Additional slides

Determining the strong coupling from Lattice QCD

Roger Horsley

- University of Edinburgh -

together with: T. Onogi, R. Sommer (FLAG4 WG)

[Ultimate precision at Hadron Colliders, Nov. 2019, Saclay, France]

Flavour Lattice Averaging Group (FLAG)

- Appears every $\sim 2-3$ years, since 2011, present incarnation FLAG4, (FLAG19) in press
- Review of lattice results, present review \sim 500 pages
- Develops (mostly lattice-specific, but also some non-lattice) criteria:

★, ○, ■

Gives averages based on these criteria

■, □, □

α_s – since 2013 (FLAG2)

FLAG+Intro Criteria Determinations

Result

Flavour Lattice Averaging Group (FLAG)

The list of FLAG members (for FLAG19) and their Working Group assignments is:

- Advisory Board (AB): S. Aoki, M. Golterman, R. Van De Water, and A. Vladikas
- Editorial Board (EB): G. Colangelo, A. Jüttner, S. Hashimoto, S.R. Sharpeand U. Wenger
- Working Groups (coordinator listed first):

 - NME R. Gupta, S. Collins, A. Nicholson and H. Wittig

FLAG+Intro

Results

 $\alpha_s(\mu) \equiv g_s(\mu)^2/4\pi$

The 'running' of the QCD coupling constant as the scale changes is controlled by the β function,

 $\frac{\partial g_s(\mu)}{\partial \log \mu} = \beta^s(g_s(\mu))$

with

 $[n_l + 1 \text{ loops in } \beta\text{-function}]$

$$eta^{s}\left(g_{s}\right)=-b_{0}g_{s}^{3}-b_{1}g_{s}^{5}-b_{2}^{s}g_{s}^{7}-b_{3}^{s}g_{s}^{9}\ldots-b_{n_{l}}^{s}g_{s}^{3+2n_{l}}\ldots$$

Integrating

$$\frac{\Lambda_s}{\mu} = \exp\left(-\frac{1}{2b_0 g_s^2}\right) \left(b_0 g_s^2\right)^{-\frac{b_1}{2b_0^2}} \exp\left\{-\int_0^{g_s} d\xi \left[\frac{1}{\beta^s(\xi)} + \frac{1}{b_0 \xi^3} - \frac{b_1}{b_0^2 \xi}\right]\right\}$$

with (scheme dependent) integration constant Λ_s

To leading order

$$lpha_s(\mu) \sim rac{4\pi}{b_0 \ln(\mu/\Lambda_s)^2}$$

Result

I) Lattice determination of $\alpha_{\overline{\text{MS}}}(M_Z)$

Basic method: 'measure' some short distance quantity $\mathcal{O}(\mu) = \lim_{a \to 0} \mathcal{O}_{\text{lat}}(a, \mu)$ and match to a perturbative expansion

 $\mathcal{O}(\mu) = c_1 \alpha_s(\mu) + c_2 \alpha_s(\mu) + \cdots$

and need conversion from scheme S (relevant to process) to (pert.) $\overline{\rm MS}$

 $g_{\overline{MS}}^2(\mu) = g_s^2(\mu)(1 + c_g^{(1)}g_s^2(\mu) + \ldots + c_g^{(n_l)}g_s^{2n_l}(\mu) + \ldots) \quad [n_l \text{ loops known}]$

• Lattice

- $+\,$ Can 'design' (Euclidean) ${\cal O}$
- + No hadronisation issues
- $+\,$ Can simulate at at range of parameters that do not exist in nature
 - Lattice specific problems, eg continuum limit
 - N_f = 3 perhaps 4 to (pert) cross quark theshold(s) $ightarrow lpha_{\overline{
 m MS}}(M_Z)$
 - Need 2 disparate scales hadron mass $(M_N, r_0, \ldots$ for setting overall scale) and also high energies (for perturbative matchings)
- Main question:

Can we get to a perturbative regime?

Roughly need scale ' μ ' large (so α_s small); lattice spacing 'a' small

Lattice requirements:

need to compromise!

- $1/a \gg \mu$ ie $a\mu \ll 1$
- But also $L \gg$ hadron size $\sim \Lambda_{_{\rm QCD}}^{-1}$ giving $L/a \ggg \mu \Lambda_{_{\rm QCD}}^{-1}$ or

$$\mu \lll \frac{L}{a} imes \Lambda_{ ext{QCD}} \sim 10 - 30 \, ext{GeV} \qquad L/a \sim 32 - 96$$

so $\mu \sim {\rm few~GeV}$ at most

Is $a\mu \ll 1$? Consider $\alpha_{\overline{\rm MS}} \sim 0.2 - 0.3$

Determinations

Result

Perturbative considerations

 $\Lambda_{\overline{\scriptscriptstyle{\mathrm{MS}}}} = \Lambda_s \exp[c_g^{(1)}/(2b_0)] \quad \Rightarrow \quad \text{regard errors in } lpha_{\overline{\scriptscriptstyle{\mathrm{MS}}}} \text{ from } \Lambda_s$

$$\left(\frac{\Delta\Lambda_s}{\Lambda_s}\right)_{\Delta\alpha_s} = \frac{\Delta\alpha_s(\mu)}{8\pi b_0 \alpha_s^2(\mu)} \times [1 + O(\alpha_s(\mu))] \quad \text{error in } \alpha_s \quad (1)$$

$$\left(\frac{\Delta\Lambda_s}{\Lambda_s}\right)_{\text{trunc}} = k\alpha_s^{n_l}(\mu) + O(\alpha_s^{n_l+1}(\mu)) \quad \text{trunc error in } \beta_s(g_s) \quad (2)$$

 $[n_l \text{ loops in } g_S \text{ conversion; } n_l + 1 \text{ loops in } \beta_S(g_S)]$

Want perturbative error \ll (determined) error in $\alpha_{\rm s},$ (1) + (2) \Rightarrow

$$\alpha_s^{n_l}(\mu) \ll \frac{\Delta \alpha_s(\mu)}{8\pi b_0 \alpha_s^2(\mu)}$$

Also simple consequence is error at two different scales, (1) \Rightarrow

$$\frac{\Delta\alpha_s(\mu_2)}{\Delta\alpha_s(\mu_1)} \approx \frac{\alpha_s^2(\mu_2)}{\alpha_s^2(\mu_1)}$$

FLAG+Intro	Criteria	Determinations	Results	Additional slides
Criteria	(1,2):	• Durante linetian		
• 1// α _s	μ small small	• Renormalization s \star all points n $\alpha_{eff} < 0.2$ • all points h $\alpha_{eff} \leq 0.2$ • otherwise	case second to the analysis have $lpha_{ m eff} <$ 0.4 and at leas 5	e st one
		Continuum extrap At a reference po	polation int of $\alpha_{eff} = 0.3$ (or less)	
• aµ	≪1	 ★ three lattic O(a) impro or three lat 2-loop O(a) or µa ≤ 1/ O three lattic down to µa or three lat 1-loop O(a) 	where the first end of the formation of	and full /4 and rement reaching rement, /4 and
		 otherwise 		

Compromise between renormalisation scale and lattice spacing

Criterion (3):

- n_l large
- Computation checks pert. behaviour or pert (trunc) error
 - \ll error in α_s
- Non-perturbative effects $\sim \exp(-\gamma/\alpha_s)$ negligible

Need to compromise

- Perturbative behaviour
 - ★ verified over a range of a factor 4 change in $\alpha_{\rm eff}^{n_1}$ without power corrections or alternatively $\alpha_{\rm eff}^{n_1} \leq \frac{1}{2}\Delta\alpha_{\rm eff}/(8\pi b_0 \alpha_{\rm eff}^2)$ is reached
 - \bigcirc agreement with perturbation theory over a range of a factor $(3/2)^2$ in $\alpha_{\rm eff}^{n_1}$ possibly fitting with power corrections or alternatively $\alpha_{\rm eff}^{n_1} \leq \Delta \alpha_{\rm eff}/(8\pi b_0 \alpha_{\rm eff}^2)$ is reached
 - otherwise

FLAG+Intro	Criteria	Determinations	Results	Additional slides

- I) Lattice determinations of $\alpha_{\rm \overline{MS}}$
 - Heavy (static) $Q \bar{Q}$ potential at short distances $\mu = 2/r$
 - Vacuum polarisation, $\langle JJ \rangle$, at large Q^2 $\mu = Q$ $[\mathcal{O}(\mu) = D(Q^2)$, Adler function, $J \sim V + A$]
 - Current $\langle JJ
 angle$ functions, moments of heavy quarks($\sim c$) $\mu = 2 ar{m}_h$
 - Ghost-gluon . . . vertices, fixed gauge $\mu = Q$
 - Eigenvalue density of Dirac operator $\mu = 1/\lambda$ $[\mathcal{O}(\mu) = \partial \ln(\rho(\lambda))/\partial \ln \lambda$, where ρ is the spectral density]

Criteria

Result

1) Determination of α_s from the potential at short distances

Force/potential between (infinitely) massive quark-anti-quark pair

$$F(r) = \frac{dV(r)}{dr} = C_F \frac{\alpha_{qq}(r)}{r^2}$$

• Determine V(r) from Wilson loops

$$\langle W(r,t) \rangle = |c_0|^2 e^{-V(r)t} + \sum_{n \neq 0} |c_n|^2 e^{-V_n(r)t}$$

- Force needs (numerical) gradient
- If use V(r) need to fix at some r = r_{ref} introduces new renormalisation scale (renormalon 1/Q² term, need to subtract)
- $n_l = 3$ (with $\alpha_{MS}^4 \ln \alpha_{MS}$) higher order partially known

Criteria

Determinations

Resul

2) Determination of α_s from current two-point functions

$$G(t) = \sum_{\vec{x}} \langle J^{\dagger}(x) J(0) \rangle \qquad J = m_h \, \overline{q}_h \gamma_5 q_{h'}$$

q_h, q_h, mass degen. m_h

[moment method]

heavy valence quarks

 $h \sim {\rm charm}$

Consider (finite) moments (n ≥ 4)

$$G_n = \sum_{t=-(T/2-a)}^{t=T/2-a} t^n G(t)$$

• Moments dominated by $t \sim 1/m_h$, ie short distances, large μ

- discretisation errors

- Moments become increasingly perturbative for decreasing n
- Continuum PT

$$R_n \sim \frac{G_n}{G_n^{(0)}} \sim 1 + r_{n1}\alpha_{\overline{\mathrm{MS}}} + r_{n2}\alpha_{\overline{\mathrm{MS}}}^2 + r_{n3}\alpha_{\overline{\mathrm{MS}}}^3 + \dots$$

- $r_{ni}(\mu/m_h^{\overline{\text{MS}}}(\mu))$ known (continuum PT)
- Leads to a determination of both $\alpha_{\overline{MS}}$ and $m_h^{\overline{MS}}$ (heavy quark mass)

Resu

II) Lattice determinations of $\alpha_{\rm \overline{MS}}$ at the lattice spacing scale, a

Evaluate a short distance quantity \$\mathcal{O} \sim W\$ Wilson loop (generalise to \$m \times n\$ where \$m\$, \$n\$ fixed) at the scale of the lattice spacing \$\sim 1/a\$

$$\mu = rac{d}{a}$$
 or $a\mu = d \gtrsim 1$

• Then determine its relationship to $\alpha_{\rm MS}$ via a power series expansion in bare (lattice) coupling

$$\begin{aligned} W(a,a) &= c_0 + c_1 \alpha_0 (1/a) + c_2 \alpha_0^2 (1/a) + \ldots + O(a^2) \\ &= \tilde{c}_0 + \tilde{c}_1 \alpha_{\overline{\text{MS}}}(\mu) + \tilde{c}_2 \alpha_{\overline{\text{MS}}}^2(\mu) + \ldots + O(a^2) \end{aligned}$$

- Continuum extrapolation necessary
- Replace Criterion (2) $[a\mu \ll 1]$ by several lattice spacings available
- (bare) PT can be complicated (ie only low *n_l* available)

Resul

III) Lattice determinations of $\alpha_{\scriptscriptstyle \overline{\rm MS}}$ using step scaling

• Set (Schrödinger Functional, SF)

$$\mu = \frac{1}{L}$$
 as can take $L/a = 8, 16, 32, \dots \Rightarrow a\mu \ll 1$

• Series of steps (including cont. limit) to reach high scale (s = 2)

 $\mu
ightarrow s\mu
ightarrow s^2 \mu
ightarrow \ldots
ightarrow s^N \mu \qquad \mu \sim 200 \ {
m MeV}
ightarrow s^N \mu \sim 100 \ {
m GeV}$

- Cleanly separates hadron scale $\sim 200\,\text{MeV}$ from PT scale $\sim 100\,\text{GeV}$
- Can check running of $\alpha_{\scriptscriptstyle\rm SF}$ over large range

Results

Raw data

- Looked at \sim 70 papers
- Can only perturbatively cross quark thresholds (ie charm) to $Q = M_Z$, so drop $N_f = 0$, 2 data, only consider $N_f = 3$, 4
- About ~ 20 publications determine $\alpha_{\rm MS}(M_Z)$
 - 8 enter final analysis

FLAG19: $\alpha_{\overline{\text{MS}}}(M_Z)$ pre-ranges

- (Roughly) similar to PDG procedure
- Applies to
 - Heavy (static) $Q \bar{Q}$ potential at short distances

[Bazavov 14]

• Current $\langle JJ \rangle$ functions, moments of heavy quarks

[JLQCD 16, HPQCD 14A, HPQCD 10]

[HPQCD 10, Maltman 08]

• Step scaling + SF

Wilson loops

[ALPHA 17, PACS-CS 09A]

• Central value is weighted average of these results

FLAG19: $\alpha_{\overline{\text{MS}}}(M_Z)$ pre-range error estimates I

• Heavy (static) $Q - \overline{Q}$ – potential at short distances [Bazavov]

Small lattice spacings $\Delta \Lambda_s / \Lambda_s \sim 9 \alpha_s^3$ [quenched, Husang 17]

 $\Delta\alpha_s(\mu) \approx 8\pi b_0 \alpha_s^2(\mu) \times 9\alpha_s^3(\mu)$

Typically $\alpha_s^{\min} \sim 0.19$ [Bazavov 14], run to M_Z gives

 $\Delta \alpha_{\overline{\rm MS}} \sim 0.0014$

Criteria

Determinations

Results

FLAG19: $\alpha_{\overline{MS}}(M_Z)$ pre-range error estimates II

- Current $\langle JJ \rangle$ functions, moments of heavy quarks
- eg

FLAG19: $\alpha_{\rm MS}(M_Z)$ pre-range error estimates II

• Current $\langle JJ \rangle$ functions, moments of heavy quarks

[HPQCD,JLQCD]

Various estimations:

• LH plot: Consider difference in published continuum Rs,

[eg between Maezawa 16 and JLQCD 16]

 $R_6/R_4 - 1 \sim k lpha_s \sim 4.5\%$ leading to $\Delta lpha_{\overline{
m MS}}(M_Z) \sim 0.0023$

- RH plot: Perturbative uncertainty, vary scale eg s=3 $_{\rm [here $\mu_{\alpha}=\mu_{h}$]} \Delta \alpha_{\overline{\rm MS}}(M_{Z}) \sim 0.0017$
- Total difference |Maezawa 16 JLQCD 16|, or $\Delta lpha_{\overline{
 m MS}}(M_Z) \sim 0.0015$
- Settle on $\Delta \alpha_{\overline{\text{MS}}}(M_Z) \sim 0.0015$

FLAG+Intro	Criteria	Determinations	Results		Additional slides
FLAG19: α_1	$MS(M_Z)$ pre-rang	e error estimates III	[]	HPQCD, Maltman	et al]

• Wilson loops, perturbative error

$$\Delta lpha_{
m s}(\mu) pprox \left| rac{c_4}{c_1} \right| lpha_{
m s}^4(\mu) \qquad \left| rac{c_4}{c_1} \right| \sim 2 \quad {
m HPQCD} \ {
m 10}$$

Typically $\alpha_s(\mu\sim 5\,{
m GeV})\sim 0.2$, run to M_Z gives

 $\Delta \alpha_{\rm \overline{MS}} \sim 0.0012$

Step scaling + SF
 Straight weighted average error

[ALPHA]

 $\Delta \alpha_{\rm \overline{MS}} \sim 0.0008$

\G+	Intro	Cri	teria			Determinations	Results		Additional s
	$lpha_{\overline{ m MS}}$			snjejs uc	tation scale	ne behaviour			
	Collaboration	N _f	Publica.	renomo, u	Derturbo	Ontinuu	$\alpha_{\overline{\mathrm{MS}}}(M_{\mathrm{Z}})$	Method	nj
	ALPHA 17 PACS-CS 09A pre-range (avera	2+1 2+1 age)	A A	*	* *	★ ○ 0.11848(81)	0.11852(84) 0.11800(300)	step-scaling step-scaling	2 2
	Takaura 18 Bazavov 14 Bazavov 12 pre-range with o	2+1 2+1 2+1 estimated	P A A pert. err	or	0 * 0	0 0 0	$\begin{array}{c} 0.11790(70)(\substack{+130\\-120})\\ 0.11660(100)\\ 0.11560(\substack{+210\\-220})\\ 0.11660(160)\end{array}$	$Q \cdot \bar{Q}$ potential $Q \cdot \bar{Q}$ potential $Q \cdot \bar{Q}$ potential	3 3 3
	Hudspith 18 JLQCD 10	2+1 2+1	P A	0	* 0	:	$0.11810(270)({+80 \atop -220})$ $0.11180(30)({+160 \atop -170})$	vacuum polarization vacuum polarization	3 2
	HPQCD 10 Maltman 08 pre-range with e	2+1 2+1 estimated	A A pert. err	or	ò	* *	0.11840(60) 0.11920(110) 0.11858(120)	Wilson loops Wilson loops	2 2
	JLQCD 16 Maezawa 16 HPQCD 14A HPQCD 10 HPQCD 08B pre-range with 6	2+1 2+1 2+1+1 2+1 2+1 2+1 estimated	A A A A A pert. err	or	○ ★ ★	0 0 0 0	0.11770(260) 0.11622(84) 0.11822(74) 0.11830(70) 0.11740(120) 0.11824(150)	current two points current two points current two points current two points current two points	2 2 2 2 2
	ETM 13D ETM 12C ETM 11D	2+1+1 2+1+1 2+1+1	A A A	0000	0000		0.11960(40)(80)(60) 0.12000(140) 0.11980(90)(50)(⁺⁰ ₋₅₀)	gluon-ghost vertex gluon-ghost vertex gluon-ghost vertex	3 3 3
	Nakayama 18	2+1	А	*	0	•	0.12260(360)	Dirac eigenvalues	2

FLAG+Intro	Criteria	Determinations	Results	Additional slides

$\alpha_{\scriptscriptstyle \overline{\rm MS}}(M_Z)$ average of pre-ranges

• Mean: weighted average of pre-ranges, 0.1182

• Error:

1.	error of weighted average	0.0006
2.	smallest error of individual pre-ranges	0.0008
3.	mean of errors of individual pre-ranges	0.0013

Choose (conservative), middle one, ie No. 2

FLAG+Intro

Criteria

Determinations

Results

FLAG2019:

 $\alpha_{\overline{\text{MS}}}^{(5)}(M_Z) = 0.1182(8)$

Comparison with PDG:

Lattice results compatible with phenomenological results FLAG19 + (non-lat)PDG18: $\alpha_{\overline{MS}}^{(5)}(M_Z) = 0.1180(7)$

FLAG+Intro	Criteria	Determinations	Results	Additional slides

Conclusions

- Possibly $\sim 1\%$ accuracy reached
- Strive for:
 - Always check in PT region
 - Try to avoid mixing computation with NP effects (condensates, renormalons, ...)
 - More investigation of the continuum limit
- Possibly pheomenologically determinations could also consider minimum value of $\mu,\,{\rm PT}$ check

(ie here renormalisation scale / perturbative behaviour criteria)

FLAG+Intro	Criteria	Determinations	Results	Additional slides
Addition	al slides			

b coefficients

The first two coefficients are scheme independent:

$$b_0 = rac{1}{(4\pi)^2} \left(11 - rac{2}{3}n_f
ight) , \qquad b_1 = rac{1}{(4\pi)^4} \left(102 - rac{38}{3}n_f
ight)$$

 \overline{MS} scheme:

[only defined perturbatively]

$$b_{2}^{\overline{MS}} = \frac{1}{(4\pi)^{6}} \left(\frac{2857}{2} - \frac{5033}{18} n_{f} + \frac{325}{54} n_{f}^{2} \right)$$

$$b_{3}^{\overline{MS}} = \frac{1}{(4\pi)^{8}} \left[\frac{149753}{6} + 3564 \zeta_{3} - \left(\frac{1078361}{162} + \frac{6508}{27} \zeta_{3} \right) n_{f} + \left(\frac{50065}{162} + \frac{6472}{81} \zeta_{3} \right) n_{f}^{2} + \frac{1093}{729} n_{f}^{3} \right]$$

 $b_4^{\overline{MS}}$ = also known

[5-loops: Baikov et al., arXiv:1606.08659; Herzog et al., arXiv:1701.01404]

Mass independent, fixed n_f scheme

FLAG+Intro

Results

 \overline{MS} is a mass independent, fixed n_f scheme

- 'Relatively' easy to compute *b* coefficients
- Cross quark thresholds, need to match $n_f
 ightarrow n_f + 1$

$$\alpha_{\overline{M5}}^{(n_f)}(\mu) = \alpha_{\overline{M5}}^{(n_f+1)}(\mu) \left\{ 1 + \sum_{k=1}^{\infty} \sum_{n=0}^{k} c_{kn} \left[\frac{\alpha_{\overline{M5}}^{(n_f+1)}(\mu)}{\pi} \right]^k \ln^n \left[\frac{\mu^2}{m_{\overline{M5}}^2(\mu)} \right] \right\}$$

with

$$c_{10} = 0$$
, $c_{20} = \frac{11}{72}$, $c_{30} = \frac{564731}{124416} - \frac{82043}{27648}\zeta_3 - \frac{2633}{31104}n_f$, ... c_{43}

- Usually choose $\mu = m_{\overline{\scriptscriptstyle MS}}(\mu)$ (ie no logs)
- So 'secret' scale dependence of b coefficients
- Perturbative matching, only trust (?) at charm mass and above, ie $n_f=3 \rightarrow 4$
- In a MOM scheme (more physical), explicit mass dependence only b_0^{MOM} , b_1^{MOM} known [Jegerlehner et al., hep-ph/9809485] But smoother behaviour across quark thresholds

Determination of α_s from QCD vertices

- 'Natural' definition
- Zero incoming ghost momentum in ghost-ghost-gluon vertex
- Simplification: vertex not renormalised (Taylor) 'T' or 'MM' (minimal mom) scheme

$$\alpha_{\rm T}(\mu) = D_{\rm lat}^{\rm ghost}(\mu, a)^2 D_{\rm lat}^{\rm gluon}(\mu, a) \frac{g_0^2(a)}{4\pi}$$

• D_{lat}^{ghost} , D_{lat}^{gluon} (bare lattice) dressed ghost/gluon 'form factors' propagator functions in the Landau gauge

$$D^{ab}(p) = -\delta^{ab} \, rac{D^{ ext{ghost}}(p)}{p^2} \,, \quad D^{ab}_{\mu
u}(p) = \delta^{ab} \left(\delta_{\mu
u} - rac{p_\mu p_
u}{p^2}
ight) rac{D^{ ext{gluon}}(p)}{p^2}$$

 $[D^{\rm ghost/gluon}(\textbf{\textit{p}}) = D^{\rm ghost/gluon}_{\rm lat}(\textbf{\textit{p}},0) \; (\text{continuum})]$

 a, μ

• Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon propagators

Determination of α_s from the vacuum polarisation function at short dist.

$$\langle J^{a}_{\mu}J^{b}_{\nu}
angle = \delta^{ab}[(\delta_{\mu\nu}Q^{2} - Q_{\mu}Q_{\nu})\Pi^{(1)}(Q) - Q_{\mu}Q_{\nu}\Pi^{(0)}(Q)]$$

- Q_{μ} is a space like momentum
- $J_\mu \equiv V_\mu, A_\mu$ for (non-singlet) vector/axial-vector currents

Set $\Pi_J(Q) \equiv \Pi_J^{(0)}(Q) + \Pi_J^{(1)}(Q)$, OPE of the vacuum polarisation function $\Pi_{V+A}(Q) = \Pi_V(Q) + \Pi_A(Q)$:

$$\begin{split} \Pi_{V+A}|_{\text{OPE}}(Q^2,\alpha_s) \\ &= c + C_0(Q^2) + C_m^{V+A}(Q^2) \frac{\bar{m}^2(Q)}{Q^2} + \sum_{q=u,d,s} C_{\bar{q}q}^{V+A}(Q^2) \frac{\langle m_Q \bar{q}q \rangle}{Q^4} \\ &+ C_{GG}(Q^2) \frac{\langle \alpha_s GG \rangle}{Q^4} + O(Q^{-6}) \end{split}$$

 C_X^{V+A} known up to 4-loops (in \overline{MS} scheme)

- c is Q-independent and divergent ultraviolet cutoff $ightarrow\infty$
- NP condensates eg (α_sGG)
- terms in C_X which do not have a series expansion in α_s

[Use of Adler function, $D(Q^2) \equiv -Q^2 d\Pi(Q^2)/dQ^2$ is a scheme independent finite quantity, and so avoids some of these problems]