ au(D^0)$	++	++	0	+	++	0	0	**	(7+)
$ au(D_s^+)/ au(D^0)$	++	++	0	$\frac{\pm}{2}$	++	0	0	**	(6.5+)
$\tau(c - baryon)/\tau(D^0)$	++	0	0	Ō	+	0	0	*	(3+)

[Lenz '18]

Durham University

Christos Vlahos

Motivation 0000	Framework 0000000		Preliminary 000		Conclusion 000
Dime	ension 7 Contribu	ution $s_{s}^{c} \otimes s_{de}^{uv} \otimes s_{de}^{v}$	c s	c s c s c s c s c s s c s s c s s s s s	

- Expanding further the above diagrams one obtains dimension 7 operators \Rightarrow bag parameters ρ_{1-6}, σ_{1-6}
- Still undetermined but use vacuum insertion approximation: $\rho_i = 1 \pm 1/12, \sigma_i = 0 \pm 1/6$

[Lenz, Rauh, '13]

Durham University

イロト イボト イヨト イヨト

Motivation 0000	Framework 00000000000	Preliminary Results 000	Conclusion 000
Next-to-lead	ding Order		
		50000 s	
	ą ,	t d u	

[Hokim, Pham '84]

[Franco et al '02]

[Bagan, Ball, Braun '94]

[Lenz, Nierste, Ostermaier '97]

[Greub, Liniger '00]

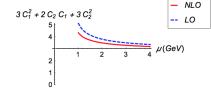
[Krinner, Lenz, Rauh '13]

Do we really need to go to NLO?

・ロト・西ト・ヨト・ヨー うへの

Durham University

Christos Vlahos


Next-to-leading Order

- ► LO can give unphysical results (e.g. $\tau(D^+) < 0$) [arXiv:1807.00916v3]
- Two NLO components for a full calculation i LO diagrams with NLO Wilson coefficients
 - ii NLO diagrams with LO Wilson coefficients

•
$$\alpha_s(m_c) = 0.42 \approx 2\alpha_s(m_b)$$

Indications of big corrections at dimension 3

[Review by Lenz]

Lifetimes of Charmed Hadrons

Christos Vlahos

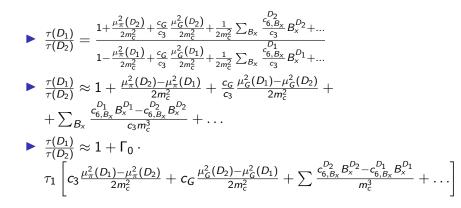
Motivation	Framework	Preliminary Results	Conclusion
		000	

Motivation

Framework

Preliminary Results

Conclusion


・ロト・日本・ キョト・ キョー うえつ

Christos Vlahos Lifetimes of Charmed Hadrons

Framework

Preliminary Results

Lifetime Ratios

Durham University

イロト イポト イヨト イヨト

Christos Vlahos

Preliminary Results 000

Numerical results

$$\left(\frac{\tau(D^{+})}{\tau(D^{0})}\right)_{\overline{\text{MS}}} = 2.2 \pm 0.4 (\text{hadr.}) \begin{array}{c} +0.3 \\ -0.7 \ (\text{scale}) \pm 0.0 (\text{param.}) \\ \text{[Lenz, Rauh, '13]} \end{array} \right)$$

$$\left(\frac{\tau(D^{+})}{\tau(D^{0})}\right)_{\overline{\text{Exp}}} = 2.536 \pm 0.19$$

$$\left(\frac{\overline{\tau}(D_{s}^{+})}{\tau(D^{0})}\right)_{\overline{\text{MS}}} = 1.19 \pm 0.12 (\text{hadr}) \pm 0.04 (\text{scale}) \pm 0.01 (\text{param.}) \\ \text{[Lenz, Rauh, '13]} \end{array} \right)$$

$$\left(\frac{\tau(D_{s}^{+})}{\tau(D^{0})}\right)_{\overline{\text{Exp}}} = 1.289 \pm 0.019$$

æ Durham University

э

・ロト ・日下・ ・ ヨト・

Christos Vlahos

Motivation	Framework	Preliminary Results	Conclusion
0000	0000000000	000	●00

Motivation

Framework

Preliminary Results

Conclusion

Christos Vlahos Lifetimes of Charmed Hadrons

Motivation	Framework	Preliminary Results	Conclusion
0000	0000000000	000	○●○

Conclusion

- In order to test the 1/m_c expansion in △A_{CP} calculations it's good to verify its validity by applying in a simpler calculation (hadron lifetimes)
- HQE is a powerful tool for the B system but it's still open to verify how fast it converges in the charm system
- ▶ Going NLO in *α_s* looks to have significant effects in lifetime calculations
- Current numerical results look to be in line with experiments but pushing the expansion in α_s and $1/m_c$ will help test the validity of pert. theory and HQE near the charm scale
- Then can move to the more complicated case of baryons and test against the new experimental values

Image: A math a math

Thank you for your attention!

Christos Vlahos Lifetimes of Charmed Hadrons Durham University

Image: A math a math