VBF (zjj/wjj) and VBS measurements

From the current status to future prospective

Corinne Goy, LAPP CNRS/IN2P3 On behalf on the ATLAS and CMS collaborations

Ultimate precision at hadron colliders, Paris

1

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

Main background : QCD production

EW / QCD ratio (Sherpa 1.1)

Clean experimental signature

EW production is enhanced at large Mjj

03/12/2019

Corinne Goy, Ultimate precision at hadron

colliders, Paris, 03/12/2019

Compilation of current publications

	√ s	Luminosity /fb	Channel	arXiv[hep-ex]
ATLAS	7 TeV	4.7	Wjj	
	8 TeV	20.2	Zjj	1401.7610
			Wjj	1703.04362
	13 TeV	3.2	Zjj	1709.10264
CMS	7 TeV			
	8 TeV	19.3	Wjj	1607.06975
	13 TeV	35.9	Zjj	1712.09814

Statistics :

4%

Systematics exp:

Jet Energy Scale : 3%

Systematics :

- QCD scale
 - 4% (QCD)
 - 6% (EW)
- Intf EW-QCD : 2 3%
- Parton Shower : 4 %

03/12/2019

Corinne Goy, Ultimate prec

VBF – aTGC (wwz)

 $\mathcal{L}^{\text{eff.}} = \mathcal{L}^{\text{SM}} +$

Effective field theory description

3 CP conserving parameters : cWWW,cW,cB2 C or P violating parameters

 $\frac{c_6^i}{\Lambda^2}\mathcal{O}_6^i + \sum_i \frac{c_8^i}{\Lambda^4}\mathcal{O}_8^i + \cdots .$

Distributions used for aTGC

- Wjj : jet-linked variables
 - p_T leading jet
 - p_T ^{jj}
 - Δφ(j1,j2)
- Zjj : p_T ^z
 - well measured
 - In principle well modelled

PtZ (Zjj)

Better sensitivity with muons final states: end point 1.2 TeV (900 GeV with electrons)

NLO-EW corrections sizeable at 1 TeV , but decrease the expected cross-sections (conservative effect)

12

aTGC via Inclusive Production

Pure QGC not accessible

Sensitivity of the VVjj search in pp collisions

Never observed before LHC ($\sigma \sim 10^{-3}$ fb)

Ex	СоМ	WWjj	ssWWjj	WZjj	ZZjj	Ζγϳϳ	Wγjj
CMS	7 TeV	~1 (5.05/fb)					
CMS	8 TeV		2.0 (19.7/fb)				2.7 (19.7/b)
ATLAS	8 TeV	2.7 (20.3/fb)	3.6 (20.3/fb)				
CMS	13 TeV		5.5 (35.9/fb)	2.2 (35.9/fb)	2.7 (35.9/fb)	4.7 (19.7/fb+ 35.9/fb)	
ATLAS	13 TeV		6.5 (36.1/fb)	5.3 (36.1/fb)	5.5 (139/fb)	4.1 (36.1/fb)	

ATLAS : ZZjj in 4l and 2l 2v (139/fb)

VBS - aQGC

Described by dimension 8 operators

18 parameters

All H fields (S) Mixing V & H fields (M) All V fields (T)

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

Other variables

M parameters

- 13 TeV sets better limits
- Semi-leptonic decays sets better limits
- ! Positivity of parameters not exploited
- Unitarity methods different (if any)

Unitarity

R Delgado, MBI, 2019

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

HL-LHC : From first observations

to measurements

VBS – The future

 $\sqrt{s} = 14 \text{ TeV}$, 3000. fb⁻¹

CERN-LPCC-2018-03 Standard Model Physics at the HL-LHC and HE-LCH 2 volumes

03/12/2019

Evolution of the experimental conditions

Consequences for object reconstruction

		η			
	CMS		ATLAS		
Track reconstruction:		4.			Poor resolution for muons:
Electrons:	3.	4.			Affects variables
Muons:	2.8	2.7 (4 tagger	. with muon [.])		like MT
PU rejection :	Excellent in t	he tracker	acceptance		
	3. – 4.	3.8			
			$p_T imes \sigma(q/p_T)$	- Sim	Run-2 - Analogue Clustering, τ _{eL} = 33 mm, * Ulation e μ = 1 GeV (ITk) = 1 GeV (Run-2)
Gain in accept	ance (exam	ole) :	_	$ p_T$	= 10 GeV (ITk) = 10 GeV (Run-2) = 100 GeV (ITk)
ATLAS: WZjj $\rightarrow 3\ell v$	+18% (+25%)		1	0 ⁻¹ = • • p _T	= 100 GeV (Run-2)
CMS: ZZjj $\rightarrow 4\ell$ +2	13%				The second se
			1	0 ⁻²	5 1 1.5 2 2.5 3 3.5 4
	6.		to provision of k		true track

Corinne Goy, Ultimate precision at houses

•ZZjj : 8.5 to 10.3%

CERN-LPCC-2018-03

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

VBS – Systematics

Systematic on M_TWZ (potential variable for aQGC)

m_{T}^{WZ} [GeV]	150 - 200	200 - 250	250 - 300	300 - 400	≥ 400
$\Delta \sigma^{\text{fid.}}_{W^{\pm}Zjj}$ [fb]	0.49	0.64	0.24	0.21	0.06
	Relativ	e Uncertaint	ties [%]		
Statistics	24.7	19.3	31.0	33.6	63.1
All systematics	16.9	11.8	10.6	9.9	18.4
Luminosity	2.8	2.3	2.4	2.5	3.0
Total	29.9	22.6	32.7	35.0	65.7
Uncorrelated syst.	4.2	0.7	1.0	1.4	5.6
Unfolding	5.2	9.1	6.0	2.0	8.6
Electrons	1.5	1.4	2.0	2.3	3.0
Muons	1.8	1.9	2.2	2.3	3.5
Jets	8.0	5.5	6.0	6.5	3.4
Red. Background	6.1	0.5	0.5	1.9	5.5
Irred. Background	10.6	3.0	4.3	4.6	11.9
Pileup	1.4	0.8	0.9	0.8	1.4

Δφ**(W,Z)**

$\Delta \phi(W,Z)$ [rad]	0.0 - 0.6	0.6 - 1.2	1.2 - 1.8	1.8-2.5	2.5 - 3.15
$\Delta \sigma^{\rm fid.}_{W^{\pm}Zjj}$ [fb]	0.30	0.37	0.28	0.40	0.32
	Relati	ve Uncertai	nties [%]		
Statistics	26.6	23.8	28.3	23.7	27.9
All systematics	11.7	9.5	10.9	10.0	13.9
Luminosity	2.5	2.4	2.6	2.6	2.8
Total	29.1	25.6	30.3	25.7	31.2
Uncorrelated syst.	1.9	1.2	1.5	1.3	2.0
Unfolding	0.2	0.2	0.1	0.1	0.1
Electrons	1.6	1.4	1.5	1.5	1.6
Muons	2.1	2.0	1.9	1.8	1.9
Jets	7.4	6.5	6.0	5.2	7.1
Red. Background	4.3	2.9	2.7	2.2	4.5
Irred. Background	6.1	4.7	7.3	7.0	9.9
Pileup	2.0	0.9	0.9	0.5	0.5

Dominant systematics

• Th. Modelling

- QCD background / μ R, μ F (20 30%
 - , LO generator)
 - Controlled by CR region
 - Extrapolation under the signal region
- Interference EW/QCD
- EW signal
 - NLO-QCD / NLO-EW larger in the tails

Unfolding

Depending of the distribution:
 ~ 5-10%

• Pile Up

- Run2: <µ> = 35 to 200 but mitigating by extended tracker
- Especially channels with a photon (wrong vertex association)

• Jet Energy Scale

03	/1	2/	2	0	1	9
----	----	----	---	---	---	---

	WZjj	ssWWjj	ZZjj				
Statistic : 3000/fb							
	< 2%	1%	~4%				
Current th. systematics							
EWjj	4.8%	3.1%	1-10%				
QCDjj	5.2%	2.9%	10% + 10% (ggZZ)				
Intf	1.9%	1.0%					
WZ		3.3%					

Mainly LO order event generators

Jet Energy Scale prospects

ATL-PHYS-PUB-2019-005

Corinne Goy, Ultimate precision at hadron

colliders, Paris, 03/12/2019

Guidance

- In the choice of variables / diff. distributions
 - Likely to be less affected by Higher Orders corrections QCD & EW
 - In conjunction with experimental systematics:
 - Unfolding
 - PU sensitivity
 - JES sensitivity

• Treatment of systematics linked to usage of MVA ?

VBS - polarized states

- $VxVx \rightarrow VxVx$ Potentially 81 combinations of cross-sections
- X = L, R, O
- T = L+R , L/O longitudinal

$\cos\theta^*$: one of the most sensitive variable to the polarization of individual boson

$$: \frac{1}{\sigma_{W^{\pm}Z}} \frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8} f_{\rm L} (1 \mp \cos\theta_{\ell,W})^2 + \frac{3}{8} f_{\rm R} (1 \pm \cos\theta_{\ell,W})^2 + \frac{3}{4} f_0 \sin^2\theta_{\ell,W}$$

No cut on the individual leptons , boson rest frame

C

Coordinate Systems :

- Collins-Soper,
- Helicity,
- Mod-Helicity

 \mathbf{M}

VBS : event variables

Sensitive to the polarization of the final state boson. Normalised yields (dN/N

Example : $\Delta \phi_{ii}$

CERN-LPCC-2018-03 Standard Model Physics at the HL-LHC and HE-LCH

Corinne Goy, colliders, Paris, 03/12/2019

VBS : several variables mentioned in literature

Linked to the jet system

- Δφjj
- Δηjj
- $\Delta Rjj = \sqrt{\Delta \eta j j} + \Delta \phi j j$
- Mjj

- CERN-LPCC-2018-03 Standard Model Physics at the HL-LHC and HE-LCH
- CERN-THESIS-2015-039, C. Bittrich
- arXiv: 1710.09339 & arXiv: 1907.04722 A. Ballestrero, E. Maina, G. Pellicioli 03/12/2019

orinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

Linked to the final state bosons

• cosθ*

η_V p^T_V

• p^Tlep

• Σp^T

$$L_P = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$$

$$\cos \theta_{2\mathrm{D}} = \frac{\overrightarrow{p}_{\mathrm{T}}^{\ell*} \cdot \overrightarrow{p}_{\mathrm{T}}^{W}}{|\overrightarrow{p}_{\mathrm{T}}^{\ell*}| |\overrightarrow{p}_{\mathrm{T}}^{W}|}$$

Templates : Reweighting method

Longitudinal, Left and Right

fractions are determined with an analytic fit in bins of pT(V) and Y_{v} , in total phase-space

CMS Collaboration, Phys. Rev. Lett. 107 (2011) 021802, [1104.3829]. ATLAS Collaboration,, Eur. Phys. J. C72 (2012) 2001, [1203.2165].

→Weights per event to create pure helicity state templates propagated to the reconstruction level in the fiducial phase space

- Fine binning & closure test
- Some effects like interference, off-shell incorporated
- Build in consistency

Drawback : cannot reweight any other variables

Polarized ∆n_ shapes from Monte Carlo

Polarized An shapes from Reweighting

Templates : generation of separate distributions L, R, 0

- Phantom / Madgraph
 - LO generation

0.35

0.3

(qd) 0.25

ອ^ຍ 0.2 ອັ ຍິ ຍິ ຍິ 0.15

0.1

0.05

INTF in presence of lepton cut 3 states do not sum up to full Few % discrepancy

ssWWjj: $W^{\pm}W^{\pm} \rightarrow I^{\pm}I^{\pm}vv$ most promising channel

Helicity distributions obtained with MadGraph+DECAY 00 fraction : 6 - 7 %

CERN-LPCC-2018-03

Corinne Goy, Ultimate precision at hadron

colliders, Paris, 03/12/2019

$\begin{array}{l} \mathsf{ZZ}\mathsf{j}\mathsf{j}\mathsf{:}\\ \mathsf{ZZ} \to \mathsf{4I} \end{array}$

Z_TZ_T , Z₀Z_T components considered as an additional background in a BDT with added variables

CERN-LPCC-2018-03

 $\eta(Z_2)$

e (μ) acceptance

Fit of all contributions : more problematic

Observations

- Studies on $VV \rightarrow V_{L/0}V_{L/0}$
- Polarisation of initial state

- Does jet-linked variable access instead initial state polarisation ?
- Access to Initial state polarization in MC?
- Exploiting semi-leptonic decays
 - tagging jet-linked variables
 - |cosθ*|
- Polarisation
 - End of run3 (300/fb) : promising 1σ in ssWW
 - Multi-variate analysis not fully exploited

Meng Lu et al 1812.07591 /1908.05196

27 TEV : would be promising

Cross-section X 4	process W ⁺ W ⁺ jj W ⁺ W ⁺ jj W ⁺ Zjj ZZjj	(∆ <i>y_{jj}</i> >2.4)	$\sqrt{S} = 14 \text{ TeV}$ 2.33 fb 2.49 fb 0.82 fb 0.11 fb	$\sqrt{S} = 27 \text{ TeV}$ 8.65 fb 9.11 fb 3.16 fb 0.44 fb	Fiducial phase space
aQGC :		14 WZjj	${ m TeV} \ W^{\pm}W^{\pm}jj$	27 WZjj	${ m TeV} \ W^{\pm}W^{\pm}jj$
Limits improved by a factor 5 -10	${f_{S_0}/\Lambda^4} \ f_{S_1}/\Lambda^4 \ f_{T_0}/\Lambda^4 \ f_{T_1}/\Lambda^4 \ f_{M_0}/\Lambda^4 \ f_{M_1}/\Lambda^4$	[-8,8] [-18,18] [-0.76,0.76] [-0.50,0.50] [-3.8,3.8] [-5.0,5.0]	[-6,6] [-16,16] [-0.6,0.6] [-0.4,0.4] [-4.0,4.0] [-12,12]	[-1.5,1.5] [-3,3] [-0.04,0.04] [-0.03,0.03] [-0.5,0.5] [-0.8,0.8]	[-1.5,1.5] [-2.5,2.5] [-0.027,0.027] [-0.016,0.016] [-0.28,0.28] [-0.90,0.90]
Polarisation	NB 1 param fit			VDC 7 7 (m	tion of the ter (0/)
	w/ syst.	uncert. w/o	o syst. uncert.	w/ syst. uncer	t. w/o syst. uncert.)
	HL-LHC 1.4	σ	1.4σ 5.7 σ	75%	75%
CERN-LPCC-2018-03)	colliders, Paris, 0	3/12/2019	2070	17 /0

Conclusion

- VBF Z & W
 - Will be well measured at the end of Run3
 - aTGC limits complementary to those with inclusive VV
- VBS will enter an interesting phase with HL-LHC
 - Tot cross-section : few %
 - Polarization V_0V_0 : 1-3 σ / exp
 - Polarisation not useful for aTGC
 - Lep heritage: only for CP violating parameter
 - for aQGC ?
- Benefice of combination CMS/ATLAS
 - Experimental syst (JES) not correlated
- But th. modelling is a concern

BACKUP

Other EW diagrams partly included in the signal

aTGC

Change of paradigm from LEP & Run I description

$$\frac{\mathcal{L}_{WWV}}{g_{WWV}} = ig_1^V \Big(W^{\dagger}_{\mu\nu} W^{\mu} V^{\nu} - W^{\dagger}_{\mu} V_{\nu} W^{\mu\nu} \Big) + i\kappa_V W^{\dagger}_{\mu} W_{\nu} V^{\mu\nu}
+ \frac{i\lambda_V}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\ \nu} V^{\nu\rho} - g_4^V W^{\dagger}_{\mu} W_{\nu} (\partial^{\mu} V^{\nu} + \partial^{\nu} V^{\mu})
+ g_5^V \epsilon^{\mu\nu\rho\sigma} (W^{\dagger}_{\mu} \overleftrightarrow{\partial}_{\rho} W_{\nu}) V_{\sigma} + i\tilde{\kappa}_V W^{\dagger}_{\mu} W_{\nu} \tilde{V}^{\mu\nu}
+ \frac{i\tilde{\lambda}_V}{m_W^2} W^{\dagger}_{\rho\mu} W^{\mu}_{\ \nu} \tilde{V}^{\nu\rho}$$

Phenomenological lagrangian

Effective field theory description Low energy theory

H Milder @ MBI R Aggleton @ MBI

aTGC via Inclusive Production

RED is CMS ; BLUE is ATLAS

colliders, Paris, 03/12/2019

Positivity

C. Zhang, MBI, 2019

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

Not used yet!

50

Evolution of the experimental conditions

- Luminosity
 Peak: 5- 7.5 10³⁴ cm⁻²s⁻¹
- Aging radiation damages

To cope with

Data rates

Detector occupation

And to maintain:

Trigger performance Pile-Up jet rejection Object performance ⇒ Upgrade of detectors Hardness Granularity

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

Tracking up to $|\eta| < 4$

Timing detector : a new dimension

Corinne Goy, Ultimate precision at hadron

colliders, Paris, 03/12/2019

Rapport jaune , Figure de Zeppenfeld

Experimental effects Resolution tracks

Figure 27: Left: Integrated number of events above m_{WZ}^T cut vs m_{WZ}^T cut. Right: Integrated number of events above m_{WZ} cut vs m_{WZ} cut vs m_{WZ} cut.

Prospective - 4 methods

- Full simulation of signal and background
 - Rare
- Parametric simulation of detector effects
 - Experimental effects taken into account by parametrizations based on detector performance studies with the full simulation
 - The effect of the high pileup at the HL-LHC is incorporated by overlaying pileup jets onto the hard-scatter events with 2% efficiency
- Fast simulation using DELPHES
- Extrapolation from Run2 results
 - Scale of cross-sections
 - Scale of acceptance for leptons
 - Object performance using DELPHES

ATLAS

ssWWjj: W[±]W[±] $\rightarrow \ell^{\pm}\ell^{\pm}\nu\nu$

- **CMS** : full simulation (except for jets at large eta) and a cut-based selection
- **ATLAS** : parametric simulation

and a cut-based selection

 Main background is not QCD

WZjj: WZ \rightarrow 3 ℓ V

ATLAS

- Parametric simulation
- Conservative bkg approach, loose event selection
- S/B = 0.11
- WZjj-QCD : Phys. Lett B 793 (2019) has shown that could be over estimated by 40% in certain regions of the PS , (but within 2σ.)
- WZjj-EW : Signal suffers from the color flow feature in Sherpa (Sherpa/MadGraph = 87%)

Process	ATLAS	CMS				
WZjj - EW	3889	2757				
WZ - QCD	29754	3486				
$t\bar{t}V$	3145	_				
tZ	2221	_				
tV/VVV	_	1374				
Non prompt	_	1192				
ZZ	1970	_				
VV	_	398				
$\mathrm{Z}\gamma$	_	296				

Nh of events for 3000 fb^{-1}

CMS

- Extrapolation from the Run 2 (2.2 σ)
- Tight selection
- S/B = 0.41
 - WZ-QCD main background, but not as dominant

$WZ \rightarrow 3\ell v$: polarization of the individual boson W or Z

$WZ \rightarrow 3\ell v : LL fraction$

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

No HIGGS ! Extreme case

Sensitivity to EWSB

Effect enhanced in considering only the longitudinal production

 $V_1V_1 \rightarrow V_1V_1$

WWii

arXiv: 1710.09339 & arXiv: 1907.04722 A. Ballestrero, E. Maina, G. Pellicioli 03/12/2019

colliders, Paris, 03/12/2019

Alternative method on the same line

$$\frac{d\sigma}{\sigma d\cos\theta d\phi} = \frac{3}{16\pi} \Big[(1 + \cos^2\theta) + A_0 \frac{1}{2} (1 - 3\cos^2\theta) + A_1 \sin(2\theta) \cos\phi + A_2 \frac{1}{2} \sin^2\theta \cos(2\phi) + A_3 \sin\theta \cos\phi + A_4 \cos\theta + A_5 \sin^2\theta \sin(2\phi) + A_6 \sin(2\theta) \sin\phi + A_7 \sin\theta \sin\phi \Big],$$

Ai coefficients can be calculated as expectation values of trigonometric functions :

-
$$A0 = 4 - <10\cos 2\theta > \& A4 = <4\cos \theta >$$

And the polarization fractions expressed as :

$$\begin{split} f_L^{W^{\pm}} &= \frac{1}{4} (2 - A_0^{W^{\pm}} \mp A_4^{W^{\pm}}), \ f_R^{W^{\pm}} = \frac{1}{4} (2 - A_0^{W^{\pm}} \pm A_4^{W^{\pm}}), \ f_0^{W^{\pm}} = \frac{1}{2} A_0^{W^{\pm}}, \\ f_L^Z &= \frac{1}{4} (2 - A_0^Z + \frac{1}{c} A_4^Z), \ f_R^Z = \frac{1}{4} (2 - A_0^Z - \frac{1}{c} A_4^Z), \ f_0^Z = \frac{1}{2} A_0^Z. \end{split}$$

Computation in fiducial phase-space; No template, borned functions

Corinne Goy, Ultimate precision at hadron colliders, Paris, 03/12/2019

03/12/2019

arXiv: 1810.1103

J Baglio & D.N Le

Figure 9: Observed significance as a function of integrated luminosity (left) and expected crosssection uncertainty (right) for the VBS $W_L W_L$ signal, assuming a 10% $W_L W_L$ fraction predicted by the MadGraph generator, in the ℓvqq channel at $\sqrt{s} = 27$ TeV. The solid and dashed lines on the left shows the expected significance obtained by fitting to the total invariant mass of the VBS system and the BDT output, respectively. The dot-dashed line shows the expected significance from the combination of all the three semi-leptonic channels assumed to have sensitivity similar to the ℓvqq channel.