Quark masses from lattice QCD

Andrew Lytle
INFN Roma Tor Vergata

29.11.19
Ultimate Precision at Hadron Colliders
Institut Pascal, Paris-Saclay
• Quark masses – fundamental parameters of the Standard Model.

• Many applications to phenomenology and BSM physics. Example: Higgs partial widths.
 - Couplings proportional to quark masses.
 - Main source of uncertainty in partial widths from \(m_b, m_c, \alpha_s \) \[1404.0319\].

• Focus on precision results using three independent methods.
Higgs couplings

Estimated final ILC precision in $h c \bar{c}$ coupling $\sim 0.7\%$.
Outline

• Background
 ▶ Lattice simulations
 ▶ Mass determinations

• Quark mass methods
 ▶ Current-current correlator moments
 ▶ Regularisation Invariant (RI) methods
 ▶ Minimal renormalon subtraction (MRS) masses

• Summary & Outlook
Bare quark masses are input parameters to lattice simulations. These parameters are tuned to reproduce physical quantities, e.g.

- $m_{ud0} \to m_{\pi}^2$
- $m_{s0} \to m_{K}^2$
- $m_{c0} \to m_{\eta_c}$

Tuning performed at multiple lattice spacings, defining a continuum trajectory for which $a^2 \to 0$ limit can be taken.

- Rest of physics is then prediction of QCD.
- Parameters can be varied away from physical values to understand effect of quark mass, quantify systematics, etc.
Meson masses – summary plot
MILC ensembles

- HISQ fermion action.
 - Discretization errors begin at $O(\alpha_s a^2)$.
 - Designed for simulating heavy quarks (m_c and higher at current lattice spacings).

- Symanzik-improved gauge action, takes into account $O(N_f \alpha_s a^2)$ effects of HISQ quarks in sea. [0812.0503]

- Multiple lattice spacings down to ~ 0.045 (now 0.03) fm.

- Effects of u/d, s, and c quarks in the sea.

- Multiple light-quark input parameters down to physical pion mass.
 - Chiral fits.
 - Reduce statistical errors.
MILC ensemble parameters

\[a^2 \approx (\text{fm}^2) \]

\[M_\pi \approx 135 \text{ MeV} \]

\[1712.09262 \]

\[(0.03)^2 \]

\[(0.042)^2 \]

\[(0.06)^2 \]

\[(0.09)^2 \]

\[(0.12)^2 \]

\[(0.15)^2 \]
Quark mass definitions

- Quarks are not asymptotic (physical) states due to confinement – mass cannot be measured directly.
- Quark masses are scheme and scale dependent, $m_q^{\text{scheme}}(\mu)$.
- Generally will quote results $m_q^{\overline{\text{MS}}}(\mu_{\text{ref}})$.
- Lattice input quark masses are non-universal (depend on discretisation), but can be connected to quark masses defined in a continuum scheme.
$\langle JJ \rangle$-correlator moments
Current-current correlators

Calculate time-moments of \(J_5 \equiv \bar{\psi}_h \gamma_5 \psi_h \) correlators:

\[
G(t) = a^6 \sum_x (am_{0h})^2 \langle J_5(t, x)J_5(0, 0) \rangle
\]

- Currents are absolutely normalized (no Zs required).
- \(G(t) \) is UV finite \(\rightarrow G(t)_{\text{cont}} = G(t)_{\text{latt}} + \mathcal{O}(a^2) \).
The time-moments $G_n = \sum_t (t/a)^n G(t)$ can be computed in perturbation theory. For $n \geq 4$,

$$G_n = \frac{g_n(\alpha_{\overline{MS}}, \mu)}{a m_h(\mu)^{n-4}}.$$

Basic strategy:

1. Calculate $G_{n,\text{latt}}$ for a variety of lattice spacings and m_{h0}.

2. Compare continuum limit $G_{n,\text{cont}}$ with $G_{n,\text{pert}}$ (at reference scale $\mu = m_h$, say).

3. Determine best-fit values for $\alpha_{\overline{MS}}(m_h), m_h(m_h)$.

Results for $n_f = 4$

\[m_c(3m_h) = \frac{r_n(\alpha_{\overline{MS}}, \mu = 3m_h)}{R_n} \]

- Discretization effects grow with am_h and decrease with n.
- Grey band shows best-fit $m_c(3m_c)$ evolved perturbatively.

\[m_c^{\overline{MS}}(3 \text{ GeV}) = 0.9851(63) \text{ GeV} \]
RI intermediate schemes
NPR method

Trying to determine $Z_{m}^{\text{MS}}(\mu, 1/a)$ st

$$m^{\text{MS}}(\mu) = Z_{m}^{\text{MS}}(\mu, 1/a) m_0$$

Options:

- Lattice perturbation theory. – difficult!
- Alternatively, use two steps:
 - latt \leftrightarrow intermediate(continuum-like) \leftrightarrow $\overline{\text{MS}}$
NPR method

General idea is to renormalize operators using a scheme that is well-defined both in the continuum and on the lattice, e.g. the RI schemes:

Calculate off-shell Green’s functions of operator-of-interest with external quark states.

\[G_{ij}^\Gamma(p) = \langle q^i(p) \left(\sum_x \bar{q}(x) \Gamma q(x) \right) \bar{q}^j(-p) \rangle_{\text{amp}} \]

Require that the trace of the renormalized operator takes its tree-level value:

\[\Lambda_\Gamma(p) \equiv \frac{1}{12} \text{Tr} \left[\Gamma G_\Gamma(p) \right] \simeq \frac{Z_q(p)}{Z_\Gamma(p)} \]
The RI (and $\overline{\text{MS}}$) schemes satisfy $Z_m = Z_S^{-1} = Z_P^{-1}$. Z_m can be extracted from the scalar correlator provided

$$\Lambda_{\text{QCD}} \ll |p| \ll \pi/a$$

After determining $Z_m^{RI}(p)$, a perturbative calculation can be used to convert $Z^{\overline{\text{MS}}}(p) = C^{\overline{\text{MS}}\leftarrow RI}(p) Z_m^{RI}(p)$.
RI/SMOM scheme

- Momentum flow suppresses infrared effects.
 \[p_1^2 = p_2^2 = (p_1 - p_2)^2 \]

- \(p_1 \sim (x, x, 0, 0), \)
 \(p_2 \sim (0, x, x, 0) \) for \(x = 2, 3, 4 \)

- Other advantages:
 - Reduced mass dependence.
 - SMOM → \(\overline{\text{MS}} \) matching factors closer to 1.
Continuum extrapolations

\[a^2 \quad \text{[fm}^2\text{]} \]

\[\langle JJ \rangle \quad [1408.4169] \]
m_c comparison plot

$\bar{m}_c(m_c, n_f = 4)$ (GeV)

HPQCD HISQ RI-SMOM
FNAL/MILC/TUM HISQ MRS
HPQCD HISQ JJc
ETMC RI-MOM

JLQCD DW JJa
MP(hotQCD) HISQ JJa
χQCD overlap RI-MOM
HPQCD HISQ JJb
HPQCD+ HISQ JJa
Renormalon subtracted masses
HQET masses

Mass of a heavy meson H in heavy quark effective theory (HQET)

\[M_H = m_Q + \bar{\Lambda} + \frac{\mu_\pi^2}{2m_Q} - \frac{\mu_G^2(m_Q)}{2m_Q} + \ldots, \]

where

- m_Q: Pole mass of the heavy quark Q
- Λ: Energy of light quarks and gluons
- $\frac{\mu_\pi^2}{2m_Q}$: Kinetic energy of heavy quark
- $\frac{\mu_G^2(m_Q)}{2m_Q}$: Hyperfine energy due to heavy quark spin

Want to relate pole mass to \MSbar mass,

Meson mass \leftrightarrow quark pole mass \leftrightarrow quark \MSbar mass
Perturbative series connecting the pole mass to the $\overline{\text{MS}}$ mass (known to four loops) diverges due to renormalons,

$$m_{\text{pole}} = \bar{m} \left(1 + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1}(\bar{m}) \right),$$

with

$$r_n \propto (2\beta_0)^n \Gamma(n + b + 1) \text{ as } n \to \infty$$

but can be interpreted using Borel summation. After subtracting the (leading) renormalon from the pole mass, there is a well-behaved connection between the subtracted mass and the $\overline{\text{MS}}$ mass.

$$m_{\text{pole}} \to m_{\text{MRS}} + \mathcal{O}(\Lambda_{\text{QCD}})$$
\[m_Q \leftrightarrow m^{\overline{\text{MS}}} \]

\[
m_{\text{pole}} + \overline{\Lambda} = \overline{m} \left(1 + \sum_{n=0}^{\infty} r_n \alpha_s^{n+1}(\overline{m}) \right) + \overline{\Lambda} \rightarrow \\
\overline{m} \left(1 + \sum_{n=0}^{\infty} [r_n - R_n] \alpha_s^{n+1}(\overline{m}) \right) + J_{\text{MRS}}(\overline{m}) + [\delta_m + \overline{\Lambda}] \\
= m_{\text{MRS}} + \overline{\Lambda}_{\text{MRS}}
\]

\[
r_n = (0.4244, 1.0351, 3.6932, 17.4358, \ldots) \\
R_n = (0.5350, 1.0691, 3.5966, 17.4195, \ldots) \\
r_n - R_n = (-0.1106, -0.0340, 0.0966, 0.0162, \ldots)
\]
Measure meson mass M_{Hs} varying heavy input mass $am_{h,0}$.

$$m_{h}^{\overline{\text{MS}}} (\mu) = m_{r}^{\overline{\text{MS}}} (\mu) \frac{am_{h,0}}{am_{r,0}} + \mathcal{O}(a^2),$$

with $m_{r}^{\overline{\text{MS}}} (\mu)$ treated as a fit parameter.

- Fit data including discretization artifacts as well as HQET parameters $\overline{\Lambda}_{\text{MRS}}$, μ^2_{π}, $\mu^2_G(\mu)$.
- Evaluate fit at M_{D_s}, M_{B_s} to obtain $\overline{m}_c, \overline{m}_b$.

![Graph showing fit data and parameters](image1.png)

![Graph showing differences between M_H and $m_{h,MRS}$](image2.png)
\[
m_s^{\overline{\text{MS}}} (2 \text{ GeV}) = 92.47(39)_{\text{stat}}(18)_{\text{sys}}(52) \alpha_s (11) f_{\pi, \text{PDG}} \text{ MeV}
\]
\[
\overline{m_c} = 1273(4)_{\text{stat}}(1)_{\text{sys}}(10) \alpha_s (0) f_{\pi, \text{PDG}} \text{ MeV}
\]
\[
\overline{m_b} = 4201(12)_{\text{stat}}(1)_{\text{sys}}(8) \alpha_s (1) f_{\pi, \text{PDG}} \text{ MeV}
\]

These results can be compared e.g. with current-correlator results:

\[
m_s^{\overline{\text{MS}}} (2 \text{ GeV}) = 93.6 (8) \text{ MeV} \quad \text{[1408.4169]}
\]
\[
\overline{m_c} = 1271 (10) \text{ MeV}
\]
\[
\overline{m_b} = 4196 (23) \text{ MeV} \quad \text{[1408.5768]}
\]
• Bare input mass parameters can be tuned to reproduce hadron masses measured in experiment, and can also be varied away from physical values.

• Now several independent and complementary techniques which establish strange, charm, and bottom quark masses at the (sub-)percent level.

• It is increasingly feasible to perform relativistic simulations with b quarks – currently some form of effective theory is used or an extrapolation to m_b is required – these techniques can then be applied in the same way as for charm [already the case for MRS].
• RI/SMOM intermediate scheme
 ▶ Perturbative and IR (condensate) uncertainties decrease with lattice spacing.
 ▶ Main uncertainty comes from tuning uncertainties - need improved determinations of lattice spacings and input masses.

• Current-current correlators
 ▶ Main uncertainty from perturbation theory.
 ▶ Finer lattice means reference scale $a m_h$ can be increased.
 ▶ See talk by A. Veernala (FNAL/MILC) Lattice 2017.

• MRS subtracted masses
 ▶ Calculation already includes $a \sim 0.045, 0.03$ fm lattices.
 ▶ Uncertainty in α_s is a major source of error.

The main results presented here use MILC lattice ensembles – important to calculate with additional fermion formulations!
Thank you!
Regulate QCD using a (Euclidean) spacetime lattice.

Integrate out fermionic degrees of freedom.

\[Z = \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi e^{-\int (\mathcal{L}_{YM} + \bar{\psi}D\psi)} \]

\[= \int \mathcal{D}U (\det D) e^{-\int \mathcal{L}_{YM}} \]

Generate gluon configurations using Monte Carlo techniques.

Effects of sea quarks are included in the determinant of the Dirac matrix.
Calculate valence quark propagators on gluon field configurations.

\[D^{-1} = \]

Tie together the quark propagators to create correlation functions.

\[\langle \pi \pi^\dagger \rangle = \pi \]

\[\pi \]
Energies and matrix elements are determined by fitting (sums of) exponentials.

\[
\langle \pi(t) \pi^\dagger(0) \rangle \xrightarrow{\text{large } t} \frac{|\langle 0 | \pi | \pi \rangle|^2}{2m_\pi} e^{-m_\pi t} \propto f_\pi^2 e^{-m_\pi t}
\]
New lattice result from ALPHA collaboration using Schrödinger Functional and step-scaling:

\[\alpha_s^{\overline{\text{MS}}} (m_Z) = 0.1185(8) \]
HISQ $\langle JJ \rangle$ error budget

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>$m_c(3)$</th>
<th>$\alpha_{\overline{MS}} (M_Z)$</th>
<th>m_c/m_s</th>
<th>m_b/m_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perturbation theory</td>
<td>0.3</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Statistical errors</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$a^2 \to 0$</td>
<td>0.3</td>
<td>0.3</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>$\delta m_{\text{sea}}^{\text{uds}} \to 0$</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$\delta m_{\text{sea}}^{\text{c}} \to 0$</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$m_h \neq m_c$ (Eq. (15))</td>
<td>0.1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Uncertainty in w_0, w_0/a</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>α_0 prior</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Uncertainty in m_{η_s}</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>$m_h/m_c \to m_b/m_c$</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>δm_{η_c}: electromag., annih.</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>δm_{η_b}: electromag., annih.</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>0.64%</td>
<td>0.63%</td>
<td>0.55%</td>
<td>1.20%</td>
</tr>
</tbody>
</table>

[1408.4169]
Projected $h \rightarrow AA$ uncertainties

<table>
<thead>
<tr>
<th></th>
<th>$\delta m_b(10)$</th>
<th>$\delta \alpha_s(m_Z)$</th>
<th>$\delta m_c(3)$</th>
<th>δ_b</th>
<th>δ_c</th>
<th>δ_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>current errors</td>
<td>0.70</td>
<td>0.63</td>
<td>0.61</td>
<td>0.77</td>
<td>0.89</td>
<td>0.78</td>
</tr>
<tr>
<td>+ PT</td>
<td>0.69</td>
<td>0.40</td>
<td>0.34</td>
<td>0.74</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>+ LS</td>
<td>0.30</td>
<td>0.53</td>
<td>0.53</td>
<td>0.38</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>+ LS2</td>
<td>0.14</td>
<td>0.35</td>
<td>0.53</td>
<td>0.20</td>
<td>0.65</td>
<td>0.43</td>
</tr>
<tr>
<td>+ PT + LS</td>
<td>0.28</td>
<td>0.17</td>
<td>0.21</td>
<td>0.30</td>
<td>0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>+ PT + LS2</td>
<td>0.12</td>
<td>0.14</td>
<td>0.20</td>
<td>0.13</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>PT + LS2 + ST</td>
<td>0.09</td>
<td>0.08</td>
<td>0.20</td>
<td>0.10</td>
<td>0.22</td>
<td>0.09</td>
</tr>
<tr>
<td>ILC goal</td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
<td>0.70</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Topological “freezing” observed in MC time series of ultrafine ($a \sim 0.045$ fm) ensembles.

The effect of fixed topology on masses and decay constants was analysed using χPT in [1707.05430].
Percentage error in a heavy-light (Hq) decay constant:

\[
\frac{\delta f}{f} \approx \frac{1}{2 \chi TV} \cdot \frac{1}{16} \frac{m_{l,\text{sea}}}{m_q^2} \cdot \left[1 - \frac{\langle Q^2 \rangle_{\text{sample}}}{\chi TV} \right]
\]

Effect enhanced on ‘uf-5’ ensemble, where V is small and $m_{l,\text{sea}} = m_s/5$. (here $\frac{\langle Q^2 \rangle_{\text{sample}}}{\chi TV} \approx 1.3$). Numerically,

\[
\frac{\delta f_D}{f_D} \sim \frac{\delta f_B}{f_B} \approx 1%
\]

\[
\frac{\delta f_{D_s}}{f_{D_s}} \sim \frac{\delta f_{B_s}}{f_{B_s}} \approx 0.002%
\]
Systematics for Z_m

Effect of varying charm, strange, and light sea masses:

Finite volume effects:
MILC heavy quark masses

\begin{align*}
 m_{hl} &= m_{l}^s \\
 m_{ll} &= m_{l}^s / 5 \\
 m_{ll} &= m_{l}^s / 10 \\
 m_{l} &= \text{physical}
\end{align*}