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What are the causes of disagreement between data and theory?

• Inaccurate theory
• Fixed order
• Insufficient parametrization of degrees of freedom

• Inaccurate parameters of the theory
• E.g. 𝛼𝑆 .

• Inaccurate data
• Underestimated experiment systematics.
• Other problems with the measurement

• Instabilities on statistical estimators (this talk)
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Instability

• Uncertainties on a parameter,
even when small, can affect
critically some function of them.

• This talk: Effect of uncertainties in
covariance matrices on
uncertainties on the 𝜒2 statistic.

• Still need to specify which
parameter is varied and what are
the small and big units.
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The 𝜒2 statistic

𝜒2 =
𝑁

∑
𝑖

𝑁
∑

𝑗
(data𝑖 − prediction𝑖)Σ−1

𝑖𝑗 (data𝑗 − prediction𝑗) = 𝛿𝑇 Σ−1𝛿

• Predictions supplied by the theoretical model.
• Central measurement of data and covariance matrix Σ supplied by
experiments.

• Used as:
• Figure of merit in fits.
• Assessment of agreement between data and theory.

• Underlying assumption: Experimental uncertainties distributed as a
multivariate Gaussian.
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Matrix of uncertainties

• Consider any matrix 𝐴 such that

Σ = 𝐴𝐴𝑡

• 𝐴 can be chosen to have physical meaning:
• v = f(p) vector of 𝑁 unknown interesting quantities.
• p vector of 𝑀 measurements, with central values p0 and independent
Gaussian uncertainties s. Assuming linear error propagation.

• Then:
𝐴𝑖𝑗 = 𝜕𝑓𝑖

𝜕𝑝𝑗
∣
p=p0

𝑠𝑗

and v is multivariate Gaussian with mean f(p0) and covariance 𝐴𝐴𝑡

v ∼ 𝒩(f(p0), 𝐴𝐴𝑡)

• Or else, 𝐴 can be obtained e.g. using the Cholesky decomposition of Σ.
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Sampling uncertainties around true theory

• We expect that experimental deviations around the true theory (which we do
not know) to be 𝛿 ∼ 𝒩(0, Σ)

• To sample, generate 𝑀 independent numbers with n ∼ 𝒩(0, 𝐼) and do
𝛿 = 𝐴n.

• The quantity 𝜒2 = ‖𝐴+𝛿‖2 = ‖𝐴+𝐴n‖2
is a random variable following a

𝜒2 distribution with 𝑁 degrees of freedom.
• ⟨𝜒2⟩ = ‖𝐴+𝐴‖2

𝐹 = 𝑁
• (‖𝐴‖𝐹 = tr(𝐴𝐴𝑡)1/2 = √∑𝑖 ∑𝑗 𝐴2

𝑖𝑗).

• Standard deviation
√

2𝑁
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Defining stability upon mistakes in the covariance matrix

• Imagine the residuals are sampled using 𝐴, but we are given a different
matrix, ̄𝐴 to estimate the 𝜒2 statistic. The expected value of the 𝜒2, with the
wrong matrix, 𝜒̄2, is

⟨𝜒̄2⟩ = ∥ ̄𝐴+𝐴∥2
𝐹

Δ𝜒2 = ⟨𝜒̄2⟩ − ⟨𝜒2⟩ = ∥ ̄𝐴+𝐴∥2
𝐹 − 𝑁

• We assert that the 𝜒2 statistic is stable upon making this mistake, if it results
in differences that are smaller than its statistical fluctuations.

∣Δ𝜒2∣ <
√

2𝑁
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Toy model example

• Experiments have reached an impressive level of statistical precision.
• Statistical component of the uncertainty (typically uncorrelated across bins) less
important.

• Systematic uncertainties (correlated across bins) tend to dominate.

• A somewhat realistic toy model for a matrix of uncertainties from HepData:

𝐴 =
⎛⎜⎜⎜⎜⎜
⎝

𝜖 0 0 0 1
0 𝜖 0 0 1
0 0 𝜖 0 1
0 0 0 𝜖 1

⎞⎟⎟⎟⎟⎟
⎠

Σ =
⎛⎜⎜⎜⎜⎜
⎝

𝜖2 + 1 1 1 1
1 𝜖2 + 1 1 1
1 1 𝜖2 + 1 1
1 1 1 𝜖2 + 1

⎞⎟⎟⎟⎟⎟
⎠

with 𝜖2 ≪ 1.
• Assumes 4 data points, and uncorrelated error of size 𝜖 and one completely
correlated systematic of size 1.
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Model for uncertainties in the correlations

• Add unknown parameter 𝑥 ∈ [0, 2] controlling the correlations of the last bin.

𝐴(𝑥) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜖 0 0 0 1 0
0 𝜖 0 0 1 0
0 0 𝜖 0 1 0
0 0 0 𝜖 1 − 𝑥 √1 − (1 − 𝑥)2

⎞⎟⎟⎟⎟⎟⎟
⎠

Σ(𝑥) =
⎛⎜⎜⎜⎜⎜
⎝

𝜖2 + 1 1 1 1 − 𝑥
1 𝜖2 + 1 1 1 − 𝑥
1 1 𝜖2 + 1 1 − 𝑥

1 − 𝑥 1 − 𝑥 1 − 𝑥 𝜖2 + 1

⎞⎟⎟⎟⎟⎟
⎠

• We are keeping the total variance fixed. It is realistic to think that 𝑥 could be
anywhere in the range.

• We have ⟨𝜒̄2⟩ = ∥𝐴+(𝑥experimental)𝐴(𝑥true)∥
2
𝐹

• Experimental results often presented by default with the highest correlation
(i.e. 𝑥experimental = 0).
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Stability when assuming the highest correlation
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Stability when assuming a lower correlation
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Optimizing for stability

• Given some prior probability density on 𝑥, 𝑃(𝑥true), we can find the value for
𝑥experimental that optimizes for stability

𝑥∗ = argmin
𝑥experimental

∫ ∣∥𝐴+(𝑥experimental)𝐴(𝑥true)∥
2
𝐹 − 𝑁∣𝑃(𝑥true)d𝑥true
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Toy model summary and tentative conclusions

• Assuming smaller correlation wherever they are unknown seems like a good
rule of thumb.

• This is consistent with other studies, e.g. ATLAS Jets at 7 TeV (arxiv: 1410.8857):
Enormous sensitivity to correlations studied in detail in [Harland-Lang, Martin,

Thorne arxiv:1711.05757].

• In practice, not enough information to compute ̄𝐴+𝐴 available from public
data. Need to make some simplifications and assumptions.
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Solving a different problem

• We typically have no information at all regarding the uncertainties of the
experimental uncertainties.

• But unstable covariance matrices will lead to artificial discrepancies.

We want to solve a different problem that

• Avoids yielding data-theory discrepancies wherever those are likely due to
instabilities.

• Gives the same answers when the answers are not affected by instabilities.
• Does not result in decreased uncertainties anywhere.

In practice, find a new, regularized covariance matrix.

• Avoids the instabilities we assume to be problematic.
• We do need to make assumptions state what these are.
• General principle: Come up with covariance matrices that are, in all likelihood,
compatible with the original ones within their precision.
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Upper bound to instabilities

• We have:
⟨𝜒̄2⟩ = ∥ ̄𝐴+𝐴∥2

𝐹
• Write

𝐴 = ̄𝐴 + 𝛿𝐹
with 𝛿 a scalar parameter and 𝐹 a matrix.

• Then
⟨𝜒̄2⟩ ≤ 2

√
𝑁𝛿‖𝐴+‖2‖𝐹‖𝐹

(‖𝐴‖2 = max
{x∈ℝ𝑀 ∶‖x‖=1}

‖𝐴x‖ = max singular value(𝐴))

(‖𝐴+‖2 = 1
min singular value(𝐴))

• Hence the condition
𝛿∥ ̄𝐴+∥2‖𝐹‖𝐹 < 1

is sufficient to avoid overestimating 𝜒2.
• Problem reduced to defining a value for 𝛿 and a model for ‖𝐹‖𝐹 .
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Correlation matrix regularization

• Experimental covariance matrices can relate data with different magnitudes
and even different units.

• ‖𝐹‖𝐹 not particularly meaningful (units?).
• The upper bound is a worst case. We don’t want to include mislabelling of
uncertainties in the analysis.

• On the other hand, estimating experimental correlations is well known to be
challenging.

• Resolution: Assume the diagonal uncertainties are correct for the purposes of
the regularization. Regularize the correlation matrix instead.

• Note that the correlation matrix is the covariance of

(data − theory)
diagonal uncertainty

so everything so far applies to these reduced variables.
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Example: ATLAS WZ rapidity 2011

• The data from ATLAS W/Z production at 7 TeV [arxiv 1612.03016] is a
representative example.

• Bad fit quality (𝜒2/𝑁 = 75/34 for NNPDF 3.1) has attracted some discussion.
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• Correlation matrix clearly unstable, and not dissimilar to the toy model.
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Assumptions on 𝛿

• 𝛿 measures the size of the uncertainties on the uncertainties.
• It is not possible to retrieve that information from the public analysis.
• Therefore there is a fundamental ambiguity.
• In practice choose so that the resulting regularized covariance matrices differ
little from the original ones.

• E.g. given some regularization (to be described), impose 𝛿 such that diagonal
elements change less than ~10% in the very worst case.
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Assumptions on ‖𝐹‖𝐹

• Because we are regularizing correlations, ‖𝐹‖𝐹 is dimensionless.

• Need to specify how ‖𝐹‖𝐹 behaves as a function of 𝑁 . This is important in a
PDF fit because we have datasets of many different size (between 3 and 416
points for NNPDF 3.1).

• In practice choose so that the resulting regularized covariance matrices differ
little from the original ones. This corresponds to assuming that
‖𝐹‖𝐹 = const(𝑁).

• Assumption same amount of wrongness irrespective of the number of data
points.

• We set
‖𝐹‖𝐹 = 1
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Regularization procedure

The stability condition is finally

𝛿∥ ̄𝐴+
corr∥2‖𝐹‖𝐹 < 1 ⇒ ∥ ̄𝐴+

corr∥2 < 1
𝛿

We regularize 𝐴 by clipping the singular values of 𝐴corr from below, so the
condition is satisfied.

• We compute the Singular Value
Decomposition of 𝐴corr

𝐴 = 𝐷𝐴corr = 𝐷𝑈𝑆𝑉 𝑡

• 𝐷 Diagonal matrix of standard
deviations.

• 𝑈 and 𝑉 orthogonal matrices.
• 𝑆 Diagonal matrix of singular
values of 𝐴corr.

• Find regularized singular values

𝑠reg
𝑖 = {𝑠𝑖 if 𝑠𝑖 > 1

𝛿
1
𝛿 otherwise

Finally

𝐴reg = 𝐷𝑈𝑆reg𝑉 𝑡
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Regularization on ATLAS WZ rapidity

𝛿 𝜒2/𝑁 (NNPDF3.1) Max change in diagonal uncertainties

∞ 2.2 0
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3 0.77 8.5%
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Regularization on ATLAS WZ rapidity: Tentative conclusion

• Correlation matrix highly unstable.
• Reasonable to hypothesize that discrepancies measured by the 𝜒2 are spurious.

• Can find an almost indistinguishable covariance matrix that gives perfect
agreement.

• Note 𝜒2 with fixed PDF that included the unstable data does not have to
coincide with the result including regularized data in the fit instead.
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Regularized global PDF fits

• Made full NNPDF 3.1 NNLO-like fits, for several choices of thresholds.
• Only few dataset affected. Rest already “stable”.
• PDFs themselves hardly change, in terms of distance between functions.
• 𝜒2 estimators improve substantially.
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Regularized datasets and pre-fit 𝜒2
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Results from global fits

• Global 𝜒2 improved by up to 2 sigma.
• Combined ATLAS + CMS 𝜒2 can be made order 1.

Threshold
Global 𝜒2/(3979
datapoints)

ATLAS 𝜒2/(211
datapoints)

CMS 𝜒2/(328
datapoints)

∞ 1.16 1.17 1.17
5 1.15 1.06 1.03
4 1.13 1.00 0.96
3 1.10 0.89 0.85
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Changes in PDF themselves

• We observe few differences in the PDF themselves.
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Conclusions

• Instabilities in statistical estimators affect notably description of the data.

• Regularization remedies best applied by experimentalists, since useful
information is available in the experimental analysis only.

• Proposed a method to avoid instabilities on 𝜒2.

• Using minimal information.
• Independent on what the theory is.
• Little change in PDFs, but notable change in the interoperation of the results.
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Thank you!


