WW Like-Sign	ZZ and WW Opposite-Sign	

NLO Predictions for VBS at the (HL-/HE-)LHC pp \rightarrow VV + jj + X with leptonic decays for the LHC at $\sqrt{s} = 13$, 14, and 27 TeV

Christopher Schwan

Università degli Studi di Milano, INFN Sezione Milano

Ultimate Precision at Hadron Colliders, Orsay, 3 December 2019

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

Introduction	WW Like-Sign	ZZ and WW Opposite-Sign	
0000			

Vector-boson scattering (VBS): VBF's big(ger) brother

VBS process class: $pp \rightarrow VV + jj + X$ with lept. dec.:

- $I ZZ : pp \rightarrow e^+e^- \mu^+\mu^- + jj + X$
- $\ \ \, {\rm W}^+{\rm W}^-\colon {\rm pp}\,\rightarrow{\rm e}^+\nu_{\rm e}\,\mu^-\overline{\nu}_{\!\mu}+{\rm jj}+X$
- + processes related by cc. and different lep. comb.

What can we learn?

- nature of QGCs (with triple-boson prod.)
- form of Higgs-vector-vector couplings
- \rightarrow EWSB: interplay between QGC, TGC, and Higgs boson(s)

Introduction	WW Like-Sign	ZZ and WW Opposite-Sign	
0000			
			-

 $\mathcal{O}(\alpha_{\rm s}^0 \alpha^6)$

Coupling structure of VBS: LOs

LO: $\mathcal{O}(\alpha_{\rm s}^2 \alpha^4) \qquad \mathcal{O}(\alpha_{\rm s}^1 \alpha^5)$

 M_{jj} - $|\Delta y_{jj}|$ plots for W⁺W⁺ [Ballestrero, et al.]:

Introduction				
0000	0000	00000	0	0

Coupling structure of VBS: NLOs

A few diagrams (pp $\rightarrow e^+ \nu_e \mu^+ \nu_\mu + jj + X$):

NLO doable, but only most important are done by now:

- [B. Biedermann, A. Denner, M. Pellen]: complete NLO tower for pp $\rightarrow e^+ \nu_e \, \mu^+ \nu_\mu + jj + X$
- [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]: next-to-leading $\mathcal{O}(\alpha^7)$ and $\mathcal{O}(\alpha_s \alpha^6)$ for WZ
- ZZ and opposite-sign WW will be very expensive computationally
- QCD corrections are available, sometimes approximated

Introduction				
0000	0000	00000	0	0

Coupling structure of VBS: NNLOs

 \rightarrow NNLO will be hopeless for a long time (but probably not needed antime soon?)

	WW Like-Sign			
0000	0000	00000	0	0

WW like-sign scattering: A few references

- [B. Jäger, C. Oleari, D. Zeppenfeld], [A. Denner, L. Hošeková, S. Kallweit]: approx. $\mathcal{O}(\alpha_{
 m s} \alpha^6)$
- [T. Melia, K. Melnikov, R. Röntsch, G. Zanderighi]: ${\cal O}(lpha_{
 m s}^3 lpha^4)$
- [M. Rauch]: VBF and VBS review
- [B. Biedermann, A. Denner, M. Pellen]: $\mathcal{O}(\alpha^7)$
- → [B. Biedermann, A. Denner, M. Pellen]: complete NLO tower
- [A. Ballestrero et al.]: Tool/approximation comparison for $\mathcal{O}(\alpha_s \alpha^6)$ and PS, PDF uncertainties
- \rightarrow [HL-LHC Collaboration and HE-LHC Working Group; A. Denner, M. Pellen]: 14 and 27 TeV results

WW Like-Sign	ZZ and WW Opposite-Sign	
0000		

WW like-sign: 13 TeV [B. Biedermann, A. Denner, M. Pellen]

	Leading	orders:	
$\mathcal{O}(\alpha^6)$ [fb]	$\mathcal{O}(lpha_{ m s} lpha^5)$ [fb]	$\mathcal{O}(lpha_{ m s}^2 lpha^4)$ [fb]	Sum [fb]
1.4178(2)	0.04815(2)	0.17229(5)	1.6383(2)

• $\mathcal{O}(\alpha_{\rm s}^2 \alpha^4)$ kinematically supressed

• $\mathcal{O}(\alpha_{\rm s} \alpha^5)$ also colour supressed

	N	ext-to-leading ord	ers:	
$\mathcal{O}(lpha^7)$ [fb]	$\mathcal{O}(lpha_{ m s} lpha^6)$ [fb]	$\mathcal{O}(lpha_{ m s}^2 lpha^5)$ [fb]	$\mathcal{O}(lpha_{ m s}^3 lpha^4)$ [fb]	Sum [fb]
-0.2169(3)	-0.0568(5)	-0.000 32(13)	-0.0063(4)	-0.2804(7)
-13.2%	-3.5%	0.0%	-0.4 %	-17.1%

- large EW corrections, only weakly dep. on $M_{\rm jj}$ and $\Delta y_{\rm jj}$ cuts
- both mixed correction tiny/negligable

small QCD corrections

0000 0000 0		WW Like-Sign			
	0000	0000	00000	0	0

WW like-sign: 13 TeV [B. Biedermann, A. Denner, M. Pellen]

- large EW corrections
- even larger EW corrections towards higher transverse momenta (Sudakov logs)
- $\mathcal{O}(\alpha_s \alpha^5)$: large at small p_{j_1} (only soft jets); shape-changing

• $\mathcal{O}(\alpha_s^3 \alpha^4)$ corrections small • $\mathcal{O}(\alpha_s^2 \alpha^5)$ corrections tiny

WW Like-Sign	ZZ and WW Opposite-Sign	
0000		

WW like-sign: 14 and 27 TeV [A. Denner, M. Pellen]

- slightly different setup w.r.t. 13 TeV
- Large EW corrections
- Slightly increasing NLO EW for 27 TeV
- $\bullet~$ 14 TeV to 27 TeV: Increase by a factor ${\sim}3$

¹only $\mathcal{O}(\alpha^6)$

WW Like-Sign	WZ	ZZ and WW Opposite-Sign	
	0000		

WZ scattering: references

- [G. Bozzi, B. Jäger, C. Oleari, D. Zeppenfeld]: Approx. $\mathcal{O}(\alpha_{
 m s} \alpha^6)$
- [F. Campanario, M. Kerner, L.D. Ninh, D. Zeppenfeld]: $\mathcal{O}(\alpha_{
 m s}^3 \alpha^4)$
- [J. Bendavid et al.] (SM Les Houches 2017 report, Sec. V.3): LOs, Tool comparison
- [B. Jäger, A. Karlberg, J. Scheller]: Parton-shower effects to $\mathcal{O}(\alpha^6)$
- ightarrow [A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen, C.S.]: NLO $\mathcal{O}(lpha^7)$ and $\mathcal{O}(lpha_{
 m s} lpha^6)$
 - [A. Ballestrero, E. Maina, G. Pelliccioli]: Polarisation studies

0000 0000	0000	0	0

LO integrated cross sections

Integrated xs for pp $ightarrow {
m e}^+
u_{
m e} \, \mu^+ \mu^-$ jj @ $\sqrt{s} = 13 \, {
m TeV}$:

Sum [fb]	EW [fb]	QCD [fb]	Int. [fb]
1.55	$0.255^{+9.03\%}_{-7.75\%}$	$1.10^{+37.0\%}_{-24.9\%}$	$0.00682^{+18.4\%}_{-14.4\%}$
100 %	16.4 %	70.6 %	0.439 %

Photons [fb]	Bottom-quarks [fb]
$0.000988^{+11.5\%}_{-9.47\%}$	$0.195^{+3.59\%}_{-7.22\%}$
0.0636 %	12.5 %

- very large QCD contributions mainly due to gluon-PDF
- small interference (colour and kinematical suppression)
- \bullet smaller EW contribution compared to like-sign VBS (\rightarrow Z-boson)
- $\bullet\,$ photon contributions completely irrelevant \rightarrow leave out photon-initiated at NLO
- important: bottom-quark contributions

Introduction VVVV LI	ke-Sign VVZ	ZZ and	WW Opposite-Sign	Conclusions
0000 0000	00	00 0		o _

NLO integrated cross section

Integrated xs for pp $\rightarrow e^+ \nu_e \, \mu^+ \mu^- jj + X$:

\sqrt{s}	LO ² [fb]	NLO EW [fb]	NLO QCD [fb]	NLO EW+QCD [fb]
13 TeV	$0.2551^{+9.0\%}_{-7.8\%}_{100.0\%}$	0.2142 16.0 %	$0.2506^{+1.0\%}_{-1.0\%}_{-1.8\%}$	0.2097 ^{+1.3} % -17.8%
14 TeV	$0.299^{+8.5\%}_{-7.4\%}_{100.0\%}$	0.251 -16.1 %	$0.294^{+0.7\%}_{-1.0\%}\ -1.8\%$	$0.245^{+0.8\%}_{-0.8\%}\\-17.9\%$
27 TeV	$\frac{1.031^{+4.6\%}_{-4.3\%}}{100.0\%}$? ?	? ?	? ?

 \bullet Uncertainties are 7-point QCD-scale variations \rightarrow NLO EW not accounted for!

- Large corrections on the integrated cross section, very similar to like-sign scattering
- QCD corrections small, large EW corrections
- 14 TeV to 27 TeV: Increase by a factor ${\sim}3$

²only $\mathcal{O}(\alpha^6)$

WW Like-Sign	WZ	ZZ and WW Opposite-Sign	
	00000		

Jet observables 13 TeV

- $\bullet~$ Leading jet p_T peaks around 140 GeV
- Note that

$$p_{{
m T},{
m j}_1} > p_{{
m T},{
m j}_2} > p_{{
m T},{
m j}_3} \ > 30\,{
m GeV}$$

- - EW corr. become increasingly negative; Sudakov logs
- QCD uncertainty band small for large p_{T,j_1} due to

ŀ

$$u = \sqrt{p_{\mathrm{T},\mathrm{j}_1} \cdot p_{\mathrm{T},\mathrm{j}_2}}$$

Technical challenges of the calculation of pp $\rightarrow e^+ \nu_e \, \mu^+ \mu^- jj + X$

NLO calculation straightforward thanks to OPENLOOPS and RECOLA, but ...

Virtuals:

- Up to 83 000 Feynman diagrams for each partonic channel
- \bullet ME evaluation expensive: evaluation of each partonic process takes about ten seconds \to parallelisation with MPI [MPI Forum]
- → Computational costs: $\sim 8 \times 10^5$ CPU hours for each one of $\{\mathcal{O}(\alpha^7), \mathcal{O}(\alpha_s \alpha^6)\}$; comparable to NNLO QCD calculations, see T. Gehrmann's talk last Thursday

Reals:

- Most complicated example: $\mathcal{O}(\alpha_{s}\alpha^{6})$
 - 40 qq partonic processes for the QCD reals, each has 12-14 dipoles
 - 14 qg partonic processes for the QCD reals, each has 10-11 dipoles
 - 16 qq partonic processes for the EW reals, each has 42 dipoles
- $\rightarrow\,$ around 1500 dipoles: automation is key $\rightarrow\,$ most complicated NLO computation to date
 - phase space integration complicated: 5×10^{10} points before cuts (eff.: 14%) \rightarrow MPI

In general:

• Time consuming checks of two calculations against each other, but neccessary!

WW Like-Sign	ZZ and WW Opposite-Sign	

ZZ and WW opposite-sign scattering

- [B. Jäger, C. Oleari, D. Zeppenfeld]: WW approx. $\mathcal{O}(lpha_{
 m s} lpha^6)$
- [B. Jäger, C. Oleari, D. Zeppenfeld]: ZZ approx. $\mathcal{O}(lpha_{
 m s} lpha^6)$
- [T. Melia, K. Melnikov, R. Röntsch, G. Zanderighi]: WW $\mathcal{O}(\alpha_{\rm s}^3 \alpha^4)$
- [B. Jäger, G. Zanderighi]: WW approx. $\mathcal{O}(\alpha_{\rm s} \alpha^6)$ matched with PS
- ZZ $\mathcal{O}(\alpha_s^3 \alpha^4)$?

Any EW corrections are missing

	WW Like-Sign		ZZ and WW Opposite-Sign	Conclusions
0000	0000	00000	0	•

Conclusions

Like-sign WW:

- NLO tower available for like-sign WW scattering
- small QCD, large EW corrections: ${\sim}16\,\%$ (13 and 14 TeV)
- \bullet for WW like-sign 27 TeV slightly larger: ${\sim}19\,\%$

WZ:

- for WZ full ${\cal O}(\alpha_s\alpha^6)$ and ${\cal O}(\alpha^7)$ now known, results similar to like-sign WW,
- $\mathcal{O}(\alpha_s^2 \alpha^5)$ still is missing

ZZ/opposite WW:

- for ZZ and opposite-sign WW only QCD corrections are known
- full NLO will be expensive
- $\rightarrow\,$ QCD $\ll\,$ EW: FO uncertainty estimation?

Longitudinal VBS and Tree-Level Unitarity (I)

- (EW symmetry breaking makes W^{\pm} , Z massive
- Massive vector boson have one additional polarisation: longitudinal
- In the high energy limit (Goldstone-Boson equivalence theorem), longitudinal polarisation $ε_L(p)$ behave as $ε_L(p) → p$
- Longitudinal VBS: Four longitudinal polarisations, does M_{LLLL} blow up in the high energy limit (pert. unitarity violation)?

For
$$W^+(p_1)Z(p_2)
ightarrow W^+(p_3)Z(p_4)$$
 and $t = (p_1 - p_3)^2$ choose

$$\varepsilon_{\mathsf{L}}^{\mu}(p_{i}) = \frac{1}{N} \left(\frac{p_{i}^{\mu}}{M_{i}} - \frac{2M_{i}}{t - 2M_{i}^{2}} p_{j}^{\mu} \right), \quad j = (i+2) \mod 4$$

such that $p \cdot \varepsilon_{L}(p) = 0$, with normalisation N so that $\varepsilon_{L}^{*} \cdot \varepsilon_{L} = -1$.

Tree-Level Unitarity		WW like-sign		
00	0	0	0000000000	000000000000000000000000000000000000000

Longitudinal VBS and Tree-Level Unitarity (II)

$$\begin{split} \mathcal{M}_4 &\propto -s^2 - u^2 - 4su + 2(M_W^2 + M_Z^2) \frac{s^2 + 6su + u^2}{s + u} + \dots \\ \mathcal{M}_s &\propto s^2 + 2su - 2M_W^2 \frac{3su + u^2}{s + u} - 2M_Z^2 \frac{2u^2 + 3su - s^2}{s + u} - \frac{M_Z^4}{M_W^2} s + \dots \\ \mathcal{M}_u &\propto u^2 + 2su - 2M_W^2 \frac{3su + s^2}{s + u} - 2M_Z^2 \frac{2s^2 + 3su - u^2}{s + u} - \frac{M_Z^4}{M_W^2} u + \dots \\ \mathcal{M}_H &\propto -\frac{M_Z^4}{M_W^2} \frac{t^2(t - 4M_W^2)(t - 4M_Z^2)}{(t - M_H)(t - 2M_W^2)(t - 2M_Z^2)} = \frac{M_Z^4}{M_W^2} s + u + \dots \\ \mathcal{M} &= \mathcal{M}_4 + \mathcal{M}_s + \mathcal{M}_u + \mathcal{M}_H \propto 0 + \dots \end{split}$$

- SM VVH vertex crucial to the cancellation
- different Higgs sector: enhancements in intermediate regions possible

Calculation from [Schwartz]

Why are the EW corrections so large?

Approximate EW correction using most important EW logs [Denner, Pozzorini] [Denner, Pozzorini] to the VBS subprocess:

$$\mathrm{d}\sigma_{\mathrm{LL}} = \mathrm{d}\sigma_{\mathrm{LO}}(1 + \delta_{\mathrm{EW,LL}})$$

with

$$\delta_{\rm EW,LL} = \frac{\alpha}{4\pi} \left(-\frac{8}{{\rm s}_{\rm w}^2} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{19}{3\,{\rm s}_{\rm w}^2} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right)$$

with a characteristic scale Q chosen as $M_{4\ell} := M_{\bar{e}\nu_e\bar{\mu}\mu}$ (s-invariant of the VBS):

For WZ VBS:

- $\mathit{Q} = \langle \mathit{M}_{4\ell}
 angle pprox$ 413 GeV $\Rightarrow \delta_{\mathrm{EW,LL}} = -17.5$ %
- $Q = M_{4\ell}$, binwise with distribution on the left $\Rightarrow \delta_{\rm EW,LL} = -16.4 \,\%$

For comparison [Biedermann, Denner, Pellen]:

- like-sign-W VBS: $Q \approx 390 \text{ GeV}$
- diboson production: $Q \approx 250 \, \text{GeV}$

	WW like-sign	
	•	

14 TeV with HL-LHC statistical uncertainties [A. Denner, M. Pellen]

Yellow band estimates the statistical uncertainties for 3000 fb $^{-1}$ using $\pm 1/\sqrt{\textit{N}_{\rm obs}}$

VBS at the LHC, pp $\rightarrow e^+ \nu_e \mu^+ \mu^- jj + X$

VBS: $\sigma \approx O(1\,{\rm fb}) \rightarrow$ need large \sqrt{s} and \mathcal{L} : new class of rare processes accessible in run II

(staircase plot from the [ATLAS Collaboration])

- Largest VBS channel is $W^+W^+ \rightarrow W^+W^+$, full NLO corrections available [Biedermann, Denner, Pellen]
- Second largest channel: $W^+Z \rightarrow W^+Z$

W7 0000000000

Experiment: pp $\rightarrow e^+ \nu_e \mu^+ \mu^- jj + X$

- ATLAS 8 TeV: [CERN-EP-2016-017]
- ATLAS 13 TeV: Obsers. with 5.6 σ sig. $(\mathcal{L} = 36.1 \, \text{fb}^{-1})$ [ATLAS-CONF-2018-033]
- ATLAS 13 TeV: Obsers. with 5.3 σ sig. $(\mathcal{L} = 36.1 \, \text{fb}^{-1})$ [CERN-EP-2018-286]

- CMS 13 TeV: Meas. with 1.9 σ sig. $(\mathcal{L} = 35.9 \, \text{fb}^{-1})$ [CMS-PAS-SMP-18-001]
- CMS 13 TeV: Meas. with 2.2 σ sig. $(\mathcal{L} = 35.9 \, \text{fb}^{-1})$ [CMS-SMP-18-001]

Fiducial phase space volume and parameters

Cuts are exactly the "loose fiducial" cuts defined by CMS $[\mbox{CMS-SMP-18-001}]:$

- At least two R= 0.4 anti- $k_{\rm t}$ jets with $p_{\rm T}>$ 30 GeV, $|\eta|<$ 4.7, and $\Delta R_{\rm j\ell}>$ 0.4
- $M_{
 m j_1 j_2} > 500~{
 m GeV},~\Delta\eta_{
 m j_1 j_2} > 2.5$
- $p_{\mathrm{T},\ell} > 20\,\mathrm{GeV}$ and $|y_\ell| < 2.5$
- $|M_{\mu\bar{\mu}} M_Z| < 15 \, {
 m GeV}$
- $M_{\ell\ell} >$ 4.0 GeV and $M_{3\ell} >$ 100.0 GeV

Other:

- Photons recombined with charged particles using anti- $k_{\rm t}$ algorithm with R=0.4
- PDFs: NNPDF31_nlo_as_0118_luxqed

Complex mass scheme [A. Denner, S. Dittmaier, M. Roth, D. Wackeroth][A. Denner, S. Dittmaier, M. Roth, L.H. Wieders], input parameters:

•
$$G_{\mu} = 1.6638 imes 10^{-5} \, {
m GeV}^{-2}$$

•
$$M_{\rm W} = 80.3530 \,{\rm GeV}, \, \Gamma_{\rm W} = 2.0843 \,{\rm GeV}$$

- $M_{\rm Z}=91.1535\,{\rm GeV},\,\Gamma_{\rm Z}=2.4943\,{\rm GeV}$
- $M_{
 m H} = 125.0 \, {
 m GeV}, \, \Gamma_{
 m H} = 4.07 imes 10^{-3} \, {
 m GeV}$

with EW coupling calculated as:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathsf{W}}^2 \left(1 - \frac{M_{\mathsf{W}}^2}{M_{\mathsf{Z}}^2} \right)$$

Scale choice:

- $\mu = \sqrt{\pmb{\rho}_{T,j_1} \cdot \pmb{\rho}_{T,j_2}}$ [A. Denner, L. Hošeková, S. Kallweit]
- 7-point scale variation to estimate pert. uncertainty

	WW like-sign	WZ	
		000 0000 000	

Overview: Leading orders

 $\mathsf{pp} \to \mathsf{e}^+ \nu_\mathsf{e} \, \mu^+ \mu^- \mathsf{jj} + X$ has three LOs:

We divided them into five (mutually exclusive) classes:

- $\mathcal{O}(\alpha^6)$ electroweak production with quark-quark initial state (but without bottom-quarks)
- **2** $\mathcal{O}(\alpha_s^2 \alpha^4)$ strong production (without bottom-quarks)
- $\mathcal{O}(\alpha_{\rm s}\alpha^5)$ quark-quark interference
- $\mathcal{O}(\alpha^6)$ double-photon initiated and $\mathcal{O}(\alpha_s \alpha^6)$ single-photon initiated
- (a) $\mathcal{O}(\alpha^6)$ and $\mathcal{O}(\alpha_s^2 \alpha^4)$ with bottom-quarks

	WZ ○○○○●○○○○○○	

Electroweak production: $\mathcal{O}(\alpha^6)$

- 40 different partonic channels at $\mathcal{O}(\alpha^6)$
- contain the vector-boson scattering subdiagrams,
- and "semi-leptonic triple-gauge-boson production" processes ($W^{\pm}ZZ$, $W^{+}W^{-}Z$), suppressed at LO by $M_{\rm jj} > 500~{\rm GeV}$
- and other double-, single, non-resonant diagrams

Tree-Level Unitarity	Size of EW Corr.	WW like-sign	WZ	All WZ 13 TeV Distributions
00	O	O	○○○ ○○ ○○○○○	
		4.		

Strong production: $\mathcal{O}(\alpha_s^2 \alpha^4)$

- → In comparison to like-sign W-scattering gluons are possible at LO (charge)
- 8 additional MEs with two gluons, making up 66 % of the cross section
- \rightarrow in total the ${\cal O}(\alpha_{\rm s}^2\alpha^4)$ is 4.3 times larger than the electroweak LOs

	WZ ○○○ ○○○ ●○○○○	
_		

Photon-initiated: $O(\alpha^6)$, $O(\alpha_s \alpha^5)$

d-

generation and a second second

- \rightarrow Every channel with an initial-state photon
 - 2 double photon MEs at $\mathcal{O}(\alpha^6)$ (tiny contribution)
- 12 photon–gluon MEs at $\mathcal{O}(\alpha_{\rm s}\alpha^5)$ (very small contribution)
- remember: no final state photons at LO because of $n_{\rm j} \ge 2$

	WW like-sign	WZ	
		00000000000	

Bottom-quark LOs: $pp \rightarrow tZj$

12 MEs with bottom-quarks:

$$\bullet bu \rightarrow e^+ \nu_e \, \mu^+ \mu^- bd$$

$$\ \, \mathbf{b} \overline{\mathbf{d}} \rightarrow \mathbf{e}^+ \nu_{\mathbf{e}} \, \mu^+ \mu^- \mathbf{b} \overline{\mathbf{u}}$$

$$\ \, \bullet \overline{\mathbf{b}\mathbf{d}} \to \mathbf{e}^+\nu_{\mathbf{e}}\,\mu^+\mu^-\overline{\mathbf{b}}\overline{\mathbf{u}}$$

$$\ \, \mathbf{u}\overline{\mathbf{d}} \rightarrow \mathbf{e}^+\nu_{\mathbf{e}}\,\mu^+\mu^-\overline{\mathbf{b}}\mathbf{b}$$

$$\mathbf{0} \ \mathbf{b} \overline{\mathbf{b}} \to \mathbf{e}^+ \nu_{\mathbf{e}} \, \mu^+ \mu^- \overline{\mathbf{u}} \mathbf{d}$$

+ MEs with 2nd gen. quark line

- also contain VBS, but dominant contributions are ...
- ightarrow "top-Z-jet production" for b(u/c) ightarrow e⁺ $\nu_{e} \mu^{+} \mu^{-} b(d/s)$
- no resonant anti-tops because of $W^+ \rightarrow$ up-bottom contribution dominates over all others (90%)
- separable with b-tagging in principle, except for n. 6 (very small)
- contribution comparable in size with the EW LOs

top-Z-jet analyses:

- ATLAS: [arXiv:1710.03659]
- CMS: [arXiv:1712.02825]

			WZ	
00	0	0	00000000 0 0	000000000000000000000000000000000000000

 $\mathcal{O}(\alpha^7)$ real and virtual correction diagrams

- No b-quark contributions (b-tagging)
- No $\gamma q/\gamma \gamma$ contributions (expectation 1–2%) at NLO
- Loops with 8-point functions, different complex masses
- More diagrams with Higgs bosons!
- Up to 83,000 diagrams per partonic channel

 $\mathcal{O}(\alpha_{\rm s}\alpha^6)$ mixed corrections: "QCD"

Checks and validation

We performed two independent calculations for all leading- and next-to-leading orders:

BONSAY+OPENLOOPS

- General purpose Monte Carlo [CS]
- MEs from OPENLOOPS 1 [Cascioli, Maierhöfer, Pozzorini]
- Loops evaluated with DD (COLI fallback) from COLLIER
- Dipole subtraction [Catani, Seymour] to regularize IR singularities
- PDFs from LHAPDF 6 [Buckley, et al.]

MoCANLO+RECOLA

- MoCANLO [Feger] used by M. Pellen
- MEs from RECOLA [Actis, Denner, Hofer, Scharf, Uccirati]
- Loops evaluated with COLI (and DD) from COLLIER [Denner, Dittmaier, Hofer]
- CS dipole subtraction with $\alpha\text{-dependent}$ dipoles [Nagy]
- PDFs from LHAPDF 6

Checks

- NLO virtuals checked against each other for 1000 PS points passing the cuts
- Integrated cross sections
- Each bin of 26 differential distributions within stat. unc., ca. 8000 bins for each order

		All WZ 13 TeV Distributions

LO distributions (I)

Tree-Level Unitarity	Size of EW Corr.	WW like-sign	WZ	All WZ 13 TeV Distributions
00	O	O	0000000000	

LO distributions (II)

		All WZ 13 TeV Distributions

LO distributions (III)

		All WZ 13 TeV Distributions

LO distributions (IV)

Tree-Level Unitarity	Size of EW Corr.	WW like-sign	WZ	All WZ 13 TeV Distributions
OO	O	O	00000000000	

LO distributions (V)

		All WZ 13 TeV Distributions

LO distributions (VI)

Tree-Level Unitarity	Size of EW Corr.	WW like-sign	WZ	All WZ 13 TeV Distributions
OO	O	O	00000000000	

LO distributions (VII)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

LO distributions (VIII)

		All WZ 13 TeV Distributions

LO distributions (IX)

Tree-Level Unitarity	Size of EW Corr.	WW like-sign	WZ	All WZ 13 TeV Distributions
00	O	O	00000000000	

LO distributions (X)

		All WZ 13 TeV Distributions

LO distributions (XI)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

LO distributions (XII)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

LO distributions (XIII)

		All WZ 13 TeV Distributions

NLO distributions (I)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (II)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (III)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (IV)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (V)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (VI)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (VII)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (VIII)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (IX)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (X)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (XI)

	WW like-sign	All WZ 13 TeV Distributions
		000000000000000000000000000000000000000

NLO distributions (XII)

	WW like-sign	All WZ 13 TeV Distributions
		•••••••••••••••••

NLO distributions (XIII)

