Detector technologies

A brief overview

Many thanks to Erik Butz, <u>Simon Spannagel</u>, <u>Freya Blekman</u>, <u>Peter</u> <u>Schleper</u>, Erika Garutti

jory.sonneveld@cern.ch

Particles from outer space

10000 times a second you have particles from cosmic rays passing through you

HESS: high energy stereoscopic system, in Namibia, can detect gamma rays What are these particles and how do they behave? What are we and what is the universe made of?

ww.isee.naqoya-u.ac.jp/en/assets_c/2016/03/study01_1-thumb-500xauto-153.pnq

How to detect a particle?

γ rays

γ-ray enters the atmosphere

Cherenkov telescope:

- light is 0.03 % slower in air
- ultra-high energy particles can travel faster than light in air
- then a blue flash of "Cherenkov light" is created
- similar to the sonic boom created by an aircraft exceeding the speed of sound.

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary

Discovery of antimatter

The first positron ever observed!

Wilson cloud chamber: gaseous mixture of supersaturated water or alcohol. Energetic particle ionizes gas and ions form condensation centers visible as a 'cloud'.

15000 Gauss = 1.5T magnetic field Wilson chamber for detecting cosmic rays

https://upload.wikimedia.org/wikipedia/commons/6/69/PositronDiscovery.jpg C.D. Anderson https://journals.aps.org/pr/pdf/10.1103/PhysRev.43.491

Gluon discovery

Event in *drift chamber* of JADE experiment at PETRA collider at DESY.

Such events were used to prove the existence of gluons: $e+e^- \rightarrow qq^- g$.

From

22.9.80

http://www.desy.de/sites2009/site_www-desy/content/e409/e287332/e2873 37/e287345/1980-09-22_TASSO-Event_Gluon_Entdeckung_sw_ger.jpg6

https://www.desy.de/~schleper/lehre/physik5/WS_2018_19/Physik_5_72-95.pdf

More detectors

(b)

Positron emission tomography

7

CERN and the Large Hadron Collider

Large Hadron Collider

Hadron: composite particle made of quarks held together by the strong force

CERN Prévessin

6.5 tera-electronvolt (**TeV**) per proton beam Largest and most powerful collider in the world!

beampipes!

SHUSS

<u>https://www.youtube.com/watch?v=NhXMXiXOWAA</u> tps://home.cern/sites/home.web.cern.ch/files/image/inline-images/old/lhc_long_1.jp

protons

FRN Meyrin

pload.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG

Large Hadron Collider

6.5 tera-electron volt (TeV) per proton beam

2x2800 bunches of protons 25 ns apart

CMS

SUISSE

ERANCI

eV = energy to move an electron through 1 V: 1 eV = 1.602 x 10⁻¹⁹ J

 $J = kg \cdot m^2 \cdot s^{-2}$

MeV = 10^{6} eV GeV = 10^{9} eV TeV = 10^{12} eV PeV = 10^{15} eV

CERN Prévessin

beampipes

<u>https://www.youtube.com/watch?v=NhXMXiXOWAA</u> https://home.cern/sites/home.web.cern.ch/files/image/inline-images/old/lhc_long_1.jp

protons

CERN Movin

ATLA

load.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG

Large Hadron Collider

6.5 tera-electron volt (TeV) per proton beam

2x2800 bunches of protons 25 ns apart

CMS

ERANC

eV = energy to move an electron through 1 V: 1 eV = 1.602 x 10⁻¹⁹ J electron mass m_c = 9.1 x 10⁻³¹ kg = 511 keV

CERN Prévessin

Take speed of light and reduced Planck's constant equal to one:

c = ħ = 1

ħ = h/(2π) = 1.055×10⁻³⁴ J·s

dn.zmescience.com/wp-content/uploads/2015/05/cern-lhc-aerial.jpg

https://www.youtube.com/watch?v=NhXMXiXOWAA //home.cern/sites/home.web.cern.ch/files/image/inline-images/old/lhc_long_1.jp

protons

CERN Movin

ATLA

load.wikimedia.org/wikipedia/commons/6/62/CERN_LHC_Proton_Source.JPG

Detectors at the LHC

ATLAS

A Toroidal LHC ApparatuS: 25 m x 25 m x 46m The inner detector has 3 air core toroidal magnets and one solenoidal magnet. Multipurpose detector.

A Large Ion Collider Experiment: specialized in heavy ion collisions and quark-gluon plasma: fraction of second after big bang!

LHC beauty: A single-arm forward spectrometer designed for the study of particles containing b or c quarks. Other detected

Other detectors: MoEDAL, TOTEM

ALICE

Compact Muon Solenoid

14000 tons: 1.5* Eiffel tower weight, half the size of ATLAS: 15 m x 15 m x 21 m very compact! Largest superconducting solenoid magnet ever made Why a second multipurpose detector?

Proton-proton collisions

proton

proton

center of CMS, ATLAS detectors and end of LHCb and ALICE

Trigger system: Choose what events are interesting How do we choose?

Jet: quarks and gluons hadronized to kaons, protons, pions in a collimated stream

https://inspirehep.net/record/805147/files/crosssections2008.png https://static1.squarespace.com/static/568f0767d82d5ee322f9bbcc/t/57bac2e99f7456e36f33b505/1471857390507/

Each **bunch** contains something like ~10¹¹ protons

proton

eam i

proton

beam

 $\approx 10^{11}$ protons (100,000,000,000 protons!)

> https://sciencenode.org/feature/sherpa-and-open-sci ence-arid-predicting-emergence-jets.php

00000000

http://wlcg-public.web.cern.ch/sites/wlcg-public.web. 13 cern.ch/files/WLCG-snapshot-28112013.jpg

8000000

000000000

What do we detect?

Not all known elementary particles

Directly detect:

Should be able to detect and identify: e^{\pm} , μ^{\pm} , γ , π^{\pm} , K^{\pm} , p^{\pm} , K^{0} , nusing mass, charge, interaction

Standard Model of Elementary Particles

Ъ Model g/wikipedia/commons/0/00/Standard https://uploa

LHCb $B_s \rightarrow \mu^+ \mu^-$

What do we measure and how?

Observable	Measurable quantity
Momentum (p)	Bending radius in magnetic field
Speed (v)	Time of flight, Cherenkov radiation
Charge (Q)	Bending in magnetic field
Lifetime (τ)	Distance traveled before decay
Energy (E)	Absorption in calorimeters
Mass (m)	Indirectly from momentum
Spin	Angular distributions

• d = cτγ

• $\gamma = 1/\sqrt{(1-\beta^2)}$

•
$$\beta = v/c$$

•
$$E^2 = m^2 c^4 + p^2 c^2$$

•
$$p = \gamma mv = mv / \sqrt{(1 - v^2/c^2)}$$

For some examples of measuring spin see

https://arxiv.org/pdf/1202.6660.pdf and http://moriond.in2p3.fr/QCD/2013/proceeding s/Muehlleitner.pdf

Need 1) a magnetic field and 2) interaction with material

Detecting particles at the LHC

I work in pixel operations: we make sure this subdetector works without problems so data taking is smooth → good physics results! Note: I did my master (at Nikhef) and PhD (in Aachen) in theoretical particle physics.

measurements destructive!

Note when the muon arrives here ,

Note when the muon arrives here

Gaseous detectors

https://cds.cern.ch/record/2665476/files/201902-053_01.jpg?subformat=icon-640

ALICE time projection chamber

11000

TPC

- Ionization of gas in chamber with electric field causes electron drift
- Signal gets amplified, in this case by gas electron Beam multipliers → electron avalanche
- Readout pads can detect signal that can be projected onto trajectory
- 4. z (along beam) information from **timing**

Ionization loss

- Can measure ionization loss dE/dx
- K is a coefficient:
 K = .307 MeV mol⁻¹cm⁻²
- I is the mean excitation energy

Depends on charge, atom number, ionization energy, density

Use:
$$\gamma = 1/\sqrt{(1 + (p/(m_0 c))^2)}$$

- 25b5d827
- Every point is one measurement!
- Can identify particles for low momenta
 - For higher momenta, all particles behave like a minimum ionizing particle (MIP)

p/z (GeV/c)30

(arb. units

Silicon tracking detectors

CMS silicon strip tracker

.

Ideal signal detection with silicon sensors

- A minimum ionizing particle (MIP) traveling through a fully depleted region (V_{FD}) creates electron hole pairs
- The charges drift to opposite directions under the electric field
- Within nanoseconds, charges are collected at the readout

p-in-n silicon sensor

CMS silicon tracker

- 10-12 layers of silicon sensors
- 15148 modules
- 9.3 million electronic channels
- Operated at -20°C and < 20% humidity
- In over 10 years of beam more than a billion particles fly through detector!

Strips vs pixels: how to determine location with strips?

The pixel (or vertex) detector is so close to the beam pipe, it cannots survive this radiation: replaced in 2017, now inner layer will be 35 replaced

Track reconstruction: find hits that belong to track

What if 78 interactions happen simultaneously?

Or a collision of 2 lead nuclei?

10000 charged tracks!

Calorimeters

Interactions: four known forces

electromagnetism

https://physics.aps.org/assets/89b4f0e0-b b70d-d90f744d1790/e23_2.png

What are we made of? How do particles get mass? Gravity is not described by the Standard Model!

Weak nuclear force

Strong nuclear force

ttps://upload.wikimedia.org/wikipedia/commons/thumb/b/b/4/T 8 Sun by the Atmospheric Imacinia Assembly of NAA%27 5 Solar Dynamics Observatory - 20100819.jog/8000x-The S 20 by the Atmospheric Imaging Assembly of NASA%27s S Nat Dynamics Observatory - 20100819.jog

40

Interaction with matter: destructive measurement

Electromagnetic calorimeter

• Electromagnetic shower by interaction with material

е

₫Ź

- Depth of shower in a material is determined by
 - Energy

 $X = X_0$

- Critical energy where
 Brehmsstrahlung rate = ionization rate
- Radiation length of material

 $\ln(E_0/F)$

CMS electromagnetic calorimeter

- Crystals made of lead tungstate, weighing 1.5 kg each
- 80,000 crystals each of which took 2 days to grow
- A crystal scintillates when an electron or photon passes through: produces light
- Light is read out with photomultiplier tubes: vacuum tubes that convert light into an electric signal

Diboson event: jets in the ATLAS detector

44

Hadronic calorimeter

Need to consider fraction of electromagnetic energy

Photomultipliers → silicon photomultipliers

From hit information for 4 cells (1 tower) → hit information per cell

How to measure neutrinos?

Missing transverse momentum

Neutrinos?

Mismeasurement?

Detector effect?

Dark matter?

- 10⁹ neutrinos / cm²/s
 Most from sun and atmosphere
- Rare events from black holes, supernovae...

KM3NeT: cubic kilometer neutrino telescope

- Between 2 and 4 km deep in Mediterranean (FR-IT-GR)
- 12000 digital optical modules (DOMs) on 600 strings
- Cherenkov detection
 with photomultipliers
- GeV, TeV, and PeV neutrinos Netherlands plays a large role in construction

KATRIN: neutrino mass measurement

 $m_{y} < 1.1 \text{ eV}$ (90% confidence level): twice as precise as previous measurements!

Recently published! https://arxiv.org/abs/1909.06048

KATRIN: neutrino mass measurement

dia.org/wikipedia/

region close to endpoint

only 2 x 10⁻¹³ of

decays in last 1 eV nterval

n

E - E₀ [eV]

 $m(v_e) = 0 eV$

 $m(v_e) = 1 eV$

-2

aio

ů/ir

52

Detecting particles with LHCb

Cerenkov radiation like in HESS

LHCb Event Display

Ring imaging Cherenkov detector

Cherenkov ring from a charged particle from a neutrino interaction in Kamiokande

How to identify a particle?

Future detectors

Plan for the LHC

Extras

Future LHC detectors

Physics beyond the standard model?

Beyond the standard model: $B^{0}_{(s)} \rightarrow \mu\mu$

 \overline{h}

S

Beyond the standard model: $B^{0}_{(s)}$ μμ

Everything consistent with standard model predictions.

S

3×10⁻⁹

Detecting jets with the ATLAS detector

Very accurate jet resolution! Searching for a diboson resonance: **boosted** bosons are detected as one jet.

