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What are the causes of disagreement between data and theory?

- Inaccurate theory

- Fixed order

- Insufficient parametrization of degrees of freedom
- Inaccurate parameters of the theory

© B8 ag.
- Inaccurate data

- Underestimated experiment systematics.

- Other problems with the measurement

- Instabilities on statistical estimators (this talk)



Instability

SOME ESTIMATOR

ESTIMATOR AS A FUNCTION OF PARAMETER
UNCERTAINTY IN PARAMETER
UNCERTAINTY IN ESTIMATOR

BIG IN SOME UNITS

/

SMALL IN SOME UNITS

SOME PARAMETER

Uncertainties on a parameter,
even when small, can affect

critically some function of them.

- This talk: Effect of uncertainties in

covariance matrices on

- 2 .
uncertainties on the x“ statistic.

- Still need to specify which

parameter is varied and what are

the small and big units.



The 2 statistic

N N
ZZ data; — prediction, )E;jl(dataj — prediction,) = dTy1s
J
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- Predictions supplied by the theoretical model.
- Central measurement of data and covariance matrix > supplied by
experiments.
- Used as:
- Figure of merit in fits.
- Assessment of agreement between data and theory.
- Underlying assumption: Experimental uncertainties distributed as a

multivariate Gaussian.



Matrix of uncertainties

- Consider any matrix A such that
Y =AA?

- A can be chosen to have physical meaning:
- v = f(p) vector of N unknown interesting quantities.
- p vector of M measurements, with central values p0 and independent
Gaussian uncertainties s. Assuming linear error propagation.

- Then:
af;
= Sj
(9pj p=p°

and v is multivariate Gaussian with mean f(p®) and covariance AA*

ij

v ~ N(f(p?), AAY)

- Orelse, A can be obtained e.g. using the Cholesky decomposition of 2.



Sampling uncertainties around true theory

- We expect that experimental deviations around the true theory (which we do
not know) to be § ~ N (0, X)
- To sample, generate M independent numbers with n ~ N (0, I) and do
6 = An.

UNKOWN TRUE THEORY
®  DATA

- The quantity x? = HA+(5H2 = ||A+An\|2 is a random variable following a

X2 distribution with N degrees of freedom.
2
- (X)) =|A*A|, =N
(141, = (aan12 = 55 AT),
- Standard deviation V2N .



Defining stability upon mistakes in the covariance matrix

- Imagine the residuals are sampled using A, but we are given a different
matrix, A to estimate the X2 statistic. The expected value of the X2, with the
wrong matrix, )‘(2, is

B _. 2
(X?) =lAT 4],

2
Ax?=(x*) — (x*) =A*4|. - N

- We assert that the x2 statistic is stable upon making this mistake, if it results
in differences that are smaller than its statistical fluctuations.

1A% < V2N



Toy model example

- Experiments have reached an impressive level of statistical precision.
- Statistical component of the uncertainty (typically uncorrelated across bins) less
important.
- Systematic uncertainties (correlated across bins) tend to dominate.

- A somewhat realistic toy model for a matrix of uncertainties from HepData:

e 00 0 1
A:()e()()l
0 0 € 0 1
00 0 € 1
e2+1 1 1 1
1 241 1 1
5 €+ ,
1 e +1 1
1 1 e€+1

with €2 < 1.
- Assumes 4 data points, and uncorrelated error of size € and one completely

correlated systematic of size 1.



Model for uncertainties in the correlations

- Add unknown parameter 2 € [0, 2] controlling the correlations of the last bin.

e 00 0 1 0
0 e 00 1 0
A@)=19 0 ¢ 0 1 0
000 c€ l1-a J1—(1-2°
e2+1 1 1 1—x
E(ac)— 1 e +1 1 1—=x
n 1 1 2+1 11—z

l—z 1—2 1—2 €41
- We are keeping the total variance fixed. It is realistic to think that & could be
anywhere in the range.
2
. Y2\ — || At (-
We have <X > - HA (‘Eexperimental)A(xtrue)HF
- Experimental results often presented by default with the highest correlation

(ile. x 0).

experimental =



Stability when assuming the highest correlation

(x%) when assuming x=0 as a function of true x
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Stability when assuming a lower correlation

{(x?) when assuming x=0.2 as a function of true x
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Optimizing for stability

- Given some prior probability density on x, P(It,ue), we can find the value for

T | that optimizes for stability

experimenta

q 2
I* - qrgmln/ |H‘4Jr (Iexperimental)A(ztrue>HF - N‘P(Ztrue>dxtrue

T experimental

Average |Ax?| over the range [0, 1], (¢=0.1)

1754 |
15.0
12.5
_ _— detrue|AX2(Xexperimental.Xtrue)|
~ 10.01 e
3 ---- 1o deviation
759 ---- 60 deviation
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Toy model, assuming P(z,,.) = Uniform[0, 1]



Toy model summary and tentative conclusions

- Assuming smaller correlation wherever they are unknown seems like a good
rule of thumb.
- This is consistent with other studies, e.g. ATLAS Jets at 7 TeV (arxiv: 1410.8857):
Enormous sensitivity to correlations studied in detail in [Harland-Lang, Martin,
Thorne arxiv:1711.05757].

[Full ] 21 | 62 [21,62
[ X%/ Now | 285 [ 158 [2.36 | 1.27 |

Table 1: x* per number of data points (Ny = 140) for fit to ATLAS jets data . with
the default systematic error treatment (‘full’) and with certain errors, defined in the text,
decorrelated between jet rapidity bins.

In practice, not enough information to compute AT A available from public

data. Need to make some simplifications and assumptions.



Solving a different problem

- We typically have no information at all regarding the uncertainties of the
experimental uncertainties.

- But unstable covariance matrices will lead to artificial discrepancies.

We want to solve a different problem that

- Avoids yielding data-theory discrepancies wherever those are likely due to
instabilities.

- Gives the same answers when the answers are not affected by instabilities.
- Does not result in decreased uncertainties anywhere.

In practice, find a new, regularized covariance matrix.

- Avoids the instabilities we assume to be problematic.

- We do need to make assumptions state what these are.

- General principle: Come up with covariance matrices that are, in all likelihood,
compatible with the original ones within their precision.



Upper bound to instabilities

- We have:
= 2
S2\ _ | A+
<X > - HA AHF
- Write
A=A+F
with § a scalar parameter and F' a matrix.
- Then

() < 2VNO|A* LI FI

<|A||2 - max  [Ax| = maxsingularvalue(A))

x€RM:|x|=1}

1
At =
(” I minsingularvalue(A))
- Hence the condition
AT IFN, <1
is sufficient to avoid overestimating x2.

* Problem reduced to defining a value for d and a model for | F'[| ..



Correlation matrix regularization

- Experimental covariance matrices can relate data with different magnitudes
and even different units.
* | £ not particularly meaningful (units?).
- The upper bound is a worst case. We don’t want to include mislabelling of
uncertainties in the analysis.
- On the other hand, estimating experimental correlations is well known to be
challenging.
- Resolution: Assume the diagonal uncertainties are correct for the purposes of
the regularization. Regularize the correlation matrix instead.
- Note that the correlation matrix is the covariance of
(data — theory)
diagonal uncertainty

so everything so far applies to these reduced variables.



Example: ATLAS WZ rapidity 2011

- The data from ATLAS W/Z production at 7 TeV [arxiv 1612.03016] is a
representative example.
- Bad fit quality (x2/N = 75/34 for NNPDF 31) has attracted some discussion.

Covariance matrix of Correlation matrix of
ATLAS W,Z 7 TeV 2011

ATLAS W,Z 7 TeV 2011

1e8
12
w+
1.0
0.8
w-
0.6
0.4
z 0.2
wH w- z

- Correlation matrix clearly unstable, and not dissimilar to the toy model.




Assumptions on ¢

- 0 measures the size of the uncertainties on the uncertainties.

- Itis not possible to retrieve that information from the public analysis.

- Therefore there is a fundamental ambiguity.

- In practice choose so that the resulting regularized covariance matrices differ
little from the original ones.

- E.g given some regularization (to be described), impose § such that diagonal

elements change less than ~10% in the very worst case.



Assumptions on | F|| .

- Because we are regularizing correlations, |

F|| . is dimensionless.

* Need to specify how || F| ., behaves as a function of IV. This is important in a
PDF fit because we have datasets of many different size (between 3 and 416
points for NNPDF 31).

- In practice choose so that the resulting regularized covariance matrices differ
little from the original ones. This corresponds to assuming that
HF||F = const(N).

- Assumption same amount of wrongness irrespective of the number of data
points.
- We set
I1Flz =1



Regularization procedure

The stability condition is finally
corr

_ = 1
AL IF s < 1= |45, < 5

We regularize A by clipping the singular values of A
condition is satisfied.

from below, so the

corr

- We compute the Singular Value - D Diagonal matrix of standard
Decomposition of A, deviations.
- U and V orthogonal matrices.
A= DA_, =DUSV?

- S Diagonal matrix of singular
values of A

corr®

- Find regularized singular values

Finally
: 1
=5 {SL ifs; > 5
S§.° =
¢ 1
5

otherwise Areg — DUSresy/t
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Regularization on ATLAS WZ rapidity

0 x%/N (NNPDF31) Max change in diagonal uncertainties
00 22 0
5 1.6 2%
4 1.2 4%
3 0.77 8.5%
Ratio regularized/original covariance (6 = 4) Ratio regularized/original correlation (6 = 4)
ATLAS W,Z 7 TeV 2011 _ ATLAS W,Z 7 TeV 2011
1.04 1.04
W
- 1.02 1.02
w= .-..-' 1.00 1.00
",
0.98 0.98
z
0.96 0.96
w w- z
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Regularization on ATLAS WZ rapidity: Tentative conclusion

- Correlation matrix highly unstable.
- Reasonable to hypothesize that discrepancies measured by the X2 are spurious.
- Can find an almost indistinguishable covariance matrix that gives perfect
agreement.
- Note X2 with fixed PDF that included the unstable data does not have to

coincide with the result including regularized data in the fit instead.

22



Regularized global PDF fits

- Made full NNPDF 31 NNLO-like fits, for several choices of thresholds.
- Only few dataset affected. Rest already “stable”.
- PDFs themselves hardly change, in terms of distance between functions.

o x2 estimators improve substantially.

23



Regularized datasets and pre-fit

8 7 5 3
(chi2- covdiag diff corrdiff  (chi2- covdiag diff corrdiff  (chi2- cov diag diff corr diff
N)/sqrt(2N)) (%) (abs) N)/sqrt(2N)) (%) (abs) N)/sqrt(2N)) (%) (abs)
BCDMSP 3.288 0 0 3.288 0 0 2892 5616  4.971E2
BCDMSD 0.9470 0 0 0.9470 0 0 09233 2409  2025E-2
CHORUSNU 1.951 0 0 1.949 02726 2.779E-3 0.7943 7480  6.703E-2
CDFZRAP 1.644 0 0 1112 1076 1.138E-2 -0.3105 8222  7.975E-2
ATLASWZRAP36PB -0.1758 0 0 -0.1758 0 0 -0.3405 2378  2277E-2
ATLASZHIGHMASS49FB 0.8799 0 0 08799 0 0 0.8660 04398 7.369E-3
ATLASLOMASSDY11EXT 0.1779 0 0 0.1779 0 0 -0.2287 2564  3012E-2
ATLASWZRAP11 4.133 05015  6.516E-3 2.175 2160  2473E-2 -1.238 9438  9.489E-2
ATLAS1JET11 -0.1607 1073 1.466E-2 -0.7020 2724  3338E-2 1543 9.854 0.1018
CMSDY2D11 1.984 04218 5.386E-3 1.936 1534 1.941E-2 1.475 6.079  7.643E-2
CMSWMUSTEV -1.209 1046 1.355E-2 -1.945 2891  3.253E-2 2614 10.42 0.1053
CMSJETS11 03777 06244 6.024E-3 0.7274 2421 2492E2 -2.474 9573 9.234E-2
CMSZDIFF12 1.153 0 0 1.153 0 0 06198 3198  3.520E-2

2%



Results from global fits

- Global X2 improved by up to 2 sigma.
- Combined ATLAS + CMS X2 can be made order 1.

Global x?/(3979

Threshold datapoints)

ATLAS X2 /(211
datapoints)

cMS x2/(328
datapoints)

w &~ ;

116
115
113
110

117

1.06
1.00
0.89

117

1.03
0.96
0.85
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Changes in PDF themselves

Ratio to unregularised

- We observe few differences in the PDF themselves.
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Conclusions

- Instabilities in statistical estimators affect notably description of the data.

- Regularization remedies best applied by experimentalists, since useful

information is available in the experimental analysis only.
- Proposed a method to avoid instabilities on x2.

- Using minimal information.
-+ Independent on what the theory is.
- Little change in PDFs, but notable change in the interoperation of the results.
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Thank you!



