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HEP Program Elements
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Phasing of HEP Needs
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SLAC-HEP’s Largest Computing Challenge: LSST-DESC
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(Simulation)

NERSC, ANL, UK GRIDPP, CC-IN2P3

DESC: ~5 PB storage, ~250 TFlop and Gbps networking between NCSA & NERSC




HPC Computing Needs at NERSC
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LSST-DESC

e With encouragement from DOE, DESC selected NERSC as its primary host in 2016, and
is executing its Data Challenges there now - DC2 is well underway
o DCs are O(30-200M NERSC-hrs, 1-2 PB storage) - dominated by image sims
o Dominant need during Survey (2023+) is targeted reprocessing of image data for
systematics budget and algorithm development
m  400M NERSC-hrs, 5 PB storage; image transfer from NCSA
e Image simulation code is now running very efficiently on Cori-Haswell
o shared memory per node; multi-process python
o running 2000 node jobs is routine
o have NESAP program with NERSC porting to GPUs for Perimutter
e Image processing code will be another matter altogether
o for DC2, we've run that code at CC-IN2P3 in France
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Machine Learning @ Cross-Cut HEP Frontiers
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ML for HEP Science (lead Pls: Michael Kagan, Phil Marshall, Kazu Terao)

Challenge: Future HEP programs at SLAC will produce high volumes of precision physics data.

SLAC Approach:
e Develop ML algorithms running on advanced hardware (GPU, FPGA, etc.)
e Cross-frontier effort to share techniques across HEP frontiers and beyond HEP, SLAC

Focus
e Image Analysis: Fast analysis pipeline from raw data to physics output

e Simulations: Generative ML models as alternative to MC simulation

e Interpretability: Enforce known physics within ML algorithms & uncertainty estimates

e Surrogates: Generative ML to approximate simulators for parameter optimization / inference
Support:

e DOE HEP : RA hire for cross-frontier effort
e ECAs (Kagan, Terao): additional RA/students
e SLAC: Interdisciplinary Ph.D students, lab-wide ML initiatives.

Near (1-2 year) goal: Solutions/optimization in focus areas for DUNE, HL-LHC, LSST and Theory.
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Potential Synergies with LCLS-II
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e LCLS-Il has an enormous computing challenge and is proposing a hybrid model of local
computing at SLAC for near real time feedback to running experiments backed up by
NERSC for less time sensitive and much larger needs.

o establishes a high profile presence at NERSC and increased connectivity and
expertise for its use (30-60 PFlop 2020; >120 PFlop 2024)
o establishes a sizeable footprint at SLAC with standardized design and central
support (estimated at 1 PFlop in 2020, 5-10 PFlop by 2025)
o discussion on joint GPU resources for ML (LCLS/AD/HEP/Cryo-EM)
o small collaborations and workshops on ML techniques and tools
e Join in on nascent SLAC-NERSC working group - it has the NERSC Director’s attention
e Sizeable cluster presents an opportunity to SLAC HEP
o our strategy of a common cluster would allow us to pool our resources with LCLS
o can smooth out resource needs and allow higher efficiency use for both
o enables us to bid on potential LSST Data Facility move
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Summary

e SLAC HEP is employing a mix of computing resources
o NERSC for its largest needs (DESC)
o SLAC mid-range for both efficiency reasons and providing interactive
resources (Fermi, ATLAS, DUNE, SCDMS; later LDMX and nEXO)
e Our modest mid-range resources are standard design, implementation and hosting
by SLAC’s central computing group in a combined cluster
o Lab-wide ML/AI resources under discussion, including ATLAS, LSST and
Neutrino groups from HEP
e Look to LCLS-Il for synergies with their proposed cluster at SLAC, GPU-based ML,
and use of NERSC
e RA&D is focussed (through DESC) on efficient use of NERSC and adapting to LSST
Data Management tools; and Machine Learning.
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Backups
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ImSim GPU Acceleration —DESC

e Raytracing through optics is the best way to implement several desired physics effects
for ImSim, including vignetting, wavelength-dependent optics, and ghosts.
e However, CPU implementation of suitable raytracing (batoid; c++-wrapped python) is
~10x slower than the rest of ImSim.
e Raytracing is parallelizable; good candidate for GPU acceleration.
e We have started exploring a design that
o would maintain batoid’s existing flexible python frontend, and
o is portable; the existing CPU backend still works.
e Initial work is encouraging - speedup in basic ray propagation is near ~100x - though
many less-obviously parallelizable functions have yet to be ported to the GPU.
e Main challenges so far are a shortage of accessible examples of GPU-accelerated
python extension modules, and working with c++ compilers that are still in the process
of implementing/debugging GPU-offloading features.

Josh Meyers LLNL 10
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https://github.com/jmeyers314/batoid

Cross-Cut ML @ HEP

o1 A 7>

e Our detectors (ATLAS, LSST, DUNE) produce high
precision, big volume data for exascale “imaging
physics”. We lead fast, high quality data analysis
applications R&D using ML algorithms in Computer |
Vision and Geometrical (Graph) Deep Learning ’

e Utilize the technology of hierarchical probabilisticand -
generative models to instill phys1cs dependencies
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Cross-Cut ML @ HEP: Simulation & Inference

SLACS
Precision science with large datasets requires massive, but
time costly, simulations for comparisons and
measurements. We pursue rapid, parallelizable, high N =
fidelity generative ML models as cross-frontier solutions =
for “fast simulators.”
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differentiable generative surrogate model Marshall et al



