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HEP Program Elements

Cosmic Frontier

Cosmic Frontier

Frontier Program Lead Laboratory

Cosmic Frontier SCDMS Yes (SLAC)

LZ No

DES No

LSST-DESC Yes (NERSC)

Fermi Yes (ISOC, local)

Kavli (cosmic 
simulations)

Multiple

Intensity Frontier EXO-200/nEXO Yes/No(NP)

DUNE No (Fermilab)

HPS Yes (sims at SLAC)

LDMX Yes (SLAC)

Energy Frontier ATLAS No (Tier 3)

Accelerator FACET Yes
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Phasing of HEP Needs

2019 2020 2021 2022 2023 2024 2025 2026

Fermi refresh @ 
SLAC. 2k cores

LSST Survey begins
DESC 500M hrs, 5 PB
NERSC LDMX possible 

data taking

DESC DC3
200M hrs, 1 PB
NERSC

SCDMS data 
starts at Snolab

Neutrino 
SBN data

LSST Camera 
Commissioning

HPS data

nEXO data
(NP)

Plus ongoing Theory 
activities, etc

ATLAS 
T3 
refresh

FACET II
online

ATLAS 
T3 
refresh

CMB-S4

DESC DC2
200M hrs, 1 PB
NERSC
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3 Gigapixel 
telescope

10-yr ‘movie’ of 
southern sky

DESC@NERSC: develop 
algorithms, evaluate 

systematics
Real Data

Simulated Data

Cosmological Parameters

~0.1 TB/s

 

40,000 Cores

~ minutes annual data 
releases

NERSC

HPC

HPC + Clusters

Opportunistic Resources
(Simulation)

DESC: ~5 PB storage, ~250 TFlop and Gbps networking between NCSA & NERSC

SLAC-HEP’s Largest Computing Challenge: LSST-DESC

Image Re-
construction

NCSA

NERSC, ANL, UK GRIDPP, CC-IN2P3

Telescope

Chile

LSST 
Facility

   400 PB

Transients
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HPC Computing Needs at NERSC

LSST-DESC
● With encouragement from DOE, DESC selected NERSC as its primary host in 2016, and 

is executing its Data Challenges there now - DC2 is well underway
○ DCs are O(30-200M NERSC-hrs, 1-2 PB storage) - dominated by image sims
○ Dominant need during Survey (2023+) is targeted reprocessing of image data for 

systematics budget and algorithm development
■ 400M NERSC-hrs, 5 PB storage; image transfer from NCSA

● Image simulation code is now running very efficiently on Cori-Haswell
○ shared memory per node; multi-process python
○ running 2000 node jobs is routine
○ have NESAP program with NERSC porting to GPUs for Perlmutter

● Image processing code will be another matter altogether
○ for DC2, we’ve run that code at CC-IN2P3 in France



Machine Learning @ Cross-Cut HEP Frontiers

ML for HEP Science (lead PIs: Michael Kagan, Phil Marshall, Kazu Terao)

Challenge: Future HEP programs at SLAC will produce high volumes of precision physics data.

SLAC Approach: 
● Develop ML algorithms running on advanced hardware (GPU, FPGA, etc.)
● Cross-frontier effort to share techniques across HEP frontiers and beyond HEP, SLAC

Focus
● Image Analysis: Fast analysis pipeline from raw data to physics output 
● Simulations: Generative ML models as alternative to MC simulation
● Interpretability:  Enforce known physics within ML algorithms & uncertainty estimates
● Surrogates: Generative ML to approximate simulators for parameter optimization / inference

Support: 
● DOE HEP : RA hire for cross-frontier effort
● ECAs (Kagan, Terao): additional RA/students
● SLAC: Interdisciplinary Ph.D students, lab-wide ML initiatives.

Near (1-2 year) goal: Solutions/optimization in focus areas for DUNE, HL-LHC, LSST and Theory.
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Potential Synergies with LCLS-II

● LCLS-II has an enormous computing challenge and is proposing a hybrid model of local 
computing at SLAC for near real time feedback to running experiments backed up by 
NERSC for less time sensitive and much larger needs.

○ establishes a high profile presence at NERSC and increased connectivity and 
expertise for its use (30-60 PFlop 2020; >120 PFlop 2024)

○ establishes a sizeable footprint at SLAC with standardized design and central 
support (estimated at 1 PFlop in 2020, 5-10 PFlop by 2025)

○ discussion on joint GPU resources for ML (LCLS/AD/HEP/Cryo-EM)
○ small collaborations and workshops on ML techniques and tools

● Join in on nascent SLAC-NERSC working group - it has the NERSC Director’s attention
● Sizeable cluster presents an opportunity to SLAC HEP

○ our strategy of a common cluster would allow us to pool our resources with LCLS
○ can smooth out resource needs and allow higher efficiency use for both
○ enables us to bid on potential LSST Data Facility move
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Summary

● SLAC HEP is employing a mix of computing resources
○ NERSC for its largest needs (DESC)
○ SLAC mid-range for both efficiency reasons and providing interactive 

resources (Fermi, ATLAS, DUNE, SCDMS; later LDMX and nEXO)
● Our modest mid-range resources are standard design, implementation and hosting 

by SLAC’s central computing group in a combined cluster
○ Lab-wide ML/AI resources under discussion, including ATLAS, LSST and 

Neutrino groups from HEP
● Look to LCLS-II for synergies with their proposed cluster at SLAC, GPU-based ML, 

and use of NERSC
● R&D is focussed (through DESC) on efficient use of NERSC and adapting to LSST 

Data Management tools; and Machine Learning.
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Backups



ImSim GPU Acceleration
● Raytracing through optics is the best way to implement several desired physics effects 

for ImSim, including vignetting, wavelength-dependent optics, and ghosts.
● However, CPU implementation of suitable raytracing (batoid; c++-wrapped python) is 

~10x slower than the rest of ImSim.
● Raytracing is parallelizable; good candidate for GPU acceleration.
● We have started exploring a design that 

○ would maintain batoid’s existing flexible python frontend, and
○ is portable; the existing CPU backend still works.

● Initial work is encouraging - speedup in basic ray propagation is near ~100x - though 
many less-obviously parallelizable functions have yet to be ported to the GPU.

● Main challenges so far are a shortage of accessible examples of GPU-accelerated 
python extension modules, and working with c++ compilers that are still in the process 
of implementing/debugging GPU-offloading features.

10Josh Meyers LLNL

https://github.com/jmeyers314/batoid


Cross-Cut ML @ HEP

Enforcing classifier robustness to 
systematic uncertainty for analysis 

significance improvement

arXiv:1411.2608

arXiv:1611.01046

A simulated 3D particle energy deposition in LArTPC 
(left) clustered into individual particles (right) with 
type identification and vertex point annotated.

● Our detectors (ATLAS, LSST, DUNE) produce high 
precision, big volume data for exascale “imaging 
physics”. We lead fast, high quality data analysis 
applications R&D using ML algorithms in Computer 
Vision and Geometrical (Graph) Deep Learning

● Utilize the technology of hierarchical probabilistic and 
generative models to instill physics dependencies 
along with the capability to measure and constrain the 
impact of uncertainty in our models. 

Optimal trade-off of performance vs. robustness

𝛄
𝛄𝛄

Particle flow (three photons clustering) 
analysis using Graph Neural Network



Cross-Cut ML @ HEP: Simulation & Inference
Precision science with large datasets requires massive, but 
time costly, simulations for comparisons and 
measurements. We pursue rapid, parallelizable, high 
fidelity generative ML models as cross-frontier solutions 
for “fast simulators.” 

Further, such generative models can serve as surrogate 
differentiable approximations of the simulator for 
black-box parameter optimization and likelihood-free 
inference 

Standard  vs. NN
simulation of
calorimeter layer 
energy

[image from ]

Training 
images

Parameter 
inference

Hezaveh, Levasseur, 
Marshall et al 

Optimization of simulator parameters using 
differentiable generative surrogate model


