
RooFit redesign
Conclusions from 27-28 June 2019 meeting @ CERN



Three parts

• Rewriting likelihood calculation in "sane" statistics/physics based 
structure/concepts

• Task management & parallel calculation

• Minimization



Rewrite likelihoods

• RooUnbinnedLikelihood

• RooBinnedLikelihood

• RooMultipleLikelihood

• RooConstraintLikelihood

• Common interface: evaluate_partition with components, partitions and begin + end

• everything with stride = 1 now, no more interleave (bad for vectorization & general performance)

• These are not RooAbsArgs, but there will be a wrapper class (return value of createNLL) which will 
use the Likelihoods and will again be a RAA ("calculators != RooAbsArg/Real")
• Conceptual replacement of current RooAbsTestStatistic
• But also different; user facing replacement, because parallelization will now be done elsewhere

• Optimization (all the stuff that's now in RooAbsOptTestStatistic):
• Common base class for e.g. binned and unbinned (similar optimization strategy)
• Separate RooPDFOptimizer class



Parallelization & Task management

• Composition instead of inheritance

• Make possible to use different "back-ends" next to the default RooFit
back-end, e.g. TensorFlow, analytical derivations, etc.

• JobLikelihood, JobDerivative, Job2ndDerivative
• These should somehow be fed to the minimizer

• Possibilities for implementation:
• RooMinimizer<JobL, JobD, Job2D>

• ABClass for all three types that can be implemented per back-end



Parallelization & Task management

• Current situation:
• Singleton TaskManager
• Jobs defined through inheritance from Job class

• Parallel -> Vector<Single> -> {Single, Job}

• Preferred situation:
• Singleton TaskManager (same)
• Jobs have RAR* likelihood (wrapper) object as member
• Minimizer cues calculation of something, e.g. likelihood or gradient
• Job then takes care of parallelization, i.e. talkes to TaskManager
• Only generic part of Jobs is the partitions/components division, 

everything else is back-end specific



Parallelization & Task management

• Nomenclature of Jobs vs Tasks is confusing, can we think of better names?
• three (/ four) concepts:

• "Job": the concept of a parallelizable computation, like a Likelihood or a Gradient
• [unnamed]: a single full execution of that computation

• "task": individual computational unit of the Job; one part of the Job that can be computed in parallel from the other parts
• "batch": used for vectorization, overlaps currently with tasks

• How do others call these things?
• TBB

• Tasks: corresponds to our tasks

• Blocks: range of tasks

• Iteration space: full range of tasks

• Not 100% compatible, just different units of the same basic quantity, no semantic link to the thing you're trying to parallelize

• https://en.wikipedia.org/wiki/Job_(computing)
• In computing, a job is a unit of work or unit of execution (that performs said work). A component of a job (as a unit of work) is called a task or a step (if 

sequential, as in a job stream).

• Compatible with our current definition

• More (creative) options instead of Job:
• http://www.namibian.org/travel/misc/collective-nouns.html collective animal names
• Problem decomposition https://en.wikipedia.org/wiki/Parallel_programming_model#Problem_decomposition
• "Workflow"
• Something from graph theory maybe... Tasks could perhaps be Leafs, which would also alleviate the Job/Task degeneracy

https://en.wikipedia.org/wiki/Job_(computing
http://www.namibian.org/travel/misc/collective-nouns.html
https://en.wikipedia.org/wiki/Parallel_programming_model


Parallelization & Task management

• TaskManager needs to know all tasks of all jobs at start-up time (fork)
• How do we handle tasks that themselves can be split up as a Job into new 

tasks?
• If the constellation of Jobs is known before fork, it's possible in current 

framework
• Need some form of dependency management
• We can implement switching between different sets of tasks (e.g. only 

partial derivatives or also split Gradient by likelihood components or...) as 
Job "strategies"

• This can then be handled internally in the Jobs
• The only non-Job infra that has to be added is a message to change 

strategies



Minimization

• For Jobs to implement effective strategies based on minimizer phase, 
they must be able to somehow detect "phase"
• E.g. in line search phase, or in gradient calculation phase, or doing Hesse or 

using Simplex method, etc.

• Must Minimizer interface be modified to expose this information?
• As far as we can see: no.

• The information is already signaled by the call the minimizer makes to the back-end

• For Minuit, 3 possible calls:
• FCN.evaluate()

• GRAD.Gradient()

• GRAD.G2ndDerivative() [Is it actually used? If not, can we do this? Does this only calculate 
the symmetric components (seems like it, it only has one "icoord" parameter)? @Lorenzo]


