Discussion: Uncertainties for Signal cross sections

Massimiliano Grazzini University of Zurich

IPA Workshop, December 2, 2019

Goal of the workshop

Collect/address open questions raised in the
process of the preparation of the EPPSU and related to precision physics at the LHC

• Reevaluate precision reach of HL-LHC

Expected uncertainties

Current status: ggF

Linear combination of several sources of uncertainties

Current status: ggF

Current status: ggF

 $\alpha_S(m_Z) = 0.118 \pm 0.0015$ (PDF4LHC15 and YR4) $\alpha_S(m_Z) = 0.1181 \pm 0.0011$ (PDG2018)

Roughly speaking: relative impact of α_S uncertainty doubled in the Higgs cross section

To achieve O(0.6%) precision in σ we need O(0.3%) precision on α_S !

Other channels: possible improvements

• VBF: Current theory uncertainties at the per mille level but using structure function approach

computation of non factorised terms at NNLO

• VH: $gg \rightarrow ZH$ with full mass dependence

• ttH: signal cross section known with O(10%) uncertainties

NNLO needed at some point

Comments

- To reach the control of theory systematics anticipated in Scenario S2 just computing one more perturbative order will not be enough !
- A major step forward is required in
 - PDFs
 - QCD coupling α_S
 - Th/Exp cross talk
 - Correlations

- Monte Carlo generators (Logarithmic accuracy, Merging matching...)

NLO: $gg \rightarrow ZH$

Despite highly accurate NNLO QCD+NLO-EW predictions still ZH not fully under control

gg induced loop contribution (first appears at NNLO and leads to large uncertainties !)

NLO corrections known only in large m_t limit (-100%)

Altenkamp et al. (2012)