

SLAC HEP Computing

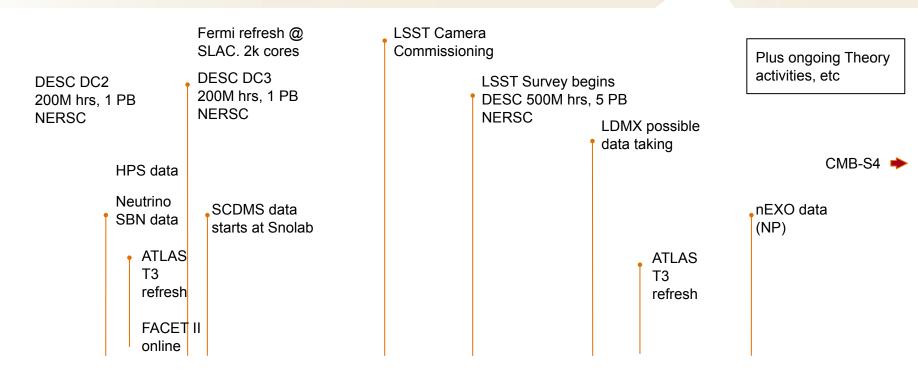
Richard Dubois

Fundamental Physics Directorate: Deputy Director for Operations

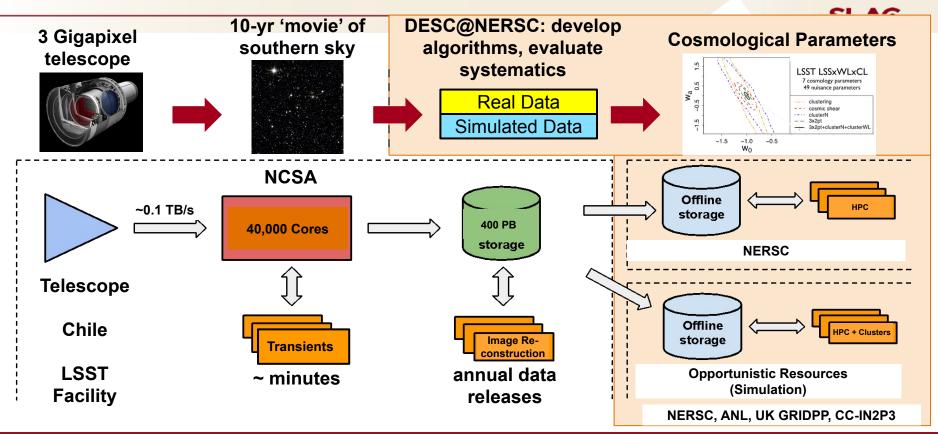
DESC Operations Manager

Fermi-LAT Computing Coordinator

dubois@stanford.edu


HEP Program Elements

	Frontier	Program	Lead Laboratory
	Cosmic Frontier	SCDMS	Yes (SLAC)
		LZ	No
		DES	No
		LSST-DESC	Yes (NERSC)
		Fermi	Yes (ISOC, local)
		Kavli (cosmic simulations)	Multiple
	Intensity Frontier	EXO-200/nEXO	Yes/No(NP)
		DUNE	No (Fermilab)
		HPS	Yes (sims at SLAC)
		LDMX	Yes (SLAC)
	Energy Frontier	ATLAS	No (Tier 3)
LHC	Accelerator	FACET	Yes



Phasing of HEP Needs

SLAC-HEP's Largest Computing Challenge: LSST-DESC

DESC: ~5 PB storage, ~250 TFlop and Gbps networking between NCSA & NERSC

HPC Computing Needs at NERSC

SLAC

LSST-DESC

- With encouragement from DOE, DESC selected NERSC as its primary host in 2016, and is executing its Data Challenges there now - DC2 is well underway
 - DCs are O(30-200M NERSC-hrs, 1-2 PB storage) dominated by image sims
 - Dominant need during Survey (2023+) is targeted reprocessing of image data for systematics budget and algorithm development
 - 400M NERSC-hrs, 5 PB storage; image transfer from NCSA
- Image simulation code is now running very efficiently on Cori-Haswell
 - shared memory per node; multi-process python
 - o running 2000 node jobs is routine
 - have NESAP program with NERSC porting to GPUs for Perlmutter
- Image processing code will be another matter altogether
 - o for DC2, we've run that code at CC-IN2P3 in France

Machine Learning @ Cross-Cut HEP Frontiers

SLAC

ML for HEP Science (lead Pls: Michael Kagan, Phil Marshall, Kazu Terao)

Challenge: Future HEP programs at SLAC will produce high volumes of precision physics data.

SLAC Approach:

- Develop ML algorithms running on advanced hardware (GPU, FPGA, etc.)
- Cross-frontier effort to share techniques across HEP frontiers and beyond HEP, SLAC

Focus

- Image Analysis: Fast analysis pipeline from raw data to physics output
- Simulations: Generative ML models as alternative to MC simulation
- Interpretability: Enforce known physics within ML algorithms & uncertainty estimates
- Surrogates: Generative ML to approximate simulators for parameter optimization / inference

Support:

- DOE HEP: RA hire for cross-frontier effort
- ECAs (Kagan, Terao): additional RA/students
- SLAC: Interdisciplinary Ph.D students, lab-wide ML initiatives.

Near (1-2 year) goal: Solutions/optimization in focus areas for DUNE, HL-LHC, LSST and Theory.

Potential Synergies with LCLS-II

SLAC

- LCLS-II has an enormous computing challenge and is proposing a hybrid model of local computing at SLAC for near real time feedback to running experiments backed up by NERSC for less time sensitive and much larger needs.
 - establishes a high profile presence at NERSC and increased connectivity and expertise for its use (30-60 PFlop 2020; >120 PFlop 2024)
 - establishes a sizeable footprint at SLAC with standardized design and central support (estimated at 1 PFlop in 2020, 5-10 PFlop by 2025)
 - discussion on joint GPU resources for ML (LCLS/AD/HEP/Cryo-EM)
 - small collaborations and workshops on ML techniques and tools
- Join in on nascent SLAC-NERSC working group it has the NERSC Director's attention
- Sizeable cluster presents an opportunity to SLAC HEP
 - our strategy of a common cluster would allow us to pool our resources with LCLS
 - can smooth out resource needs and allow higher efficiency use for both
 - enables us to bid on potential LSST Data Facility move

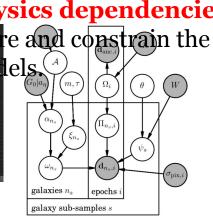
Summary

- SLAC HEP is employing a mix of computing resources
 - NERSC for its largest needs (DESC)
 - SLAC mid-range for both efficiency reasons and providing interactive resources (Fermi, ATLAS, DUNE, SCDMS; later LDMX and nEXO)
- Our modest mid-range resources are standard design, implementation and hosting by SLAC's central computing group in a combined cluster
 - Lab-wide ML/AI resources under discussion, including ATLAS, LSST and Neutrino groups from HEP
- Look to LCLS-II for synergies with their proposed cluster at SLAC, GPU-based ML, and use of NERSC
- R&D is focussed (through DESC) on efficient use of NERSC and adapting to LSST Data Management tools; and Machine Learning.

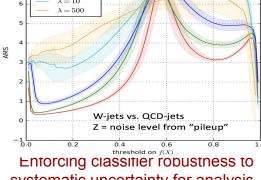
Backups

ImSim GPU Acceleration

- Raytracing through optics is the best way to implement several desired physics effects for ImSim, including vignetting, wavelength-dependent optics, and ghosts.
- However, CPU implementation of suitable raytracing ($\frac{batoid}{c}$; c++-wrapped python) is $\sim 10x$ slower than the rest of ImSim.
- Raytracing is parallelizable; good candidate for GPU acceleration.
- We have started exploring a design that
 - would maintain batoid's existing flexible python frontend, and
 - is portable; the existing CPU backend still works.
- Initial work is encouraging speedup in basic ray propagation is near $\sim 100x$ though many less-obviously parallelizable functions have yet to be ported to the GPU.
- Main challenges so far are a shortage of accessible examples of GPU-accelerated python extension modules, and working with c++ compilers that are still in the process of implementing/debugging GPU-offloading features.


Cross-Cut ML @ HEP

• Our detectors (ATLAS, LSST, DUNE) produce high precision, big volume data for exascale "imaging physics". We lead fast, high quality data analysis applications R&D using ML algorithms in Computer Vision and Geometrical (Graph) Deep Learning


Utilize the technology of hierarchical probabilistic and generative models to instill physics dependencies

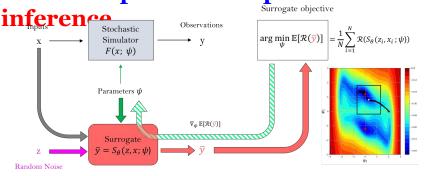
impact of **uncertainty** in our models.

A simulated 3D particle energy deposition in LArTPC (left) clustered into individual particles (right) with type identification and vertex point appotated

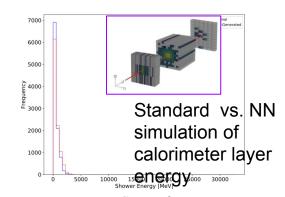
Optimal trade-off of performance vs. robustness Non-Adversarial training $\lambda = 0 | Z = 0$

systematic uncertainty for analysis significance improvement

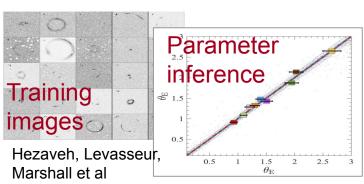
Particle flow (three photons clustering) analysis using Graph Neural Network


arXiv:1411.2608

Cross-Cut ML @ HEP: Simulation & Inference


SLAC

Precision science with large datasets requires massive, but time costly, simulations for comparisons and measurements. We pursue rapid, parallelizable, high fidelity generative ML models as cross-frontier solutions for "fast simulators."


Further, such generative models can serve as **surrogate differentiable approximations** of the simulator for **black-box parameter optimization** and **likelihood-free**

Optimization of simulator parameters using differentiable generative surrogate model

[image from arXiv:1705.02355]

