Hadronic vacuum polarization contributions
 to the muon $\mathrm{g}-2$ and to $\alpha_{\mathrm{QED}}\left(\mathrm{m}_{\mathrm{z}}\right)$

> Mownum Munumunn Mun wnum wnumunn w促 M M M WWWMWMWM WMWMWMMNMNDV

Andreas Hoecker (CERN)

Ultimate Precision at Hadron Colliders Workshop, Paris-Saclay, Nov 29, 2019

Lepton g factor

Dirac's relativistic theory of the electron (1928) naturally accounted for quantized particle spin and described elementary spin-1/2 particles

In the classical limit, one finds the Pauli equation with magnetic moment:

$$
\vec{\mu}=-g_{\ell} \frac{e}{2 m_{\ell}} \vec{S}, \quad \begin{aligned}
& \text { with }\left|\boldsymbol{g}_{\ell}\right|=2 \text { the gyromagnetic factor } \\
& \text { (and radius } R_{\ell}=0, \text { ie, elementary!) }
\end{aligned}
$$

Where $g_{p} / g_{e}=2.8$ hinted that the proton is not elementary

Today, everyone knows that the proton is composite, and leptons are point-like particles ...

But - are they really?
\rightarrow Precise g_{ℓ} measurement and prediction are key !

The anomalous magnetic moment of the muon

BNL-E821 final result (1997-2001 data):

$$
a_{\mu}=\frac{g_{\mu}-2}{2}=11659209.1 \text { (5.4)(3.3) } \cdot 10^{-10}
$$

(0.54 ppm precision, assumes CPT invariance)
[Muon g-2, E821, hep-ex/0602035 with updated value for λ]

Agreement between μ^{+}and μ^{-}results

Evolution of experimental sensitivity:
[See, eg, Miller, de Rafael, Roberts, hep-ph/0703049]

Experiment	Beam	Measurement	$\delta a_{\mu} / a_{\mu}$	Required theor. terms	Muon behaves like heavy electron
Columbia-Nevis ('57)	μ^{+}	$g=2.00(\sigma=0.10)$		$g=2$	
Columbia-Nevis ('60)	μ^{+}	0.00113 (+16)(-12)	12 \%	$\alpha / 2 \pi$	
CERN 1 (SC, 1961)	μ^{+}	$0.001145(22)$	1.9 \%	$\alpha / 2 \pi$	
CERN 1 (SC, 1962)	μ^{+}	0.001162 (5)	0.43 \%	$(\alpha / \pi)^{2}$	
CERN 2 (PS, 1968)	μ^{+}	0.00116616 (31)	266 ppm	$(\alpha / \pi)^{3}$	
CERN 3 (PS, 1979)	$\mu^{ \pm}$	0.0011659230 (84)	7.2 ppm	$(\alpha / \pi)^{3}+$ had (60 ppm)	Electrostatic
BNL E821 (1997-2001)	$\mu^{ \pm}$	0.00116592091 (63)	0.54 ppm	$(\alpha / \pi)^{4}+$ had + weak + ?	

The anomalous magnetic moment of the muon

BNL-E821 final result (1997-2001 data):

$$
a_{\mu}=\frac{g_{\mu}-2}{2}=11659209.1(5.4)(3.3) \cdot 10^{-10}
$$

(0.54 ppm precision, assumes CPT invariance)
[Muon g-2 E821 hen-ex/0602035 with undated value for λ]

Next is Fermilab's new Muon g-2 Experiment

Columbia-Nevis ('60)
CERN 1 (SC, 1961)
CERN 1 (SC, 1962)
CERN 2 (PS, 1968)
CERN 3 (PS, 1979)
BNL E821 (1997-2001)

μ^{+}	$0.00113(+16)(-12)$
μ^{+}	$0.001145(22)$
μ^{+}	$0.001162(5)$
μ^{+}	$0.00116616(31)$
$\mu^{ \pm}$	$0.0011659230(84)$
$\mu^{ \pm}$	$0.00116592091(63)$

$\alpha / 2 \pi$
$\alpha / 2 \pi$
$(\alpha / \pi)^{2}$
$(\alpha / \pi)^{3}$
$(a / \pi)^{3}+$ had $(60 \mathrm{ppm})$
$(\alpha / \pi)^{4}+$ had + weak + ?

Confronting Experiment with Theory

The Standard Model prediction of a_{μ} is traditionally decomposed in its main contributions:

$$
a_{\mu}^{\mathrm{SM}}=\frac{g_{\mu}-2}{2}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{EW}}+a_{\mu}^{\mathrm{Had}}
$$

of which the hadronic contribution has the largest uncertainty

Confronting Experiment with Theory

QED contribution

Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

$$
\begin{aligned}
a_{\mu}^{\mathrm{QED}}=\frac{\alpha}{2 \pi}+0.765857425(17)\left(\frac{\alpha}{\pi}\right)^{2}+24.05050996(32)\left(\frac{\alpha}{\pi}\right)^{3} \\
\quad[\text { Schwinger term }]
\end{aligned}
$$

[5-loop: Aoyama, Hayakawa, Kinoshita, Nio, 1205.5370 (2012)]

Using $\alpha^{-1}=137.035999046(27)$ from a precise measurement* of $h / m_{\mathrm{Cs}}(0.2 \mathrm{ppb}!)$, gives:

$$
a_{\mu}^{\mathrm{QED}}=11658471.892(0.003) \cdot 10^{-10}
$$

with negligible uncertainty compared to experimental error of $6.3 \cdot 10^{-10}$
*From Parker et al., Science Vol. 360, Issue 6385, 191 (2018), reporting 2.4σ tension with α from electron g-2

Electroweak contribution

EW contribution involving W, Z or Higgs is suppressed at least by a factor: $\frac{\alpha}{\pi} \frac{m_{\mu}^{2}}{m_{W}^{2}} \approx 4 \cdot 10^{-9}$ The first loop gives: [Jackiw, Weinberg and others 1972]

$$
a_{\mu}^{\mathrm{EW}, 1-\mathrm{loop}}=\frac{G_{F} m_{\mu}^{2}}{8 \sqrt{2} \pi^{2}}\left[\frac{5}{3}+\frac{1}{3}\left(1-4 \sin ^{2} \theta_{W}\right)^{2}+\mathcal{O}\left(\frac{m_{\mu}^{2}}{m_{W}^{2}}\right)+\mathcal{O}\left(\frac{m_{\mu}^{2}}{m_{H}^{2}}\right)\right]=19.48 \cdot 10^{-10}
$$

Two-loop contribution surprisingly large due to large $\ln \left(m_{Z} / m_{\mu}\right)$: [Czarnecki, Krause, Marciano, 1995, and others]

2-loop diagrams (+ Higgs exchange)

Three-loop leading logarithms are found to be small ($\sim 10^{-12}$) [Degrassi, Giudice, hep-ph/9803384, and others]

The dominant hadronic contribution and uncertainty stems from the lowest order contribution, $a_{\mu}^{\text {Had,LO }}$, which cannot be calculated from perturbative QCD as it is in the nonperturbative regime

Tools to approach low-energy QCD:

1. Lattice QCD (encouraging results, but precision is challenging; prediction of broad range of dispersion relations prior to $a_{\mu}^{\text {Had,LO }}$ needed to build confidence)

2. Effective QFT with hadrons such as chiral perturbation theory (limited validity range)
3. Hadronic models (hard to estimate robust uncertainties)
4. Dispersion relations and experimental data ...

Lowest-order hadronic contribution

The lowest-order hadronic contribution to a_{μ} can be obtained from a dispersion relation:
[Bouchiat, Michel, 1961]
[Brodsky, de Rafael, 1968]
$a_{\mu}^{\text {Had, } \mathrm{LO}}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K(s)}{s} R(s)$
Where: $R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$
Recent estimate (2019):
[Davier-Hoecker-Malaescu-Zhang (DHMZ), 1908.00921 (2019)]
$\Rightarrow a_{\mu}^{\mathrm{Had}, \mathrm{LO}}=693.9(4.0) \cdot 10^{-10}$
\rightarrow dominant uncertainty in SM prediction

The hadronic contribution to the muon $g-2$

All hadronic contributions (LO, NLO, NNLO), except for light-by-light scattering (LBLS), can be obtained via dispersion relations using a mix of experimental data and perturbative QCD

The LBLS contribution is a four-point function that is currently estimated using meson models

The hadronic contribution to the muon $g-2$

In the following, all a_{μ} numbers are given in units of 10-10

Introduction

Long history of $a_{\mu}^{\text {Had,LO }}$ determinations involving theorists and experimentalists

$$
a_{\mu}^{\mathrm{Had}, \mathrm{LO}}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K(s)}{s} R(s)
$$

- Improvement mostly driven by better $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons data (intermittently also hadronic tau decays used to improve over insufficient-quality low-mass $\mathrm{e}^{+} \mathrm{e}^{-}$data)
- The understanding of the data and the treatment of their uncertainties improved over time
- Sum-rule tests allowed to expand the use of perturbative QCD to predict $R(s)$
- Fairly consistent picture reached

The challenge

The dispersion relation is solved using a mix of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ had data and QCD, depending on $\sqrt{ } s$

- [$\pi^{0} \gamma-1.8 \mathrm{GeV}$]: sum of 32 exclusive channels; very few unmeasured channels are estimated using isospin symmetry
- [$1.8-3.7 \mathrm{GeV}$]: agreement between data and QCD for uds continuum \rightarrow more precise QCD NNNLO used; $\mathrm{J} / \psi \& \psi(2 S)$ resonances from Breit-Wigner forms
- [$3.7-5.0 \mathrm{GeV}$]: open charm pair production: use of data
- [$5.0 \mathrm{GeV}-\infty$]: NNNLO QCD (assuming global quark-hadron duality to hold across $b b$ threshold)

Data combination procedure

The combination of data with dominant systematic uncertainties and sometimes discrepancies among datasets is a delicate procedure that requires care. The stake (new physics or not in the muon $\mathrm{g}-2$) is high, so a (reasonably) conservative approach is mandatory.

Our procedure is as follows:

- Quadratic interpolation (splines) of adjacent data points is performed for each experiment
- A local combination of the interpolations of different datasets is computed in bins of 1 MeV , or in narrower bins for the ω, ϕ resonances
- The test statistic for the local combination (conservatively) uses local information only, avoiding constraints from potentially badly controlled long-range correlations of systematic uncertainties
- Where data are locally inconsistent, the uncertainty of the combination is rescaled following the PDG prescription
- The uncertainties on the combined dataset and dispersion integral are computed using pseudoexperiments generated taking into account all known correlations between datapoints and datasets
- The full procedure has been validated using pseudo-experiments with known truth
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$contributes 73% to $a_{\mu}^{\text {Had,LO }}$ and 71% to total uncertainty-squared

Relative to uncertainty ${ }^{2}$ due to quadratic addition

Many of the efforts in the last twenty years concentrated on that channel. Measurements dominated by systematic uncertainties

Three types of input data:

- Energy scans: CMD-2 ($\delta_{\text {syst }} \sim 0.8 \%$), SND ($\left.\delta_{\text {syst }} \sim 1.5 \%\right)$, + DM1, DM2, OLYA, TOF
- ISR-based measurements: BABAR ($\delta_{\text {syst }} \sim 0.5 \%$), BES-III ($\delta_{\text {syst }} \sim 0.9 \%$), KLOE ($\delta_{\text {syst }} \sim 0.8-1.4 \%$)

- Hadronic tau decay data via isospin symmetry (CVC): ALEPH, OPAL, CLEO, Belle ($\delta_{\text {syststcombined }} \sim 0.7 \%$),
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$contributes 73% to $a_{\mu}^{\text {Had,LO }}$ and 71% to total uncertainty-squared

Relative to uncertainty ${ }^{2}$ due to quadratic addition

Many of the efforts in the last twenty years concentrated on that channel. Measurements dominated by systematic uncertainties

Dominant systematic uncertainties / challenges:
(in parentheses uncertainties for best measurements)

- Energy scan measurements (ex. CMD-2 / 0.8\%): detection efficiency, radiative corrections (0.4\%), beam energy (0.3%), ...
- ISR-based measurements (ex. BABAR / >0.5\%): pion identification (0.3%), $\mu^{+} \mu^{-}$reference (0.4%), \ldots
- Tau data (ALEPH, 0.3% on normalisation): π^{0} and photon reconstruction (0.2\%), hadronic interactions (0.2%), isospin-violating effects \rightarrow not used anymore

Huge amount of precision data, but - with a close look one notices issues...

Three types of input data:

- Energy scans: CMD-2 ($\left.\delta_{\text {syst }} \sim 0.8 \%\right)$, SND ($\left.\delta_{\text {syst }} \sim 1.5 \%\right)$, + DM1, DM2, OLYA, TOF
- ISR-based measurements: BABAR ($\delta_{\text {syst }} \sim 0.5 \%$), BES-III ($\delta_{\text {syst }} \sim 0.9 \%$), KLOE ($\delta_{\text {syst }} \sim 0.8-1.4 \%$)

- Hadronic tau decay data via isospin symmetry (CVC): ALEPH, OPAL, CLEO, Belle ($\delta_{\text {syst-combined }} \sim 0.7 \%$),

The dominant $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$contribution

The dominant $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$contribution

The dominant $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$contribution - impact on a_{μ}

Comparison of results between $0.6-0.9 \mathrm{GeV}$ for the various experiments.
In case of CMD-2 all available measurements have been combined using HVPTools. For KLOE the result from the public combination is displayed.

Removing from full combination BABAR or KLOE, respectively, leads to a difference of 5.6×10^{-10}, which (despite local error rescaling) is not covered by uncertainty of 2.1×10^{-10}
\rightarrow Add half of difference as additional uncertainty to $a_{\mu}\left[\pi^{+} \pi^{-}\right]$

Phenomenological fit of $\pi^{+} \pi^{-}$threshold region

Use phenomenological fit to supplement less precise data in the low-energy domain $<0.6 \mathrm{GeV}$

$$
\sigma^{(0)}\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}\right)=\frac{\pi \alpha^{2}}{3 s} \beta_{0}^{3}(s) \cdot\left|F_{\pi}^{0}(s)\right|^{2} \cdot \operatorname{FSR}(s) \quad \begin{aligned}
& \text { Following approach of Hanhart } \\
& \text { et al, arXiv:1611.09359 }
\end{aligned}
$$

Form factor expressed as unitary Breit-Wigner incl. $\rho-\omega$ mixing with 6 fit parameters
Fit performed using conservative diagonal test statistic to avoid biased central values. Parameter and integration uncertainties determined via pseudo-experiments taking into account all known correlations

Evaluation between $0.3-0.6 \mathrm{GeV}$ gives:

$$
\sigma\left(a_{\mu}^{\mathrm{Had}, \mathrm{LO}}\right)\left[\pi^{+} \pi^{-}\right]=109.8 \pm 0.4_{\exp } \pm 0.4_{\text {model }}
$$

Compared to 109.6 ± 1.0 from direct data integration

Note: the two above estimates do not include the additional systematic error from the overall BABAR-KLOE discrepancy, which is however included in the full $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}\left[\pi^{+} \pi^{-}\right]$evaluation.

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contribution

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contributes with 6.6% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 19% to its uncertainty-squared
Good agreement among precision data (no BABAR data yet below 1.04 GeV)

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contribution
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contributes with 6.6% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 19% to its uncertainty-squared
Good agreement among precision data (no BABAR data yet below 1.04 GeV)

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}, \mathrm{K}^{+} \mathrm{K}^{-}$contributions

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}, \mathrm{K}^{+} \mathrm{K}^{-}$contribute to 5.1% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 2.3% to its uncertainty-squared
Good consistency in $K_{S} K_{L}$ final state, newer data from CMD-3 and BABAR

$B A B A R$ reconstructed K_{L} directly via their nuclear interactions in the electromagnetic calorimeter

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}, \mathrm{K}^{+} \mathrm{K}^{-}$contributions

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}, \mathrm{K}^{+} \mathrm{K}^{-}$contribute to 5.1% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 2.3% to its uncertainty-squared
Problems in $\mathrm{K}^{+} \mathrm{K}^{-}$channel, discrepancy between BABAR and SND (VEPP-2000) resolved with new SND dataset. Remaining discrepancy between BABAR vs CMD-2 vs CMD-3.
$K^{+} K^{-}$final state with low kaons at threshold hard to reconstruct for energy-scan experiments. Easier in BABAR due to ISR boost

$\operatorname{BABAR}\left(\sigma_{\text {syst }}=0.7 \%\right)$ higher by 5.1% than CMD-2 $\left(\sigma_{\text {syst }}=2.2 \%\right)$, but 5.5% lower than CMD-3 ($\sigma_{\text {syst }}=2.2 \%$)
Overall difference of 11%, not covered by CMD- $2 / 3$ systematic uncertainties. Deterioration by factor of 2 of combined dataset due to local uncertainty rescaling

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}, \pi^{+} \pi^{-} \pi^{0} \pi^{0}$ contributions

The four pion channels contribute with 4.5% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 3.7% to its uncertainty-squared $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$channel pretty well known since long, but $\pi^{+} \pi^{-} \pi^{0} \pi^{0}$ challenging. Discrepancies in earlier data, but recent precise ($\sim 3.1 \%$ systematic) measurement from BABAR much improving

Compilation and combination: DHMZ, Davier 1612.02743 (2016)

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \geq 5 \pi$ contributions

$\geq 5 \pi$ channels (incl. $\eta \pi \pi$) contribute with 0.5% to $a_{\mu}^{\text {Had,LO }}$ and 1.5% to its uncertainty-squared
Also here, large improvement from BABAR ISR data, problems in older datasets

The $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{KK} \pi(\pi \pi)$ contributions (many charge combinations)

Past analyses suffered from missing final states that were estimated by symmetry arguments
Systematic measurement of exclusive processes by BABAR completes the KK π and (almost) all $\mathrm{KK} \pi \pi$ final states. Their sum contributes 0.5% to $a_{\mu}^{\mathrm{Had}, \mathrm{LO}}$ and 0.2% to uncertainty-squared

Charm resonance region (above D $\overline{\mathrm{D}}$ threshold)

3.7-5.0 GeV region contributes with 1.1% to $a_{\mu}^{\text {Had,LO }}$ and 0.8% to its uncertainty-squared Good agreement between measurements. Precision dominated by BES ($\left.\sigma_{\text {syst }} \sim 3.5 \%\right)$

Data, QCD and the big picture

Full compilation in numbers

DHMZ, arXiv:1908.00921 (2019)
Legend: First error statistical, second channel-specific systematic, third common systematic (correlated) For $R_{\text {QCD }}$, uncertainties are due to: α_{S}, NNNLO truncation, resummation (FOPT vs. CIPT), quark masses

Channel	$a_{\mu}^{\mathrm{had,LO}}\left[10^{-10}\right]$	Channel	$a_{\mu}^{\text {had,LO }}\left[10^{-10}\right]$
$\pi^{0} \gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$	$K^{+} K^{-}$	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$
$\eta \gamma$	$0.65 \pm 0.02 \pm 0.01 \pm 0.01$	$K_{S} K_{L}$	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$
$\pi^{+} \pi^{-}$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$	$\phi($ non $-K \bar{K}, 3 \pi, \pi \gamma, \eta \gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$
$\pi^{+} \pi^{-} \pi^{0}$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	$K \bar{K} \pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$
$2 \pi^{+} 2 \pi^{-}$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$K \bar{K} 2 \pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$
$\pi^{+} \pi^{-} 2 \pi^{0}$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$K \bar{K} \omega$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$
$2 \pi^{+} 2 \pi^{-} \pi^{0}$ (η excl.)	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$\eta \phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$
$\pi^{+} \pi^{-} 3 \pi^{0}$ (η excl.)	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$\eta K \bar{K}($ non ϕ)	$0.01 \pm 0.01 \pm 0.01 \pm 0.00$
$3 \pi^{+} 3 \pi^{-}$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	$\omega 3 \pi\left(\omega \rightarrow \pi^{0} \gamma\right)$	$0.06 \pm 0.01 \pm 0.01 \pm 0.01$
$2 \pi^{+} 2 \pi^{-} 2 \pi^{0}$ (η excl.)	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$7 \pi\left(3 \pi^{+} 3 \pi^{-} \pi^{0}+\right.$ estimate $)$	$0.02 \pm 0.00 \pm 0.01 \pm 0.00$
$\pi^{+} \pi^{-} 4 \pi^{0}$ (η excl., isospin)	$0.08 \pm 0.01 \pm 0.08 \pm 0.00$		
$\eta \pi^{+} \pi^{-}$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	J / ψ (BW integral) $\psi(2 S)$ (BW integral)	$\begin{aligned} & 6.28 \pm 0.07 \\ & 1.57 \pm 0.03 \end{aligned}$
$\eta \omega$	$0.35 \pm 0.01 \pm 0.02 \pm 0.01$		
$\eta \pi^{+} \pi^{-} \pi^{0}($ non $-\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	R data $[3.7-5.0] \mathrm{GeV}$	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$
$\eta 2 \pi^{+} 2 \pi^{-}$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$		
$\omega \eta \pi^{0}$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$R_{\mathrm{QCD}}[1.8-3.7 \mathrm{GeV}]_{u d s}$ $R_{\mathrm{QCD}}[5.0-9.3 \mathrm{GeV}]$	$33.45 \pm 0.28 \pm 0.65_{\text {dual }}$ $6.86+0.04$
$\omega \pi^{0}\left(\omega \rightarrow \pi^{0} \gamma\right)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$R_{\mathrm{QCD}}[5.0-9.3 \mathrm{GeV}]_{u d s c}$ $R_{\mathrm{QCD}}[9.3-12.0 \mathrm{GeV}]$	$\begin{aligned} & 6.86 \pm 0.04 \\ & 1.21 \pm 0.01 \end{aligned}$
$\omega 2 \pi\left(\omega \rightarrow \pi^{0} \gamma\right)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$	$R_{\mathrm{QCD}}[12.0-40.0 \mathrm{GeV}]_{u d s c b}$	1.64 ± 0.00
ω (non-3 $\pi . \pi \gamma . n \gamma$)	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$R_{\mathrm{QCD}}[>40.0 \mathrm{GeV}]_{u d s c b}$	0.16 ± 0.00
		$R_{\mathrm{QCD}}[>40.0 \mathrm{GeV}]_{t}$	0.00 ± 0.00

$$
a_{\mu}^{\mathrm{Had}, \mathrm{LO}}=693.9 \pm 1.0_{\text {stat }} \pm 3.8_{\text {syst }} \pm 0.1_{\psi} \pm 0.7_{\mathrm{QCD}}=693.9 \pm 4.0
$$

Higher order hadronic terms

NLO two-point correlation contributions to $a_{\mu}^{\text {Had,NLO }}$ can be computed akin to the LO part via (a sum of) dispersion relations

$$
\begin{aligned}
& a_{\mu}^{\mathrm{Had}, \mathrm{NLO}(i)}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K^{(i)}(s)}{s} R(s) \\
\Rightarrow & a_{\mu}^{\mathrm{Had}, \mathrm{NLO}}=(-9.87 \pm 0.09) \cdot 10^{-10}
\end{aligned}
$$

Each diagram corresponds to specific kernel function $K^{(\lambda)}$

Kurz et al, 1511.08222.
Kurz et al, 1511.08222.
NNLO two-point function corrections have also been computed: $a_{\mu}^{\text {Had,NNLO }}=(1.24 \pm 0.01) \cdot 10^{-10}$

Higher order hadronic terms

NLO two-point correlation contributions to $a_{\mu}^{\text {Had,NLO }}$ can be computed akin to the LO part via (a sum of) dispersion relations

$$
\begin{aligned}
& a_{\mu}^{\mathrm{Had}, \mathrm{NLO}(i)}=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} d s \frac{K^{(i)}(s)}{s} R(s) \\
\Rightarrow & a_{\mu}^{\mathrm{Had}, \mathrm{NLO}}=(-9.87 \pm 0.09) \cdot 10^{-10}
\end{aligned}
$$

Each diagram corresponds to specific kernel function $K^{(\lambda)}$

Kurz et al, 1511.08222.
NNLO two-point function corrections have also been computed: $a_{\mu}^{\text {Had,NNLO }}=(1.24 \pm 0.01) \cdot 10^{-10}$

The four-point hadronic LBL scattering contribution, however, cannot be obtained this way and models are used instead

Calculation uses hadronic models with $\pi^{0}, \eta^{(\cdot)}, \ldots$ pole insertions and $\pi^{ \pm}$loops in the large- N_{C} limit (Lattice QCD offers promising alternative)
$\Rightarrow a_{\mu}^{\mathrm{Had}, \mathrm{LBL}}=(10.5 \pm 2.6) \cdot 10^{-10}$

Muon $g-2$ summary

Summing all contributions [$\cdot 10^{-10}$]:

$$
\begin{aligned}
a_{\mu}^{\mathrm{QED}} & =11658471.892 \pm 0.003 \\
a_{\mu}^{\mathrm{EW}} & =15.36 \pm 0.10 \\
a_{\mu}^{\text {Had,LO }} & =693.9 \pm 4.0 \\
a_{\mu}^{\text {Had,NLO }} & =-9.87 \pm 0.09 \\
a_{\mu}^{\text {Had,NNLO }} & =1.24 \pm 0.01 \\
a_{\mu}^{\text {Had,LBL }} & =10.5 \pm 2.6
\end{aligned}
$$

$$
a_{\mu}^{S M}=(11659183.0 \pm 4.8) \cdot 10^{-10}
$$

$$
\Delta a_{\mu}=a_{\mu}^{\mathrm{Exp}}-a_{\mu}^{\mathrm{SM}}=26.1 \pm 6.3_{\mathrm{exp}} \pm 4.8_{\mathrm{SM}}\left(\pm 7.9_{\mathrm{tot}}\right) \rightarrow 3.3 \sigma \text { level }
$$

Compilation of contributions to $\alpha_{Q E D}\left(m_{z}\right)$

Legend: First error statistical, second channel-specific systematic, third common systematic (correlated) For $R_{\text {QCD }}$, uncertainties are due to: α_{S}, NNNLO truncation, resummation (FOPT vs. CIPT), quark masses

Channel	$\Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)\left[10^{-4}\right]$
$\pi^{0} \gamma$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$
$\eta \gamma$	$0.08 \pm 0.00 \pm 0.00 \pm 0.00$
$\pi^{+} \pi^{-}$	$34.49 \pm 0.06 \pm 0.20 \pm 0.04$
$\pi^{+} \pi^{-} \pi^{0}$	$4.60 \pm 0.04 \pm 0.11 \pm 0.08$
$2 \pi^{+} 2 \pi^{-}$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$
$\pi^{+} \pi^{-} 2 \pi^{0}$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$
$2 \pi^{+} 2 \pi^{-} \pi^{0}(\eta$ excl. $)$	$0.21 \pm 0.01 \pm 0.02 \pm 0.01$
$\pi^{+} \pi^{-} 3 \pi^{0}(\eta$ excl. $)$	$0.15 \pm 0.01 \pm 0.03 \pm 0.00$
$3 \pi^{+} 3 \pi^{-}$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$
$2 \pi^{+} 2 \pi^{-} 2 \pi^{0}(\eta$ excl. $)$	$0.25 \pm 0.02 \pm 0.02 \pm 0.05$
$\pi^{+} \pi^{-} 4 \pi^{0}(\eta$ excl., isospin $)$	$0.03 \pm 0.00 \pm 0.03 \pm 0.00$
$\eta \pi^{+} \pi^{-}$	$0.35 \pm 0.01 \pm 0.01 \pm 0.01$
$\eta \omega$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$
$\eta \pi^{+} \pi^{-} \pi^{0}($ non- $\omega, \phi)$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$
$\eta 2 \pi^{+} 2 \pi^{-}$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega \eta \pi^{0}$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega \pi^{0}\left(\omega \rightarrow \pi \pi^{0} \gamma\right)$	$0.20 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega 2 \pi\left(\omega \rightarrow \pi \pi^{0} \gamma\right)$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega($ non $3 \pi . \pi \gamma . n \gamma)$.	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$

Channel	$\Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)\left[10^{-4}\right]$
$K^{+} K^{-}$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$
$K_{S} K_{L}$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$
$\phi($ non $-K \bar{K}, 3 \pi, \pi \gamma, \eta \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$K \overline{\bar{K}} \pi$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$
$K \bar{K} 2 \pi$	$0.30 \pm 0.01 \pm 0.02 \pm 0.00$
$K \bar{K} \omega$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$
$\eta \phi$	$0.11 \pm 0.00 \pm 0.00 \pm 0.00$
$\eta K \bar{K}($ non $-\phi)$	$0.00 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega 3 \pi\left(\omega \rightarrow \pi^{0} \gamma\right)$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$7 \pi\left(3 \pi^{+} 3 \pi^{-} \pi^{0}+\right.$ estimate $)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$J / \psi(\mathrm{BW}$ integral)	7.09 ± 0.08
$\psi(2 S)(\mathrm{BW}$ integral $)$	2.50 ± 0.04
R data $[3.7-5.0] \mathrm{GeV}$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$
$R_{\mathrm{QCD}}[1.8-3.7 \mathrm{GeV}]_{u d s}$	$24.27 \pm 0.18 \pm 0.28_{\text {dual }}$
$R_{\mathrm{QCD}}[5.0-9.3 \mathrm{GeV}]_{u d s c}$	34.89 ± 0.17
$R_{\mathrm{QCD}}[9.3-12.0 \mathrm{GeV}]_{\text {udscb }}$	15.56 ± 0.04
$R_{\mathrm{QCD}}[12.0-40.0 \mathrm{GeV}]_{\text {udscb }}$	77.94 ± 0.12
$R_{\mathrm{QCD}}[>40.0 \mathrm{GeV}]_{\text {udscb }}$	42.70 ± 0.06
$R_{\mathrm{QCD}}[>40.0 \mathrm{GeV}]_{t}$	-0.72 ± 0.01

$$
\Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)=\left(275.43 \pm 0.15_{\text {stat }} \pm 0.76_{\text {syst }} \pm 0.09_{\psi} \pm 0.55_{\mathrm{QCD}}\right) \cdot 10^{-4}=(275.4 \pm 1.0) \cdot 10^{-4}
$$

Summing all contributions

$$
\begin{aligned}
& \Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)=(275.4 \pm 1.0) \cdot 10^{-4} \quad \text { DHMZ, axiv. } 1908.00921 \text { (2019) } \\
& \Delta \alpha_{\text {lep }}\left(m_{Z}^{2}\right)=(314.979 \pm 0.002) \cdot 10^{-4} \\
& \text { 4-loop QED, Sturm, arXiv: } 1305.0581 \text { (2013) } \\
& \alpha_{\text {QED }}\left(m_{Z}^{2}\right)=\frac{\alpha_{\text {QED }}(0)}{1-\Delta \alpha_{\text {lep }}\left(m_{Z}^{2}\right)-\Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)}=1 /(128.946 \pm 0.013)
\end{aligned}
$$

The uncertainty on $\Delta \alpha_{\text {had }}\left(m_{Z}^{2}\right)$ is (currently) subdominant in global electroweak fit, eg:

$$
\begin{aligned}
M_{W} & =80.3535 \pm 0.0027_{m_{t}} \pm 0.0030_{\delta_{\text {theo }} m_{t}} \pm 0.0026_{M_{Z}} \pm 0.0026_{\alpha_{S}} \\
& =80.354 \pm 0.007_{\text {tot }} \mathrm{GeV} \text { (to be compared with exp. uncertainty of } 13 \mathrm{MeV} \text {) }
\end{aligned}
$$

Conclusions

Long standing >3 sigma discrepancy between data and SM on a_{μ}

Huge improvement in experimental data during the last ~20 years, but to match the precision of the new Fermilab muon g-2 experiment further progress is needed on the SM calculation of the hadronic contribution

For LO:

- BABAR-KLOE discrepancy in $\pi^{+} \pi^{-}$channel unresolved, limiting improvement of LO evaluation: $\sigma\left(a_{\mu}^{\mathrm{Had}, \mathrm{LO}}\right)\left[\pi^{+} \pi^{-}\right]=3.4 \cdot 10^{-10}$
New $\pi^{+} \pi^{-}$data from SND \& CMD-3 expected (systematic error $<0.5 \%$ possible), also new BABAR analysis underway
- The $K^{+} K^{-}$data data discrepancy between CMD-2/3/BABAR needs to be understood: $\sigma\left(a_{\mu}^{\text {Had,LO }}\right)\left[K^{+} K^{-}\right]=0.44 \cdot 10^{-10}$
- Also $\pi^{+} \pi^{-} \pi^{0}$ contribution needs more precision: $\sigma\left(a_{\mu}^{\mathrm{Had}, \mathrm{LO}}\right)\left[\pi^{+} \pi^{-} \pi^{0}\right]=1.5 \cdot 10^{-10}$

Beyond LO, a robust estimate (and uncertainty) of the LBLS contribution is most crucial

Conclusions

Accurate, minute measurement seems to the non-scientific imagination, a less lofty and dignified work than looking for something new.

But [many of] the grandest discoveries of science have been but the rewards of accurate measurement and patient long-continued labour in the minute sifting of numerical results.

Said to originate from: William Thomson Kelvin
2 Aug 1871 in a speech to the British Association for the Advancement of Science

Lord Kelvin

Additional slides

Measuring the muon $g-2$

The BNL muon g-2 experiment (E821),

Magnetic moment

The magnetic dipole moment of a particle can be observed from its motion in a magnetic field
Intrinsic magnetic moment discovered in Stern-Gerlach experiment, 1922:

\rightarrow atoms have intrinsic and quantised angular momentum
Uhlenbeck \& Goudsmit postulated in 1925 that electrons have spin angular momentum with magnetic dipole moment: $e / 2 m_{e}$ (Bohr magneton)

Measuring the muon $g-2$

Analogous approach as for electron: search for discrepancy between the frequencies of cyclotron motion and spin precession

For polarised muons moving in a uniform B field (perp. to muon spin and orbit plane), and focused in an electric quadrupole field, the observed difference between spin precession and cyclotron frequency (= "anomalous frequency"), ignoring $\mu \mathrm{EDM}$, is:

$$
\vec{\omega}_{a} \equiv \vec{\omega}_{s}-\vec{\omega}_{c}=\frac{e}{m_{\mu} c}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right) \vec{\beta} \times \vec{E}\right] \quad \begin{aligned}
& \text { With electrostatic focusing, no gradient } \\
& B \text { field focusing needed so that } B \text { can } \\
& \text { be made as uniform as possible! }
\end{aligned}
$$

The Efield dependence is eliminated at the "magic γ ": $\gamma=29.3 \rightarrow p_{\mu}=3.09 \mathrm{GeV}$
The experiment measures $\left(g_{\mu}-2\right) / 2$ directly

Exploit muon properties in experiment

1. Parity violation polarizes muons in pion decay Pions from proton-nucleon collision (AGS)
2. Anomalous frequency proportional to a_{μ}

$$
\vec{\omega}_{a}=\frac{e}{m_{\mu} c}\left[a_{\mu} \vec{B}-\left(a_{\mu}-\frac{1}{\gamma^{2}-1}\right) \vec{\beta} \times \vec{E}\right] \approx \frac{e}{m_{\mu} c} a_{\mu} \vec{B}
$$

4. Again parity violation in muon decay

$$
\mu_{\text {polarised }}^{-} \longrightarrow e^{-}+\bar{v}_{e}+v_{\mu}
$$

BNL E821: muon g - 2 experiment

- A 24 GeV proton beam (AGS) incident on a target produces large number of pions that decay to muons
- The 3.1 GeV muon beam (relativistically enhanced lifetime of $64 \mu \mathrm{~s}$) is injected into a 7.1 m radius ring with 1.4 T vertical magnetic field, which produces cyclotron motion matching the ring radius
- Electrostatic focusing of the beam is provided by a series of quadrupole lenses around the ring.

- Decay electrons (correlated with μ spin precession) counted vs. time in calorimeters inside ring $\left(\rightarrow \omega_{\mathrm{a}}\right)$
- Precise measurement of ω_{a} and B allows to extract a_{μ}

BNL E821: muon g - 2 experiment

E821 ($\mathrm{g}-2$), hep-ex/0202024

Observed positron rate in successive 100μ s periods ~150 polarisation rotations during measurement period

Anomalous frequency:

$$
\omega_{a} \approx \frac{e}{m_{\mu} c} a_{\mu} B
$$

obtained from time-dependent fit to electron counts (for given energy E)
$N(t)=N_{0} e^{-t / \gamma \tau}\left[1-A \cdot \sin \left(\omega_{a} t-\phi\right)\right]$
In blue: fit parameters

Total systematic uncertainty on $\omega_{a}: 0.2-0.3 \mathrm{ppm}$, with largest contributors:

- pileup (~in-time arrival of two low-Eelectrons)
- muon losses
- coherent betatron oscillation (muon loss and CBO amplitude [frequency: 0.48 MHz , compared to $\omega_{a}: 0.23 \mathrm{MHz}$] are part of fit)
- calorimeter gain changes

BNL E821: muon g-2 experiment

The B-field is mapped with 17 NMR probes mounted on a trolley pulled through the beampipe

Azimuthal average for one trolley run. Contours are 0.5 ppm field differences.
B-field is proportional to free proton precession frequency ω_{p} ($B=\omega_{p} / \mu_{p}$) measured by NMR probes so one can write:

$$
\begin{aligned}
a_{\mu}=\frac{\frac{e}{m_{\mu} c} a_{\mu} B}{\frac{e}{m_{\mu} c} \frac{g}{2} B-\frac{e}{m_{\mu} c} a_{\mu} B} & =\frac{\omega_{a}}{\omega_{L}-\omega_{a}} \\
& =\frac{\omega_{a} / \omega_{p}}{\omega_{L} / \omega_{p}-\omega_{a} / \omega_{p}}=\frac{\mathcal{R}}{\lambda-\mathcal{R}}
\end{aligned}
$$

where: ω_{L} is Larmor frequency of muon, \mathcal{R} measured by E821, and the μ-to- p magnetic moment ratio is: $\lambda=3.183345$ 107(84)
(λ is determined from muonium ($\mu^{+} e^{-}$) hyperfine level structure measurements)
\rightarrow Systematic uncertainty on ω_{p} between 0.2 and 0.4 ppm ω_{a} and ω_{p} measured independently in blind analyses \rightarrow doubly blind experiment!

Digression: Running of $\alpha_{\text {Qed }}\left(\mathrm{M}_{\mathrm{z}}\right)$

Photon vacuum polarisation function $\Pi_{\gamma}\left(q^{2}\right)$

Only vacuum polarisation "screens" electron charge

$$
i \int d^{4} x e^{i q x}\langle 0| T J_{\mathrm{em}}^{\mu}(x)\left(J_{\mathrm{em}}^{\nu}(0)\right)^{\dagger}|0\rangle=-\left(g^{\mu v} q^{2}-q^{\mu} q^{\nu}\right) \Pi_{r}\left(q^{2}\right)
$$

$$
\alpha(s)=\frac{\alpha(0)}{1-\Delta \alpha(s)} \quad \text { with: } \quad \Delta \alpha(s)=-4 \pi \alpha \operatorname{Re}\left[\Pi_{\gamma}(s)-\Pi_{\gamma}(0)\right]
$$

split into leptonic and hadronic contribution

Leptonic $\Delta \alpha_{\text {lep }}(\mathrm{s})$ calculable in QED (known to 3-loops). However, quark loops are modified by longdistance hadronic physics, cannot be calculated with perturbative QCD

$$
\text { Born: } \sigma^{(0)}(s)=\sigma(s)(\alpha / \alpha(s))^{2}
$$

Way out: Optical Theorem (unitarity)
and the subtracted dispersion
relation of $\Pi_{\gamma}\left(\mathrm{q}^{2}\right)$ (analyticity)

$$
12 \pi \operatorname{lm} \Pi_{\gamma}(s)=\frac{\sigma^{(0)}\left[e^{+} e^{-} \rightarrow \text { hadrons }\right]}{\sigma^{(0)}\left[e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right]} \equiv R(s)
$$

$$
\Pi_{\gamma}(s)-\Pi_{\gamma}(0)=\frac{s}{\pi} \int_{0}^{\infty} d s^{\prime} \frac{\operatorname{Im} \Pi_{\gamma}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)-i \varepsilon} \quad \| \quad \Delta \alpha_{\text {had }}(s)=-\frac{\alpha s}{3 \pi} \operatorname{Re} \int_{0}^{\infty} d s^{\prime} \frac{R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)-i \varepsilon}
$$

Precise knowledge $\alpha\left(m_{z}\right)$ important ingredient to global electroweak fit
$\Delta \alpha_{\text {had }}(\mathrm{s})$ uncertainty contributes 1.8 MeV to m_{w} SM prediction (total error of SM: 8 MeV), but dominant uncertainty to $\sin ^{2} \theta_{\text {eff }}(S M)$

Digression: Can it be real?

The absolute size of the effect $\Delta a_{\mu}=27.4 \pm 7.6$ is large compared to EW contribution of 15.4 (but some cancellation among bosons in latter contribution)

- Generic decoupling new physics predicts: $a_{\mu}^{\mathrm{NP}} \sim \mathrm{C} \cdot\left(\frac{m_{\mu}}{m_{\mathrm{NP}}}\right)^{2}$ [Jegerlehner, Nytfeler, 0902.3360]

Here: $m_{\mathrm{NP}} \sim 2 \mathrm{TeV}$ for $C=1, m_{\mathrm{NP}} \sim 100 \mathrm{GeV}$ for $\mathrm{C}=\frac{\alpha}{\pi}$ (natural strength), $m_{\mathrm{NP}} \sim 5 \mathrm{GeV}$ for $C=\left(\frac{\alpha}{\pi}\right)^{2}$

- Generic SUSY predicts: $a_{\mu}^{\text {SUSY }} \sim \operatorname{sign}(\mu) \cdot\left(13 \cdot 10^{-10}\right) \cdot\left(\frac{100 \mathrm{GeV}}{m_{\mathrm{SUSY}}}\right)^{2} \cdot \tan \beta$
- In constrained SUSY models, Δa_{μ} cannot be reconciled with the non-observation of strongly produced sparticles at the LHC [de Vries et al, MasterCode, 1504.03260]
- However, general models such as the pMSSM can still accommodate Δa_{μ} with light neutralinos, charginos and sleptons, not yet excluded by the LHC
- A "dark photon" (γ^{\prime}) coupling to SM via mixing with photon may give: $a_{\mu}^{\gamma^{\prime}} \sim \frac{\alpha}{2 \pi} \varepsilon F\left(m_{\gamma^{\prime}}\right)$
- Δa_{μ} is accommodated for coupling strength $\varepsilon \sim 0.1-0.2 \%$ and mass $m_{\gamma^{\prime}} \sim 10-100 \mathrm{MeV}$
- Searches for a dark photon have been performed (so far negative) or are planned at colliders (LHC, B-factories, KLOE, ...) and fixed target experiments (Jefferson Lab, MAMI, ...)

