Hadronic vacuum polarization contributions to the muon g–2 and to $\alpha_{\text{QED}}(m_z)$

Andreas Hoecker (CERN)

Ultimate Precision at Hadron Colliders Workshop, Paris-Saclay, Nov 29, 2019

Work in collaboration with M. Davier, B. Malaescu, Z. Zhang (DHMZ) [arXiv:1908.00921 (2019)]

Lepton g factor

Dirac's relativistic theory of the electron (1928) naturally accounted for quantized particle spin and described elementary spin-1/2 particles

In the classical limit, one finds the Pauli equation with magnetic moment:

 $\vec{\mu} = -g_{\ell} \frac{e}{2m_{\ell}} \vec{S}$, with $|g_{\ell}| = 2$ the gyromagnetic factor (and radius $R_{\ell} = 0$, ie, elementary !)

Where $g_p/g_e = 2.8$ hinted that the proton is not elementary

Today, everyone knows that the proton is composite, and leptons are point-like particles ...

But – are they really ?

 \rightarrow Precise g_{ℓ} measurement and prediction are key !

BNL-E821 final result (1997-2001 data):

 $a_{\mu} = \frac{g_{\mu} - 2}{2} = 11\ 659\ 209.1\ (5.4)(3.3)\ \cdot\ 10^{-10}$

(0.54 ppm precision, assumes CPT invariance) [Muon g–2, E821, hep-ex/0602035 with updated value for λ]

Agreement between $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$ results

Evolution of experimental sensitivity:

[See, eg, Miller, de Rafael, Roberts, hep-ph/0703049]

Experiment	Beam	Measurement	$\delta a_{\mu}/a_{\mu}$	Required theor. terms	
Columbia-Nevis ('57)	μ^+	$g = 2.00 \ (\sigma = 0.10)$		<i>g</i> = 2	Muon behaves
Columbia-Nevis ('60)	μ^+	0.001 13 (+16)(-12)	12 %	α/2π	electron
CERN 1 (SC, 1961)	μ^+	0.001 145 (22)	1.9 %	α/2π	
CERN 1 (SC, 1962)	μ^+	0.001 162 (5)	0.43 %	$(\alpha/\pi)^2$	
CERN 2 (PS, 1968)	μ^+	0.001 166 16 (31)	266 ppm	$(\alpha/\pi)^3$	
CERN 3 (PS, 1979)	μ^{\pm}	0.001 165 923 0 (84)	7.2 ppm	$(\alpha/\pi)^3$ + had (60 ppm)	Electrostatic
BNL E821 (1997-2001)	μ^{\pm}	0.001 165 920 91 (63)	0.54 ppm	$(\alpha/\pi)^4$ + had + weak + ?	magic γ

The anomalous magnetic moment of the muon

Confronting Experiment with Theory

The Standard Model prediction of a_{μ} is traditionally decomposed in its main contributions:

$$a_{\mu}^{\text{SM}} = \frac{g_{\mu} - 2}{2} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{Had}}$$

of which the hadronic contribution has the largest uncertainty

Confronting Experiment with Theory

QED contribution

Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

[5-loop: Aoyama, Hayakawa, Kinoshita, Nio, 1205.5370 (2012)]

Using $\alpha^{-1} = 137.035\ 999\ 046\ (27)$ from a precise measurement* of $h/m_{Cs}\ (0.2\ ppb!)$, gives:

 $a_{\mu}^{\text{QED}} = 11\,658\,471.892(0.003)\cdot 10^{-10}$

with negligible uncertainty compared to experimental error of $6.3 \cdot 10^{-10}$

*From Parker et al., Science Vol. 360, Issue 6385, 191 (2018), reporting 2.4σ tension with α from electron g-2

Electroweak contribution

EW contribution involving *W*, *Z* or Higgs is suppressed at least by a factor: $\frac{\alpha}{\pi} \frac{m_{\mu}^2}{m_W^2} \approx 4 \cdot 10^{-9}$

The first loop gives: [Jackiw, Weinberg and others 1972]

$$a_{\mu}^{\text{EW},1-\text{loop}} = \frac{G_F m_{\mu}^2}{8\sqrt{2}\pi^2} \left[\frac{5}{3} + \frac{1}{3} (1 - 4\sin^2\theta_W)^2 + \mathcal{O}\left(\frac{m_{\mu}^2}{m_W^2}\right) + \mathcal{O}\left(\frac{m_{\mu}^2}{m_H^2}\right) \right] = 19.48 \cdot 10^{-10}$$

1-loop diagrams (some cancellation between *WZ* graphs)

2-loop diagrams (+ Higgs exchange)

Three-loop leading logarithms are found to be small ($\sim 10^{-12}$) [Degrassi, Giudice, hep-ph/9803384, and others]

Two-loop contribution surprisingly large due to large
$$\ln(m_Z/m_\mu)$$
: [Czarnecki, Krause, Marciano, 1995, and others]

$$a_{\mu}^{\text{EW},2-\text{loop}} = -4.12(0.10) \cdot 10^{-10}$$

 $\Rightarrow a_{\mu}^{\text{EW},1+2-\text{loop}} = 15.36(0.10) \cdot 10^{-10}$

Hadronic contribution

The dominant hadronic contribution and uncertainty stems from the lowest order contribution, $a_{\mu}^{\text{Had,LO}}$, which cannot be calculated from perturbative QCD as it is in the nonperturbative regime

Tools to approach low-energy QCD:

- 1. Lattice QCD (encouraging results, but precision is challenging; prediction of broad range of dispersion relations prior to $a_{\mu}^{Had,LO}$ needed to build confidence)
- 2. Effective QFT with hadrons such as chiral perturbation theory (limited validity range)
- 3. Hadronic models (hard to estimate robust uncertainties)
- 4. Dispersion relations and experimental data ...

Lowest-order hadronic contribution

The lowest-order hadronic contribution to a_{μ} can be obtained from a dispersion relation:

[Bouchiat, Michel, 1961]

Recent estimate (2019):

 $\Rightarrow a_{\mu}^{\text{Had,LO}} = 693.9(4.0) \cdot 10^{-10}$

[Davier-Hoecker-Malaescu-Zhang (DHMZ), 1908.00921 (2019)]

 \rightarrow dominant uncertainty in SM prediction

The hadronic contribution to the muon g-2

All hadronic contributions (LO, NLO, NNLO), except for light-by-light scattering (LBLS), can be obtained via dispersion relations using a mix of experimental data and perturbative QCD

The LBLS contribution is a four-point function that is currently estimated using meson models

The hadronic contribution to the muon g-2

In the following, all a_{μ} numbers are given in units of 10⁻¹⁰

Introduction

Long history of $a_{\mu}^{\text{Had,LO}}$ determinations involving theorists and experimentalists

$$a_{\mu}^{\text{Had,LO}} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \frac{K(s)}{s} R(s)$$

- Improvement mostly driven by better e⁺e⁻ → hadrons data (intermittently also hadronic tau decays used to improve over insufficient-quality low-mass e⁺e⁻ data)
- The understanding of the data and the treatment of their uncertainties improved over time
- Sum-rule tests allowed to expand the use of perturbative QCD to predict *R*(*s*)
- Fairly consistent picture reached

The challenge

The dispersion relation is solved using a mix of $e^+e^- \rightarrow$ had data and QCD, depending on \sqrt{s}

- [$\pi^0 \gamma 1.8 \text{ GeV}$]: sum of 32 exclusive channels; very few unmeasured channels are estimated using isospin symmetry
- [1.8 3.7 GeV]: agreement between data and QCD for *uds* continuum \rightarrow more precise QCD NNNLO used; J/ $\psi \& \psi$ (2S) resonances from Breit-Wigner forms
- [3.7 5.0 GeV]: open charm pair production: use of data
- [5.0 GeV ∞]: NNNLO QCD (assuming global quark-hadron duality to hold across *bb* threshold)

The combination of data with dominant systematic uncertainties and sometimes discrepancies among datasets is a delicate procedure that requires care. The stake (new physics or not in the muon g–2) is high, so a (reasonably) conservative approach is mandatory.

Our procedure is as follows:

- Quadratic interpolation (splines) of adjacent data points is performed for each experiment
- A **local combination** of the interpolations of different datasets is computed in bins of 1 MeV, or in narrower bins for the ω , ϕ resonances
- The test statistic for the local combination (conservatively) uses local information only, **avoiding constraints from potentially badly controlled long-range correlations** of systematic uncertainties
- Where data are locally inconsistent, the **uncertainty of the combination is rescaled following the PDG prescription**
- The uncertainties on the combined dataset and dispersion integral are computed using **pseudo**experiments generated taking into account all known correlations between datapoints and datasets
- The full procedure has been validated using pseudo-experiments with known truth

The dominant $e^+e^- \rightarrow \pi^+\pi^-$ contribution

 $e^+e^- \rightarrow \pi^+\pi^-$ contributes 73% to $a_\mu^{\text{Had,LO}}$ and 71% to total uncertainty-squared

Relative to uncertainty² due to guadratic addition

Many of the efforts in the last twenty years concentrated on that channel. Measurements dominated by systematic uncertainties

Three types of input data:

- Energy scans: CMD-2 ($\delta_{syst} \sim 0.8\%$), SND ($\delta_{syst} \sim 1.5\%$), + DM1, DM2, OLYA, TOF
- ISR-based measurements: BABAR $(\delta_{syst} \sim 0.5\%)$, BES-III $(\delta_{syst} \sim 0.9\%)$, KLOE $(\delta_{syst} \sim 0.8-1.4\%)$

 Hadronic tau decay data via isospin symmetry (CVC): ALEPH, OPAL, CLEO, Belle (δ_{syst-combined} ~ 0.7%),

The dominant $e^+e^- \rightarrow \pi^+\pi^-$ contribution

 $e^+e^- \rightarrow \pi^+\pi^-$ contributes 73% to $a_\mu^{\text{Had,LO}}$ and 71% to total uncertainty-squared

Many of the efforts in the last twenty years concentrated on that channel. Measurements dominated by **systematic uncertainties**

(in parentheses uncertainties for best measurements)

- Energy scan measurements (ex. CMD-2 / 0.8%): detection efficiency, radiative corrections (0.4%), beam energy (0.3%), ...
- ISR-based measurements (ex. BABAR / >0.5%): pion identification (0.3%), $\mu^+\mu^-$ reference (0.4%), ...
- Tau data (ALEPH, 0.3% on normalisation): π^0 and photon reconstruction (0.2%), hadronic interactions (0.2%), isospin-violating effects \rightarrow not used anymore

Huge amount of precision data, but — with a close look — one notices issues...

Three types of input data:

Energy scans: CMD-2 ($\delta_{syst} \sim 0.8\%$), SND ($\delta_{syst} \sim 1.5\%$), + DM1, DM2, OLYA, TOF

Relative to uncertainty² due to guadratic addition

• ISR-based measurements: BABAR $(\delta_{syst} \sim 0.5\%)$, BES-III $(\delta_{syst} \sim 0.9\%)$, KLOE $(\delta_{syst} \sim 0.8-1.4\%)$

• Hadronic tau decay data via isospin symmetry (CVC): ALEPH, OPAL, CLEO, Belle ($\delta_{syst-combined} \sim 0.7\%$),

Compilation and combination: DHMZ, arXiv:1908.00921 (2019)

18

The dominant $e^+e^- \rightarrow \pi^+\pi^-$ contribution

Compilation and combination: DHMZ, arXiv:1908.00921 (2019)

19

The dominant $e^+e^- \rightarrow \pi^+\pi^-$ contribution — impact on a_μ

Comparison of results between 0.6–0.9 GeV for the various experiments.

In case of CMD-2 all available measurements have been combined using HVPTools. For KLOE the result from the public combination is displayed.

Removing from full combination BABAR or KLOE, respectively, leads to a difference of 5.6×10^{-10} , which (despite local error rescaling) is not covered by uncertainty of 2.1×10^{-10}

→ Add half of difference as additional uncertainty to $a_{\mu}[\pi^{+}\pi^{-}]$

Use phenomenological fit to supplement less precise data in the low-energy domain < 0.6 GeV

$$\sigma^{(0)}(e^+e^- \to \pi^+\pi^-) = \frac{\pi\alpha^2}{3s}\beta_0^3(s) \cdot |F_{\pi}^0(s)|^2 \cdot \text{FSR}(s)$$

Following approach of Hanhart et al, arXiv:1611.09359

Form factor expressed as unitary Breit-Wigner incl. $\rho - \omega$ mixing with 6 fit parameters

Fit performed using conservative diagonal test statistic to avoid biased central values. Parameter and integration uncertainties determined via pseudo-experiments taking into account all known correlations

The $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contribution

 ${\rm e^+e^-} \to \pi^+\pi^-\pi^0$ contributes with 6.6% to $a_\mu^{\rm Had,LO}$ and 19% to its uncertainty-squared

Good agreement among precision data (no BABAR data yet below 1.04 GeV)

The $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contribution

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contributes with 6.6% to $a_\mu^{\text{Had,LO}}$ and 19% to its uncertainty-squared

Good agreement among precision data (no BABAR data yet below 1.04 GeV)

The $e^+e^- \rightarrow K_S K_L$, K^+K^- contributions

 $e^+e^- \rightarrow K_S K_L$, K⁺K⁻ contribute to 5.1% to $a_\mu^{Had,LO}$ and 2.3% to its uncertainty-squared

Good consistency in $K_{\rm S}K_{\rm L}$ final state, newer data from CMD-3 and BABAR

BABAR reconstructed K_L directly via their nuclear interactions in the electromagnetic calorimeter

The $e^+e^- \rightarrow K_S K_L$, K^+K^- contributions

 $e^+e^- \rightarrow K_S K_L$, K⁺K⁻ contribute to 5.1% to $a_{\mu}^{Had,LO}$ and 2.3% to its uncertainty-squared

Problems in K⁺K⁻ channel, discrepancy between BABAR and SND (VEPP-2000) resolved with new SND dataset. Remaining discrepancy between BABAR vs CMD-2 vs CMD-3.

K+K- final state with low kaons at threshold hard to reconstruct for energy-scan experiments. Easier in BABAR due to ISR boost

BABAR ($\sigma_{syst} = 0.7\%$) higher by 5.1% than CMD-2 ($\sigma_{syst} = 2.2\%$), but 5.5% lower than CMD-3 ($\sigma_{syst} = 2.2\%$)

Overall difference of 11%, not covered by CMD-2/3 systematic uncertainties. Deterioration by factor of 2 of combined dataset due to local uncertainty rescaling

The $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$, $\pi^+\pi^-\pi^0\pi^0$ contributions

The four pion channels contribute with 4.5% to $a_{\mu}^{\rm Had,LO}$ and 3.7% to its uncertainty-squared

 $\pi^+\pi^-\pi^+\pi^-$ channel pretty well known since long, but $\pi^+\pi^-\pi^0\pi^0$ challenging. Discrepancies in earlier data, but recent precise (~3.1% systematic) measurement from BABAR much improving

 $\geq 5\pi$ channels (incl. $\eta\pi\pi$) contribute with 0.5% to $a_{\mu}^{\text{Had,LO}}$ and 1.5% to its uncertainty-squared

Also here, large improvement from BABAR ISR data, problems in older datasets

The $e^+e^- \rightarrow KK \pi(\pi\pi)$ contributions (many charge combinations)

Past analyses suffered from missing final states that were estimated by symmetry arguments

Systematic measurement of exclusive processes by BABAR completes the KK π and (almost) all KK $\pi\pi$ final states. Their sum contributes 0.5% to $a_{\mu}^{\text{Had,LO}}$ and 0.2% to uncertainty-squared

Charm resonance region (above $D\overline{D}$ threshold)

3.7–5.0 GeV region contributes with 1.1% to $a_{\mu}^{\text{Had,LO}}$ and 0.8% to its uncertainty-squared

Good agreement between measurements. Precision dominated by BES ($\sigma_{syst} \sim 3.5\%$)

Data, QCD and the big picture

Full compilation in numbers

Legend: First error statistical, second channel-specific systematic, third common systematic (correlated) For R_{QCD} , uncertainties are due to: α_s , NNNLO truncation, resummation (FOPT vs. CIPT), quark masses

Channel	$a_{\mu}^{\rm had, LO} \ [10^{-10}]$	Channel	$a_{\mu}^{\text{had,LO}} [10^{-10}]$
$\pi^0\gamma$	$4.29 \pm 0.06 \pm 0.04 \pm 0.07$	K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$
$\eta\gamma$	$0.65\pm 0.02\pm 0.01\pm 0.01$	$K_S K_L$	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$
$\pi^+\pi^-$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$	$\phi \;(\mathrm{non}-K\overline{K},3\pi,\pi\gamma,\eta\gamma)$	$0.05\pm 0.00\pm 0.00\pm 0.00$
$\pi^+\pi^-\pi^0$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$
$2\pi^{+}2\pi^{-}$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$
$\pi^+\pi^-2\pi^0$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$K\overline{K}\omega$	$0.00\pm 0.00\pm 0.00\pm 0.00$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$
$\pi^+\pi^-3\pi^0~(\eta$ excl.)	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$\eta K \overline{K} \pmod{\phi}$	$0.01\pm 0.01\pm 0.01\pm 0.00$
$3\pi^{+}3\pi^{-}$	$0.11\pm 0.00\pm 0.01\pm 0.00$	$\omega 3\pi \ (\omega o \pi^0 \gamma)$	$0.06\pm 0.01\pm 0.01\pm 0.01$
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$7\pi (3\pi^+ 3\pi^- \pi^0 + \text{estimate})$	$0.02\pm 0.00\pm 0.01\pm 0.00$
$\pi^+\pi^-4\pi^0 \ (\eta \text{ excl., isospin})$	$0.08\pm 0.01\pm 0.08\pm 0.00$	I/a/ (DW integral)	6.29 ± 0.07
$\eta \pi^+ \pi^-$	$1.19\pm 0.02\pm 0.04\pm 0.02$	J/ψ (DW integral)	0.28 ± 0.07
$\eta\omega$	$0.35\pm 0.01\pm 0.02\pm 0.01$	$\psi(2S)$ (BW integral)	1.57 ± 0.05
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$R \mathrm{data} \left[3.7 - 5.0 \right] \mathrm{GeV}$	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$
$\eta 2\pi^+ 2\pi^-$	$0.02\pm 0.01\pm 0.00\pm 0.00$	$R_{\text{COD}} [1.8 - 3.7 \text{ GeV}]$	$33.45 \pm 0.28 \pm 0.65$
$\omega\eta\pi^0$	$0.06\pm 0.01\pm 0.01\pm 0.00$	$R_{\text{QCD}} \begin{bmatrix} 1.6 - 9.3 \text{ GeV} \end{bmatrix}_{uds}$	$53.45 \pm 0.28 \pm 0.03$ dual
$\omega \pi^0 \ (\omega o \pi^0 \gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$R_{QCD} [5.0 - 5.5 \text{ GeV}]_{udsc}$	0.00 ± 0.04
$\omega 2\pi \ (\omega o \pi^0 \gamma)$	$0.07\pm0.00\pm0.00\pm0.00$	$R_{QCD} [5.3 - 12.0 \text{ GeV}]_{udscb}$	1.21 ± 0.01 1.64 ± 0.00
$\omega (\text{non-}3\pi, \pi\gamma, n\gamma)_{\perp}$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$R_{\text{QCD}} [12.0 - 40.0 \text{ GeV}]_{udscb}$	1.04 ± 0.00 0.16 + 0.00
		$R_{\text{QCD}} > 40.0 \text{ GeV}_{\text{Judscb}}$	0.00 ± 0.00

$$a_{\mu}^{\text{Had,LO}} = 693.9 \pm 1.0_{\text{stat}} \pm 3.8_{\text{syst}} \pm 0.1_{\psi} \pm 0.7_{\text{QCD}} = 693.9 \pm 4.0$$

NLO two-point correlation contributions to $a_{\mu}^{\text{Had,NLO}}$ can be computed akin to the LO part via (a sum of) dispersion relations

$$a_{\mu}^{\mathrm{Had,NLO}(i)} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \, \frac{K^{(i)}(s)}{s} R(s)$$

Each diagram corresponds to specific kernel function $K^{(i)}$

 $\Rightarrow a_{\mu}^{\text{Had,NLO}} = (-9.87 \pm 0.09) \cdot 10^{-10}$

Kurz et al, 1511.08222.

NNLO two-point function corrections have also been computed: $a_{\mu}^{\text{Had,NNLO}} = (1.24 \pm 0.01) \cdot 10^{-10}$

NLO two-point correlation contributions to $a_{\mu}^{\text{Had,NLO}}$ can be computed akin to the LO part via (a sum of) dispersion relations

$$a_{\mu}^{\text{Had,NLO}(i)} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \int_{m_{\pi}^2}^{\infty} ds \, \frac{K^{(i)}(s)}{s} R(s)$$

$$\Rightarrow a_{\mu}^{\text{Had,NLO}} = (-9.87 \pm 0.09) \cdot 10^{-10}$$

 $\Rightarrow a_u^{\text{Had,LBL}} = (10.5 \pm 2.6) \cdot 10^{-10}$

Kurz et al, 1511.08222.

Each diagram corresponds to specific kernel function $K^{(i)}$

Kurz et al, 1511.08222

NNLO two-point function corrections have also been computed: $a_{\mu}^{\text{Had,NNLO}} = (1.24 \pm 0.01) \cdot 10^{-10}$

The four-point hadronic LBL scattering contribution, however, cannot be obtained this way and models are used instead

Calculation uses hadronic models with π^0 , $\eta^{(\prime)}$, ... pole insertions and π^{\pm} loops in the large- N_C limit (*Lattice QCD offers promising alternative*)

- Educated guess (other groups find smaller / larger uncertainty)

Prades, de Rafael, Vainshtein, 0901.0306

Muon g-2 summary

Summing all contributions [· 10⁻¹⁰]:

 $a_{\mu}^{\text{QED}} = 11\ 658\ 471.892 \pm 0.003$ $a_{\mu}^{\text{EW}} = 15.36 \pm 0.10$ $a_{\mu}^{\text{Had,LO}} = 693.9 \pm 4.0$ $a_{\mu}^{\text{Had,NLO}} = -9.87 \pm 0.09$ $a_{\mu}^{\text{Had,NLO}} = 1.24 \pm 0.01$ $a_{\mu}^{\text{Had,LBL}} = 10.5 \pm 2.6$ $a_{\mu}^{\text{SM}} = (11\ 659\ 183.0 \pm 4.8) \cdot 10^{-10}$

 $\Delta a_{\mu} = a_{\mu}^{\text{Exp}} - a_{\mu}^{\text{SM}} = 26.1 \pm 6.3_{\text{exp}} \pm 4.8_{\text{SM}} \ (\pm 7.9_{\text{tot}}) \rightarrow 3.3\sigma \text{ level}$

Legend: First error statistical, second channel-specific systematic, third common systematic (correlated) For R_{QCD} , uncertainties are due to: α_s , NNNLO truncation, resummation (FOPT vs. CIPT), quark masses

Channel	$\Delta lpha_{ m had}(m_Z^2) \; [10^{-4}]$	Channel	$\Delta \alpha_{ m had}(m_Z^2) \; [10^{-4}]$
$\overline{\pi^0\gamma}$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$	K^+K^-	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$
$\eta\gamma$	$0.08\pm 0.00\pm 0.00\pm 0.00$	$K_S K_L$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$
$\pi^+\pi^-$	$34.49 \pm 0.06 \pm 0.20 \pm 0.04$	$\phi \;(\mathrm{non}-K\overline{K},3\pi,\pi\gamma,\eta\gamma)$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\pi^+\pi^-\pi^0$	$4.60\pm 0.04\pm 0.11\pm 0.08$	$K\overline{K}\pi$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$
$2\pi^{+}2\pi^{-}$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$	$K\overline{K}2\pi$	$0.30 \pm 0.01 \pm 0.02 \pm 0.00$
$\pi^+\pi^-2\pi^0$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$	$K\overline{K}\omega$	$0.00\pm 0.00\pm 0.00\pm 0.00$
$2\pi^+ 2\pi^- \pi^0 \ (\eta \text{ excl.})$	$0.21 \pm 0.01 \pm 0.02 \pm 0.01$	$\eta\phi$	$0.11 \pm 0.00 \pm 0.00 \pm 0.00$
$\pi^+\pi^-3\pi^0 \ (\eta \text{ excl.})$	$0.15\pm 0.01\pm 0.03\pm 0.00$	$\eta K \overline{K} $ (non- ϕ)	$0.00\pm 0.00\pm 0.01\pm 0.00$
$3\pi^{+}3\pi^{-}$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$\omega 3\pi \ (\omega o \pi^0 \gamma)$	$0.02\pm 0.00\pm 0.00\pm 0.00$
$2\pi^+ 2\pi^- 2\pi^0 \ (\eta \text{ excl.})$	$0.25\pm 0.02\pm 0.02\pm 0.05$	$7\pi (3\pi^+ 3\pi^- \pi^0 + \text{estimate})$	$0.01\pm 0.00\pm 0.00\pm 0.00$
$\pi^+\pi^-4\pi^0 \ (\eta \text{ excl., isospin})$	$0.03 \pm 0.00 \pm 0.03 \pm 0.00$	I/a/ (DW integral)	7.00 + 0.02
$\eta \pi^+ \pi^-$	$0.35\pm 0.01\pm 0.01\pm 0.01$	J/ψ (DW integral)	7.09 ± 0.08
$\eta\omega$	$0.11\pm 0.00\pm 0.01\pm 0.00$	$\psi(2S)$ (BW integral)	2.30 ± 0.04
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.12\pm 0.01\pm 0.01\pm 0.01$	$R \operatorname{data} [3.7 - 5.0] \operatorname{GeV}$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$
$\eta 2\pi^+ 2\pi^-$	$0.01\pm 0.00\pm 0.00\pm 0.00$	$B_{\text{OCD}} \begin{bmatrix} 1 & 8 - 3 & 7 & \text{GeV} \end{bmatrix}$	$24.27 \pm 0.18 \pm 0.28$
$\omega\eta\pi^0$	$0.02\pm 0.00\pm 0.00\pm 0.00$	$R_{QCD} [1.0 - 0.3 \text{ GeV}]_{uds}$	$24.27 \pm 0.16 \pm 0.20$ dual 24.80 ± 0.17
$\omega \pi^0 \ (\omega o \pi^0 \gamma)$	$0.20 \pm 0.00 \pm 0.01 \pm 0.00$	$R_{\rm QCD} [5.0 - 5.5 \text{ GeV}]_{udsc}$	54.89 ± 0.17
$\omega 2\pi \ (\omega \to \pi^0 \gamma)$	$0.02\pm 0.00\pm 0.00\pm 0.00$	$R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$	15.56 ± 0.04
$\omega (\text{non-}3\pi.\pi\gamma.n\gamma)$	$0.00\pm 0.00\pm 0.00\pm 0.00$	$K_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$	77.94 ± 0.12
		$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	42.70 ± 0.06
		$R_{\rm QCD} [> 40.0 \ {\rm GeV}]_t$	-0.72 ± 0.01

 $\Delta \alpha_{\rm had}(m_Z^2) = \left(275.43 \pm 0.15_{\rm stat} \pm 0.76_{\rm syst} \pm 0.09_{\psi} \pm 0.55_{\rm QCD}\right) \cdot 10^{-4} = (275.4 \pm 1.0) \cdot 10^{-4}$

Summing all contributions

$$\Delta \alpha_{\rm had}(m_Z^2) = (275.4 \pm 1.0) \cdot 10^{-4} \qquad \text{DHMZ, arXiv:1908.00921 (2019)}$$

$$\Delta \alpha_{\rm lep}(m_Z^2) = (314.979 \pm 0.002) \cdot 10^{-4} \qquad \text{4-loop QED, Sturm, arXiv: 1305.0581 (2013)}$$

$$\alpha_{\text{QED}}(m_Z^2) = \frac{\alpha_{\text{QED}}(0)}{1 - \Delta \alpha_{\text{lep}}(m_Z^2) - \Delta \alpha_{had}(m_Z^2)} = 1/(128.946 \pm 0.013)$$

The uncertainty on $\Delta \alpha_{had}(m_Z^2)$ is (currently) subdominant in global electroweak fit, eg:

$$M_W = 80.3535 \pm 0.0027_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0026_{\alpha_S} \\ \pm 0.0024_{\Delta\alpha_{\text{had}}} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV},$$

 $= 80.354 \pm 0.007_{tot}~{
m GeV}$ (to be compared with exp. uncertainty of 13 MeV)

Gfitter Group, arXiv:1803.01853 (2018)

Conclusions

Long standing > 3 sigma discrepancy between data and SM on a_{μ}

Huge improvement in experimental data during the last ~20 years, but to match the precision of the new Fermilab muon g-2 experiment further progress is needed on the SM calculation of the hadronic contribution

For LO:

- BABAR-KLOE discrepancy in $\pi^+\pi^-$ channel unresolved, limiting improvement of LO evaluation: $\sigma(a_{\mu}^{\text{Had,LO}})[\pi^+\pi^-] = 3.4 \cdot 10^{-10}$ New $\pi^+\pi^-$ data from SND & CMD-3 expected (systematic error < 0.5% possible), also new BABAR analysis underway
- The K^+K^- data data discrepancy between CMD-2/3/BABAR needs to be understood: $\sigma(a_{\mu}^{\text{Had,LO}})[K^+K^-] = 0.44 \cdot 10^{-10}$
- Also $\pi^+\pi^-\pi^0$ contribution needs more precision: $\sigma(a_\mu^{\text{Had,LO}})[\pi^+\pi^-\pi^0] = 1.5 \cdot 10^{-10}$

Beyond LO, a robust estimate (and uncertainty) of the LBLS contribution is most crucial

Conclusions

Accurate, minute measurement seems to the non-scientific imagination, a less lofty and dignified work than looking for something new.

But [many of] the grandest discoveries of science have been but the rewards of accurate measurement and patient long-continued labour in the minute sifting of numerical results.

Said to originate from: William Thomson Kelvin

2 Aug 1871 in a speech to the British Association for the Advancement of Science

Lord Kelvin

Additional slides

Measuring the muon g-2

 $\sim \sim \sim$

The BNL muon g–2 experiment (E821), 1997–2001

Magnetic moment

The magnetic dipole moment of a particle can be observed from its motion in a magnetic field

Intrinsic magnetic moment discovered in Stern-Gerlach experiment, 1922:

 \rightarrow atoms have intrinsic and quantised angular momentum

Uhlenbeck & Goudsmit postulated in 1925 that electrons have spin angular momentum with magnetic dipole moment: $e/2m_e$ (Bohr magneton)

Measuring the muon g-2

Analogous approach as for electron: search for discrepancy between the frequencies of cyclotron motion and spin precession

For polarised muons moving in a uniform *B* field (perp. to muon spin and orbit plane), and focused in an electric quadrupole field, the observed difference between spin precession and cyclotron frequency (= "anomalous frequency"), ignoring μ EDM, is:

$$\vec{\omega}_{a} \equiv \vec{\omega}_{s} - \vec{\omega}_{c} = \frac{e}{m_{\mu}c} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right]$$
Motional magnetic field

With electrostatic focusing, no gradient *B* field focusing needed so that *B* can be made as uniform as possible !

 $\vec{\omega}_a$ Independent of muon momentum

The *E* field dependence is eliminated at the "magic γ ": $\gamma = 29.3 \rightarrow p_{\mu} = 3.09 \text{ GeV}$

The experiment measures $(g_{\mu} - 2)/2$ directly

[J. Bailey et al., NP B150, 1 (1979)]

Exploit muon properties in experiment

1. Parity violation polarizes muons in pion decay Pions from proton-nucleon collision (AGS)

2. Anomalous frequency proportional to a_{μ}

- 3. Magic γ : $\vec{\omega}_a = \frac{e}{m_{\mu}c} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right] \approx \frac{e}{m_{\mu}c} a_{\mu} \vec{B}$
- 4. Again parity violation in muon decay

 $\mu_{\rm polarised}^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

fast electron emitted in direction opposite to muon spin

 $\bar{\nu}_{\mu} \leftarrow \pi^- \rightarrow \mu_{\text{polarised}}^-$

spin orientation

BNL E821: muon g-2 experiment

- A 24 GeV proton beam (AGS) incident on a target produces large number of pions that decay to muons
- The 3.1 GeV muon beam (relativistically enhanced lifetime of 64 μs) is injected into a 7.1 m radius ring with 1.4 T vertical magnetic field, which produces cyclotron motion matching the ring radius
- Electrostatic focusing of the beam is provided by a series of quadrupole lenses around the ring.

- Decay electrons (correlated with μ spin precession) counted vs. time in calorimeters inside ring ($\rightarrow \omega_a$)
- Precise measurement of ω_a and *B* allows to extract a_{μ}

BNL E821: muon g-2 experiment

Observed positron rate in successive 100 µs periods ~150 polarisation rotations during measurement period

Anomalous frequency:

$$\omega_a \approx \frac{e}{m_\mu c} a_\mu B$$

obtained from time-dependent fit to electron counts (for given energy *E*)

$$N(t) = N_0 e^{-t/\gamma \tau} [1 - A \cdot \sin(\omega_a t - \phi)]$$

In blue: fit parameters

Total systematic uncertainty on ω_a : 0.2–0.3 ppm, with largest contributors:

- *pileup* (~in-time arrival of two low-*E* electrons)
- muon losses
- coherent betatron oscillation (muon loss and CBO amplitude [frequency: 0.48 MHz, compared to ω_a: 0.23 MHz] are part of fit)
- calorimeter gain changes

The B-field is mapped with 17 NMR probes mounted on a trolley pulled through the beampipe

Azimuthal average for one trolley run. Contours are 0.5 ppm field differences.

B-field is proportional to free proton precession frequency ω_p ($B = \omega_p / \mu_p$) measured by NMR probes so one can write:

$$a_{\mu} = \frac{\frac{e}{m_{\mu}c}a_{\mu}B}{\frac{e}{m_{\mu}c}\frac{g}{2}B - \frac{e}{m_{\mu}c}a_{\mu}B} = \frac{\omega_{a}}{\omega_{L} - \omega_{a}}$$
$$= \frac{\frac{\omega_{a}}{\omega_{L}}}{\frac{\omega_{L}}{\omega_{p}} - \frac{\omega_{a}}{\omega_{p}}} = \frac{\mathcal{R}}{\lambda - \mathcal{R}}$$

where: ω_L is Larmor frequency of muon, \mathcal{R} measured by E821, and the μ -to- ρ magnetic moment ratio is: $\lambda = 3.183 345 107(84)$ (λ is determined from muonium (μ +e-) hyperfine level structure measurements)

 \rightarrow Systematic uncertainty on ω_p between 0.2 and 0.4 ppm

 ω_a and ω_p measured independently in blind analyses \rightarrow doubly blind experiment!

Digression: Running of $\alpha_{QED}(M_Z)$

Photon vacuum polarisation function $\Pi_{\gamma}(q^2)$

$$i\int d^4x \ e^{iqx} \left\langle 0 \left| T J^{\mu}_{\text{em}}(x) \left(J^{\nu}_{\text{em}}(0) \right)^{\dagger} \right| 0 \right\rangle = - \left(g^{\mu\nu} q^2 - q^{\mu} q^{\nu} \right) \prod_{\gamma} (q^2)$$

Only vacuum polarisation "screens" electron charge $\alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha(s)}$

with:
$$\Delta \alpha(s)$$

$$\alpha(s) = -4\pi\alpha \operatorname{Re}\left[\prod_{\gamma}(s) - \prod_{\gamma}(0)\right]$$

split into leptonic and hadronic contribution

Born: $\sigma^{(0)}(s) = \sigma(s)(\alpha/\alpha(s))^2$

Leptonic $\Delta \alpha_{lep}(s)$ calculable in QED (known to 3-loops). However, quark loops are modified by longdistance hadronic physics, cannot be calculated with perturbative QCD

Way out: Optical Theorem (unitarity)
and the subtracted dispersion
relation of
$$\Pi_{\gamma}(q^2)$$
 (analyticity)

$$\Pi_{\gamma}(s) - \Pi_{\gamma}(0) = \frac{s}{\pi} \int_{0}^{\infty} ds' \frac{\text{Im} \Pi_{\gamma}(s')}{s'(s'-s) - i\varepsilon} \qquad \text{Acc}_{had}(s) = -\frac{\alpha s}{3\pi} \text{Re} \int_{0}^{\infty} ds' \frac{R(s')}{s'(s'-s) - i\varepsilon}$$

Precise knowledge $\alpha(m_Z)$ important ingredient to global electroweak fit

 $\Delta \alpha_{had}(s)$ uncertainty contributes 1.8 MeV to m_W SM prediction (total error of SM: 8 MeV), but dominant uncertainty to $\sin^2 \theta_{eff}$ (SM)

Digression: Can it be real?

The absolute size of the effect $\Delta a_{\mu} = 27.4 \pm 7.6$ is large compared to EW contribution of 15.4 (but some cancellation among bosons in latter contribution)

• Generic decoupling new physics predicts: $a_{\mu}^{\text{NP}} \sim \text{C} \cdot \left(\frac{m_{\mu}}{m_{\text{NP}}}\right)^2$ [Jegerlehner, Nyffeler, 0902.3360]

Here: $m_{\rm NP} \sim 2$ TeV for C = 1, $m_{\rm NP} \sim 100$ GeV for $C = \frac{\alpha}{\pi}$ (natural strength), $m_{\rm NP} \sim 5$ GeV for $C = \left(\frac{\alpha}{\pi}\right)^2$

- Generic SUSY predicts: $a_{\mu}^{\text{SUSY}} \sim \text{sign}(\mu) \cdot (13 \cdot 10^{-10}) \cdot \left(\frac{100 \text{ GeV}}{m_{\text{SUSY}}}\right)^2 \cdot \tan\beta$
 - In constrained SUSY models, Δa_{μ} cannot be reconciled with the non-observation of strongly produced sparticles at the LHC [de Vries et al, MasterCode, 1504.03260]
 - However, general models such as the pMSSM can still accommodate Δa_{μ} with light neutralinos, charginos and sleptons, not yet excluded by the LHC
- A "dark photon" (γ') coupling to SM via mixing with photon may give: $a_{\mu}^{\gamma'} \sim \frac{\alpha}{2\pi} \varepsilon F(m_{\gamma'})$
 - Δa_{μ} is accommodated for coupling strength $\varepsilon \sim 0.1$ 0.2% and mass $m_{\gamma \prime} \sim 10-100~{
 m MeV}$
 - Searches for a dark photon have been performed (so far negative) or are planned at colliders (LHC, *B*-factories, KLOE, ...) and fixed target experiments (Jefferson Lab, MAMI, ...)