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Determining the strong coupling
from Lattice QCD

Roger Horsley

– University of Edinburgh –

together with: T. Onogi, R. Sommer (FLAG4 WG)

[Ultimate precision at Hadron Colliders, Nov. 2019, Saclay, France]
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Flavour Lattice Averaging Group (FLAG)

• Appears every ∼ 2 – 3 years, since 2011, present incarnation FLAG4,
(FLAG19) in press

• Review of lattice results, present review ∼ 500 pages

• Develops (mostly lattice-specific, but also some non-lattice) criteria:

F, ◦ , �

• Gives averages based on these criteria

� , � , �

• αs – since 2013 (FLAG2)
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Flavour Lattice Averaging Group (FLAG)

The list of FLAG members (for FLAG19) and their Working Group assignments is:

• Advisory Board (AB): S. Aoki, M. Golterman, R. Van De Water, and A. Vladikas

• Editorial Board (EB): G. Colangelo, A. Jüttner, S. Hashimoto, S.R. Sharpeand
U. Wenger

• Working Groups (coordinator listed first):

• Quark masses T. Blum, A. Portelli, and A. Ramos
• Vus ,Vud S. Simula, T. Kaneko, and J. N. Simone
• LEC S. Dürr, H. Fukaya, and U.M. Heller
• BK P. Dimopoulos, G. Herdoiza, and R. Mawhinney
• fB(s)

, fD(s)
, BB D. Lin, Y. Aoki, and M. Della Morte

• B(s), D semileptonic and radiative decays E. Lunghi, D. Becirevic,
S. Gottlieb and C. Pena

• αs R. Sommer, R. Horsley, and T. Onogi
• NME R. Gupta, S. Collins, A. Nicholson and H. Wittig
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αs(µ) ≡ gs(µ)2/4π

The ‘running’ of the QCD coupling constant as the scale changes is
controlled by the β function,

∂gs(µ)

∂ logµ
= βs(gs(µ))

with [nl + 1 loops in β-function]

βs (gs) = −b0g
3
s − b1g

5
s − bs2g

7
s − bs3g

9
s . . .− bsnlg

3+2nl
s . . .

Integrating

Λs

µ
= exp

(
− 1

2b0g2
s

)(
b0g

2
s

)− b1
2b2

0 exp

{
−
∫ gs

0

dξ

[
1

βs(ξ)
+

1

b0ξ3
− b1

b2
0ξ

]}
with (scheme dependent) integration constant Λs

To leading order

αs(µ) ∼ 4π

b0 ln(µ/Λs)2
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I) Lattice determination of αMS(MZ )

Basic method: ‘measure’ some short distance quantity
O(µ) = lima→0Olat(a, µ) and match to a perturbative expansion

O(µ) = c1αs(µ) + c2α
(
sµ) + · · ·

and need conversion from scheme S (relevant to process) to (pert. ) MS

g2
MS(µ) = g2

s (µ)(1 + c(1)
g g2

s (µ) + . . .+ c(nl )
g g2nl

s (µ) + . . .) [nl loops known]

• Lattice

+ Can ‘design’ (Euclidean) O
+ No hadronisation issues
+ Can simulate at at range of parameters that do not exist in nature
- Lattice specific problems, eg continuum limit
- Nf = 3 perhaps 4 to (pert) cross quark theshold(s) → αMS(MZ )
- Need 2 disparate scales - hadron mass (MN , r0, . . . for setting overall

scale) and also high energies (for perturbative matchings)

• Main question:
Can we get to a perturbative regime?
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Roughly need scale ‘µ’ large (so αs small); lattice spacing ‘a’ small

Lattice requirements: need to compromise!

• 1/a� µ ie aµ� 1
• But also L� hadron size ∼ Λ−1

QCD giving L/a ≫ µΛ−1
QCD or

µ≪
L

a
× ΛQCD ∼ 10 − 30 GeV L/a ∼ 32 − 96

so µ ∼ few GeV at most

Is aµ� 1? Consider αMS ∼ 0.2 – 0.3
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Perturbative considerations

ΛMS = Λs exp[c(1)
g /(2b0)] ⇒ regard errors in αMS from Λs

(
∆Λs

Λs

)
∆αS

=
∆αs(µ)

8πb0α2
s (µ)

× [1 + O(αs(µ))] error in αs (1)(
∆Λs

Λs

)
trunc

= kαnl
s (µ) + O(αnl+1

s (µ)) trunc error in βs(gs) (2)

[nl loops in gs conversion; nl + 1 loops in βs (gs )]

Want perturbative error � (determined) error in αs , (1) + (2) ⇒

αnl
s (µ)� ∆αs(µ)

8πb0α2
s (µ)

Also simple consequence is error at two different scales, (1) ⇒

∆αs(µ2)

∆αs(µ1)
≈ α2

s (µ2)

α2
s (µ1)
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Criteria (1,2):

• 1/µ small
αs small

• aµ� 1

• Renormalization scale

F all points relevant in the analysis have
αeff < 0.2◦ all points have αeff < 0.4 and at least one
αeff ≤ 0.25

� otherwise

• Continuum extrapolation

At a reference point of αeff = 0.3 (or less)

F three lattice spacings with µa < 1/2 and full
O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and
2-loop O(a) improvement,
or µa ≤ 1/8 and 1-loop O(a) improvement◦ three lattice spacings with µa < 3/2 reaching
down to µa = 1 and full O(a) improvement,
or three lattice spacings with µa ≤ 1/4 and
1-loop O(a) improvement

� otherwise

Compromise between renormalisation scale and lattice spacing
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Criterion (3):

• nl large

• Computation
checks pert.
behaviour
or
pert (trunc) error
� error in αs

• Non-perturbative
effects
∼ exp(−γ/αs)
negligible

• Perturbative behaviour

F verified over a range of a factor 4 change
in α

nl
eff without power corrections or

alternatively α
nl
eff ≤

1
2 ∆αeff/(8πb0α

2
eff )

is reached◦ agreement with perturbation theory over
a range of a factor (3/2)2 in α

nl
eff

possibly fitting with power corrections or
alternatively α

nl
eff ≤ ∆αeff/(8πb0α

2
eff )

is reached

� otherwise

Need to compromise
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I) Lattice determinations of αMS

• Heavy (static) Q-Q̄ – potential at short distances µ = 2/r

• Vacuum polarisation, 〈JJ〉, at large Q2 µ = Q
[O(µ) = D(Q2), Adler function, J ∼ V + A]

• Current 〈JJ〉 functions, moments of heavy quarks(∼ c) µ = 2m̄h

• Ghost–gluon . . . vertices, fixed gauge µ = Q

• Eigenvalue density of Dirac operator µ = 1/λ
[O(µ) = ∂ ln(ρ(λ))/∂ lnλ, where ρ is the spectral density]
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1) Determination of αs from the potential at short distances

Force/potential between (infinitely) massive quark–anti-quark pair

F (r) =
dV (r)

dr
= CF

αqq(r)

r2

• Determine V (r) from Wilson loops

〈W (r , t)〉 = |c0|2e−V (r)t +
∑
n 6=0

|cn|2e−Vn(r)t

• Force needs (numerical) gradient

• If use V (r) need to fix at some r = rref - introduces new
renormalisation scale (renormalon 1/Q2 term, need to subtract)

• nl = 3 (with α4
MS

lnαMS) higher order partially known
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2) Determination of αs from current two-point functions [moment method]

G (t) =
∑
~x

〈J†(x)J(0)〉 J = mh qhγ5qh′
qh , qh′ mass degen. mh

heavy valence quarks

h ∼ charm

• Consider (finite) moments (n ≥ 4)

Gn =

t=T/2−a∑
t=−(T/2−a)

tnG (t)

• Moments dominated by t ∼ 1/mh, ie short distances, large µ
– discretisation errors

• Moments become increasingly perturbative for decreasing n
• Continuum PT

Rn ∼
Gn

G
(0)
n

∼ 1 + rn1αMS + rn2α
2
MS + rn3α

3
MS + . . .

• rni (µ/m
MS

h (µ)) known (continuum PT)
• Leads to a determination of both αMS and mMS

h (heavy quark mass)
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II) Lattice determinations of αMS at the lattice spacing scale, a

• Evaluate a short distance quantity O ∼W Wilson loop (generalise
to m × n where m, n fixed) at the scale of the lattice spacing ∼ 1/a

µ =
d

a
or aµ = d ∼> 1

• Then determine its relationship to αMS via a power series expansion
in bare (lattice) coupling

•

W (a, a) = c0 + c1α0(1/a) + c2α
2
0(1/a) + . . .+ O(a2)

= c̃0 + c̃1αMS(µ) + c̃2α
2
MS(µ) + . . .+ O(a2)

• Continuum extrapolation necessary

• Replace Criterion (2) [aµ� 1] by several lattice spacings available

• (bare) PT can be complicated (ie only low nl available)
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III) Lattice determinations of αMS using step scaling

• Set (Schrödinger Functional, SF)

µ =
1

L
as can take L/a = 8, 16, 32, . . . ⇒ aµ� 1

• Series of steps (including cont. limit) to reach high scale (s = 2)

µ→ sµ→ s2µ→ . . .→ sNµ µ ∼ 200 MeV→ sNµ ∼ 100 GeV

• Cleanly separates hadron scale ∼ 200 MeV from PT scale ∼ 100 GeV

• Can check running of αSF over large range

•

Λ
(3)
MS

=
Λ

(3)
MS

µPT︸︷︷︸
pert. theory

× µPT

µhad︸ ︷︷ ︸
step−scaling

× µhad

fπK︸ ︷︷ ︸
large vol simulation

× fπK︸︷︷︸
expt data
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Raw data

• Looked at ∼ 70 papers
• Can only perturbatively cross quark thresholds (ie charm) to

Q = MZ , so drop Nf = 0, 2 data, only consider Nf = 3, 4
• About ∼ 20 publications determine αMS(MZ )

• 8 enter final analysis

FLAG19: αMS(MZ ) pre-ranges

• (Roughly) similar to PDG procedure
• Applies to

• Heavy (static) Q-Q̄ – potential at short distances
[Bazavov 14]

• Current 〈JJ〉 functions, moments of heavy quarks
[JLQCD 16, HPQCD 14A, HPQCD 10]

• Wilson loops
[HPQCD 10, Maltman 08]

• Step scaling + SF
[ALPHA 17, PACS-CS 09A]

• Central value is weighted average of these results
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FLAG19: αMS(MZ ) pre-range error estimates I

• Heavy (static) Q-Q̄ – potential at short distances [Bazavov]

Small lattice spacings ∆Λs/Λs ∼ 9α3
s [quenched, Husang 17]

∆αs(µ) ≈ 8πb0α
2
s (µ)× 9α3

s (µ)

Typically αmin
s ∼ 0.19 [Bazavov 14], run to MZ gives

∆αMS ∼ 0.0014
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FLAG19: αMS(MZ ) pre-range error estimates II

• Current 〈JJ〉 functions, moments of heavy quarks

• eg
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• Possible discretisation errors [F aµ < 1/2, ◦ aµ < 3/2]
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FLAG19: αMS(MZ ) pre-range error estimates II

• Current 〈JJ〉 functions, moments of heavy quarks [HPQCD,JLQCD]
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Various estimations:

• LH plot: Consider difference in published continuum Rs,
[eg between Maezawa 16 and JLQCD 16]

R6/R4 − 1 ∼ kαs ∼ 4.5% leading to ∆αMS(MZ ) ∼ 0.0023

• RH plot: Perturbative uncertainty, vary scale eg s = 3 [here µα = µh ]

∆αMS(MZ ) ∼ 0.0017
• Total difference |Maezawa 16− JLQCD 16|, or ∆αMS(MZ ) ∼ 0.0015
• Settle on ∆αMS(MZ ) ∼ 0.0015
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FLAG19: αMS(MZ ) pre-range error estimates III [HPQCD, Maltman et al]

• Wilson loops, perturbative error

∆αs(µ) ≈
∣∣∣∣c4

c1

∣∣∣∣α4
s (µ)

∣∣∣∣c4

c1

∣∣∣∣ ∼ 2 HPQCD 10

Typically αs(µ ∼ 5 GeV) ∼ 0.2, run to MZ gives

∆αMS ∼ 0.0012

• Step scaling + SF [ALPHA]

Straight weighted average error

∆αMS ∼ 0.0008
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αMS
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(MZ) Method nl

ALPHA 17 2+1 A F F F 0.11852( 84) step-scaling 2

PACS-CS 09A 2+1 A F F ◦ 0.11800(300) step-scaling 2

pre-range (average) 0.11848( 81)

Takaura 18 2+1 P � ◦ ◦ 0.11790(70)(+130
−120

) Q-Q̄ potential 3

Bazavov 14 2+1 A ◦ F ◦ 0.11660(100) Q-Q̄ potential 3

Bazavov 12 2+1 A ◦ ◦ ◦ 0.11560(+210
−220

) Q-Q̄ potential 3

pre-range with estimated pert. error 0.11660(160)

Hudspith 18 2+1 P ◦ F � 0.11810(270)( +80
−220

) vacuum polarization 3

JLQCD 10 2+1 A � ◦ � 0.11180(30)(+160
−170

) vacuum polarization 2

HPQCD 10 2+1 A ◦ F F 0.11840( 60) Wilson loops 2

Maltman 08 2+1 A ◦ ◦ F 0.11920(110) Wilson loops 2

pre-range with estimated pert. error 0.11858(120)

JLQCD 16 2+1 A ◦ ◦ ◦ 0.11770(260) current two points 2

Maezawa 16 2+1 A ◦ � ◦ 0.11622( 84) current two points 2

HPQCD 14A 2+1+1 A ◦ F ◦ 0.11822( 74) current two points 2

HPQCD 10 2+1 A ◦ F ◦ 0.11830( 70) current two points 2
HPQCD 08B 2+1 A � � � 0.11740(120) current two points 2

pre-range with estimated pert. error 0.11824(150)

ETM 13D 2+1+1 A ◦ ◦ � 0.11960(40)(80)(60) gluon-ghost vertex 3

ETM 12C 2+1+1 A ◦ ◦ � 0.12000(140) gluon-ghost vertex 3

ETM 11D 2+1+1 A ◦ ◦ � 0.11980(90)(50)( +0
−50

) gluon-ghost vertex 3

Nakayama 18 2+1 A F ◦ � 0.12260(360) Dirac eigenvalues 2
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αMS(MZ ) average of pre-ranges

• Mean: weighted average of pre-ranges, 0.1182

• Error:

1. error of weighted average 0.0006
2. smallest error of individual pre-ranges 0.0008
3. mean of errors of individual pre-ranges 0.0013

Choose (conservative), middle one, ie No. 2
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Lambda-parameter, Λ(Nf )

� used

� superseded

� not used

r0 ≈ 0.5 fm
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UKQCD 92
Bali 92
Luscher 93
Alles 96
ALPHA 98
Boucaud 98A
Boucaud 98B
Becirevic 99B
Boucaud 00A
Boucaud 01A
Soto 01
QCDSF/UKQCD 05
Boucaud 05
Boucaud 08
Brambilla 10
Sternbeck 10
Kitazawa 16
Ishikawa 17
Husung 17
FLAG estimate for ��=�
Boucaud 01B
ALPHA 04
QCDSF/UKQCD 05
JLQCD/TWQCD 08C
ETM 10F
Sternbeck 10
ETM 11C
ALPHA 12
Karbstein 14
Karbstein 18
FLAG estimate for ��=�
HPQCD 05A
HPQCD 08A
HPQCD 08B
Maltman 08
PACS-CS 09
HPQCD 10
HPQCD 10
JLQCD 10
Bazavov 12
Bazavov 14
JLQCD 16
Maezawa 16
ALPHA 17
Nakayama 18
Hudspith 18
Takaura 18
FLAG estimate for ��=�
ETM 11D
ETM 12C
ETM 13D
HPQCD 14A
FLAG average for ��=�

��
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_####_ Page 150 of 267 Eur. Phys. J. C  _#####################_

Fig. 38 α
(5)

MS
(MZ ), the coupling constant in the MS scheme at the Z

mass. Top: Lattice results, pre-ranges from different calculation meth-
ods, and final average. Bottom: Comparison of the lattice pre-ranges
and average with the nonlattice ranges and average. The first PDG 18
entry gives the outcome of their analysis excluding lattice results (see
Sect. 9.10.4)

ter understand the errors of αs determinations from the9823

potential.9824

Only Bazavov 14 [80] satisfies all of the criteria to enter9825

the FLAG average for αs . Given the findings of [682]9826

we estimate a perturbative error of "#/# = 9(αmin
s )3

9827

with αmin
s ≈ 0.19 the smallest value reached in [80].9828

This translates into "αMS(MZ ) = 0.0014. A differ-9829

ent way to estimate the effect is to take the actual dif-9830

ference of the #-parameters estimated in N f = 0 by9831

Brambilla 10 [743] and Husung 17 [682]: "#/# ≈9832

(0.637 − 0.590)/0.637 = 0.074 or "αMS(MZ ) =9833

0.0018. We use the mean of these two error estimates9834

together with the central value of Bazavov 14 and obtain9835

αMS = 0.1166(16).9836

• Small Wilson loops 9837

Here the situation is unchanged as compared to FLAG 16. 9838

In the determination of αs from observables at the lattice 9839

spacing scale, there is an interplay of higher-order pertur- 9840

bative terms and lattice artifacts. In HPQCD 05A [754], 9841

HPQCD 08A [755] and Maltman 08 [82] both lattice 9842

artifacts (which are power corrections in this approach) 9843

and higher-order perturbative terms are fitted. We note 9844

that Maltman 08 [82] and HPQCD 08A [755] analyze 9845

largely the same data set but use different versions of 9846

the perturbative expansion and treatments of nonper- 9847

turbative terms. After adjusting for the slightly differ- 9848

ent lattice scales used, the values of αMS(MZ ) differ 9849

by 0.0004 to 0.0008 for the three quantities considered. 9850

In fact the largest of these differences (0.0008) comes 9851

from a tadpole-improved loop, which is expected to be 9852

best behaved perturbatively. We therefore replace the 9853

perturbative-truncation errors from [13,82] with our esti- 9854

mate of the perturbative uncertainty Eq. (327). Taking 9855

the perturbative errors to be 100% correlated between 9856

the results, we obtain for the weighted average αMS = 9857

0.11871(128). 9858

• Heavy quark current two-point functions 9859

Other computations with small errors are HPQCD 10 [13] 9860

and HPQCD 14A [16], where correlation functions of 9861

heavy valence quarks are used to construct short-distance 9862

quantities. Due to the large quark masses needed to reach 9863

the region of small coupling, considerable discretization 9864

errors are present, see Fig. 30 of FLAG 16. These are 9865

treated by fits to the perturbative running (a 5-loop run- 9866

ningαMS with a fitted 5-loop coefficient in theβ-function 9867

is used) with high-order terms in a double expansion 9868

in a2#2 and a2m2
h supplemented by priors which limit 9869

the size of the coefficients. The priors play an especially 9870

important role in these fits given the much larger num- 9871

ber of fit parameters than data points. We note, however, 9872

that the size of the coefficients does not prevent high- 9873

order terms from contributing significantly, since the data 9874

includes values of amc that are rather close to 1. 9875

More recent calculations use the same method but just 9876

at the charm quark mass, where discretization errors are 9877

considerably smaller. Here the dominating uncertainty 9878

is the perturbative error. JLQCD 16 [23] estimates it at 9879

"αs = 0.0011 from independent changes of the renor- 9880

malization scales of coupling and mass, µα, µm. Fig- 9881

ure 35 for the residual scale dependence of αs from R4 9882

yields 0.0017 from scale change 1 ≤ s ≤ 3 and 0.0025 9883

for 2 ≤ s ≤ 4. For the figure we set µα = µm. Indepen- 9884

dent changes of µα, µm would yield a larger estimate of 9885

the uncertainty [777]. We note also that there are small 9886

differences in the continuum-extrapolated results in the 9887

moments themselves, cf. Table 58. The relative differ- 9888

ence in R6/R8 − 1 ∼ kαs between Maezawa 16 [157], 9889

123
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PT, lattice effects
aµ ∼ 1

compromise aµ� 1

FLAG2019: α(5)

MS
(MZ ) = 0.1182(8)
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Comparison with PDG:
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_####_ Page 150 of 267 Eur. Phys. J. C  _#####################_

Fig. 38 α
(5)

MS
(MZ ), the coupling constant in the MS scheme at the Z

mass. Top: Lattice results, pre-ranges from different calculation meth-
ods, and final average. Bottom: Comparison of the lattice pre-ranges
and average with the nonlattice ranges and average. The first PDG 18
entry gives the outcome of their analysis excluding lattice results (see
Sect. 9.10.4)

ter understand the errors of αs determinations from the9823

potential.9824

Only Bazavov 14 [80] satisfies all of the criteria to enter9825

the FLAG average for αs . Given the findings of [682]9826

we estimate a perturbative error of "#/# = 9(αmin
s )3

9827

with αmin
s ≈ 0.19 the smallest value reached in [80].9828

This translates into "αMS(MZ ) = 0.0014. A differ-9829

ent way to estimate the effect is to take the actual dif-9830

ference of the #-parameters estimated in N f = 0 by9831

Brambilla 10 [743] and Husung 17 [682]: "#/# ≈9832

(0.637 − 0.590)/0.637 = 0.074 or "αMS(MZ ) =9833

0.0018. We use the mean of these two error estimates9834

together with the central value of Bazavov 14 and obtain9835

αMS = 0.1166(16).9836

• Small Wilson loops 9837

Here the situation is unchanged as compared to FLAG 16. 9838

In the determination of αs from observables at the lattice 9839

spacing scale, there is an interplay of higher-order pertur- 9840

bative terms and lattice artifacts. In HPQCD 05A [754], 9841

HPQCD 08A [755] and Maltman 08 [82] both lattice 9842

artifacts (which are power corrections in this approach) 9843

and higher-order perturbative terms are fitted. We note 9844

that Maltman 08 [82] and HPQCD 08A [755] analyze 9845

largely the same data set but use different versions of 9846

the perturbative expansion and treatments of nonper- 9847

turbative terms. After adjusting for the slightly differ- 9848

ent lattice scales used, the values of αMS(MZ ) differ 9849

by 0.0004 to 0.0008 for the three quantities considered. 9850

In fact the largest of these differences (0.0008) comes 9851

from a tadpole-improved loop, which is expected to be 9852

best behaved perturbatively. We therefore replace the 9853

perturbative-truncation errors from [13,82] with our esti- 9854

mate of the perturbative uncertainty Eq. (327). Taking 9855

the perturbative errors to be 100% correlated between 9856

the results, we obtain for the weighted average αMS = 9857

0.11871(128). 9858

• Heavy quark current two-point functions 9859

Other computations with small errors are HPQCD 10 [13] 9860

and HPQCD 14A [16], where correlation functions of 9861

heavy valence quarks are used to construct short-distance 9862

quantities. Due to the large quark masses needed to reach 9863

the region of small coupling, considerable discretization 9864

errors are present, see Fig. 30 of FLAG 16. These are 9865

treated by fits to the perturbative running (a 5-loop run- 9866

ningαMS with a fitted 5-loop coefficient in theβ-function 9867

is used) with high-order terms in a double expansion 9868

in a2#2 and a2m2
h supplemented by priors which limit 9869

the size of the coefficients. The priors play an especially 9870

important role in these fits given the much larger num- 9871

ber of fit parameters than data points. We note, however, 9872

that the size of the coefficients does not prevent high- 9873

order terms from contributing significantly, since the data 9874

includes values of amc that are rather close to 1. 9875

More recent calculations use the same method but just 9876

at the charm quark mass, where discretization errors are 9877

considerably smaller. Here the dominating uncertainty 9878

is the perturbative error. JLQCD 16 [23] estimates it at 9879

"αs = 0.0011 from independent changes of the renor- 9880

malization scales of coupling and mass, µα, µm. Fig- 9881

ure 35 for the residual scale dependence of αs from R4 9882

yields 0.0017 from scale change 1 ≤ s ≤ 3 and 0.0025 9883

for 2 ≤ s ≤ 4. For the figure we set µα = µm. Indepen- 9884

dent changes of µα, µm would yield a larger estimate of 9885

the uncertainty [777]. We note also that there are small 9886

differences in the continuum-extrapolated results in the 9887

moments themselves, cf. Table 58. The relative differ- 9888

ence in R6/R8 − 1 ∼ kαs between Maezawa 16 [157], 9889
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Lattice results compatible with phenomenological results

FLAG19 + (non-lat)PDG18: α(5)

MS
(MZ ) = 0.1180(7)
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Conclusions

• Possibly ∼ 1% accuracy reached

• Strive for:

• Always check in PT region
• Try to avoid mixing computation with NP effects (condensates,

renormalons, . . .)
• More investigation of the continuum limit

• Possibly pheomenologically determinations could also consider
minimum value of µ, PT check
(ie here renormalisation scale / perturbative behaviour criteria)
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Additional slides

b coefficients

The first two coefficients are scheme independent:

b0 =
1

(4π)2

(
11− 2

3
nf

)
, b1 =

1

(4π)4

(
102− 38

3
nf

)
MS scheme: [only defined perturbatively]

bMS

2 =
1

(4π)6

(
2857

2
− 5033

18
nf +

325

54
n2
f

)
bMS

3 =
1

(4π)8

[
149753

6
+ 3564 ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f

]
bMS

4 = also known

[5-loops: Baikov et al., arXiv:1606.08659; Herzog et al., arXiv:1701.01404]

Mass independent, fixed nf scheme
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MS is a mass independent, fixed nf scheme

• ‘Relatively’ easy to compute b coefficients

• Cross quark thresholds, need to match nf → nf + 1

α
(nf )
MS

(µ) = α
(nf +1)
MS

(µ)

1 +
∞∑
k=1

k∑
n=0

ckn

[
α

(nf +1)
MS

(µ)

π

]k
lnn

[
µ2

m2
MS

(µ)

]
with

c10 = 0 , c20 =
11

72
, c30 =

564731

124416
− 82043

27648
ζ3 −

2633

31104
nf , . . . c43

• Usually choose µ = mMS(µ) (ie no logs)

• So ‘secret’ scale dependence of b coefficients

• Perturbative matching, only trust (?) at charm mass and above, ie
nf = 3→ 4

• In a MOM scheme (more physical), explicit mass dependence – only
bMOM

0 , bMOM
1 known [Jegerlehner et al., hep-ph/9809485]

But smoother behaviour across quark thresholds
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Determination of αs from QCD vertices

• ‘Natural’ definition
• Zero incoming ghost momentum in ghost-ghost-gluon vertex
• Simplification: vertex not renormalised (Taylor)

‘T’ or ‘MM’ (minimal mom) scheme

αT(µ) = Dghost
lat (µ, a)2Dgluon

lat (µ, a)
g2

0 (a)

4π

a, µ

cb

p

• Dghost
lat , Dgluon

lat (bare lattice) dressed ghost/gluon ‘form factors’
propagator functions in the Landau gauge

Dab(p) = −δab Dghost(p)

p2
, Dab

µν(p) = δab
(
δµν −

pµpν
p2

)
Dgluon(p)

p2

[Dghost/gluon(p) = D
ghost/gluon
lat

(p, 0) (continuum)]

• Thus there is now no need to compute the ghost-ghost-gluon vertex,
just the ghost and gluon propagators
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Determination of αs from the vacuum polarisation function at short dist.

〈JaµJbν 〉 = δab[(δµνQ
2 − QµQν)Π(1)(Q)− QµQνΠ(0)(Q)]

• Qµ is a space like momentum
• Jµ ≡ Vµ,Aµ for (non-singlet) vector/axial-vector currents

Set ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), OPE of the vacuum polarisation

function ΠV+A(Q) = ΠV (Q) + ΠA(Q):

ΠV+A|OPE(Q2, αs)

= c + C0(Q2) + CV+A
m (Q2)

m̄2(Q)

Q2
+

∑
q=u,d,s

CV+A
q̄q (Q2)

〈mQ q̄q〉
Q4

+CGG (Q2)
〈αsGG 〉

Q4
+ O(Q−6)

CV+A
X known up to 4-loops (in MS scheme)

• c is Q–independent and divergent ultraviolet cutoff →∞
• NP condensates eg 〈αsGG〉
• terms in CX which do not have a series expansion in αs

[Use of Adler function, D(Q2) ≡ −Q2dΠ(Q2)/dQ2 is a scheme independent finite quantity, and so avoids some of these problems]
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