PDF Prospects at the HL-LHC

RABAH ABDUL KHALEK, SHAUN BAILEY, JUN GAO, LUCIAN HARLAND-LANG, AND JUAN ROJO

arXiv: 1810.03639, 1906.10127

Contents

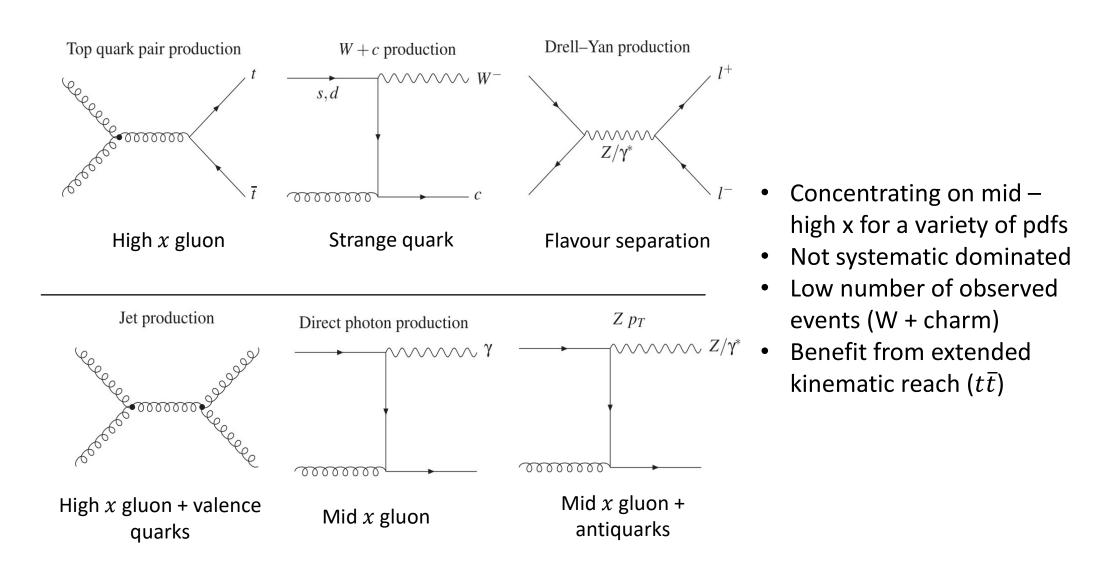
- □ Data sets and errors
- ☐ Hessian profiling
- ☐HL-LHC results
- ☐ LHeC results

HL-LHC

- A new phase of the LHC starting in 2025
- Increased luminosity results in improved statistics
- Question: What will PDFs look like after this phase?

ATLAS + CMS: $\mathcal{L} = 3 \text{ ab}^{-1}$ LHCb: $\mathcal{L} = 0.3 \text{ ab}^{-1}$

CERN-LPCC-2018-03 February 26, 2019


Standard Model Physics at the HL-LHC and HE-LHC

Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

P. Azzi¹, S. Farry², P. Nason^{3,4}, A. Tricoli⁵, D. Zeppenfeld⁶

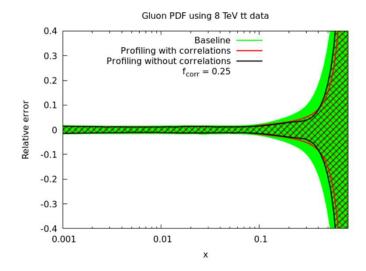
R. Abdul Khalek^{7,8}, J. Alimena⁹, N. Andari¹⁰, L. Aperio Bella¹¹, A.J. Armbruster¹¹, J. Baglio¹², S. Bailey¹³, E. Bakos¹⁴, A. Bakshi¹⁵, C. Baldenegro¹⁶, F. Balli¹⁰, A. Barker¹⁵, W. Barter¹⁷, J. de Blas^{18,1} F. Blekman¹⁹, D. Bloch²⁰, A. Bodek²¹, M. Boonekamp¹⁰, E. Boos²², J.D. Bossio Sola²³, L. F. Biesman, D. Bioch, A. Bouek, M. Boonekamp, E. Boos, J.D. Bossio Sola, L. Cadamuro²⁴, S. Camarda¹¹, F. Campanario²⁵, M. Campanelli²⁶, J.M. Campbell²⁷, Q.-H. Cao^{28,29,30}, V. Cavaliere³, A. Cerri³, G.S. Chahali^{7,32}, B. Chargeishvili²⁸, C. Charlor³, S.-L. Chen³⁵, T. Chen³⁶, L. Cieri³, M. Ciuchini³⁷, G. Corcella³⁸, S. Cotogno³⁴, R. Covarelli^{39,40}, J.M. Cruz-Martineç⁴¹, M. Czakon⁴², A. Dainese¹, N.P. Dang⁴³, L. Darme⁴⁴, S. Dawson⁵, H. De la Torre⁴⁵, M. Deile¹¹, F. Delioi¹⁰, S. Demers⁴⁶, A. Denner³⁷, F. Derue⁴⁸, L. Di Ciaccio⁴⁹, W.K. Di Clemente⁵⁰, D. Dominguez Damiani⁵¹, L. Dudko²², A. Durglishvili³³, M. Dünser¹¹, J. Ebadi⁵², R.B. Ferreira De Faria⁵³, G. Damiant , L. Dulaco , A. Durgisiwitt , M. Dunser , J. Ebdat , R.B. Ferreira De Faria , G. Ferrera ^{1,1,4}, A. Ferroglia ⁵, T.M. Fig. ³⁰, K.D. Finelli ⁵, M.C.N. Fiolhais ^{57,53} E. Franco ⁵⁸, R. Frederix ⁵⁹, B. Fuks ^{50,6}, B. Galhardo ^{53,62}, J. Gao ⁵³, J.R. Gaunt ¹¹, T. Gehrmann ⁶⁴, A. Gehrmann-De Ridder ⁵⁵, D. Giljanovic ^{66,34}, F. Giuli ⁶⁷, E.W.N. Glover ³², M.D. Goodself ⁸⁸, E. Gouveia ⁵³, P. Goveni^{3,4} C. Goy¹⁰, M. Grazzini^{5,4} A. Grohsjean^{5,1} J. F. Grosse-Oetringhaus¹¹ P. Gumellini^{6,6} C. Gwenlan^{7,6} L.A. Harland-Lang¹³, P.F. Harrison^{7,1} G. Heinrich^{7,2} C. Helsens¹¹, M. Hemdon^{7,3} O. Hindrichs^{2,1} V. Hirschi^{6,5} A. Hoang^{7,4} K. Hoepfner^{4,2} J.M. Hogan^{7,5,6} A. Huss¹¹ S. Jahn^{7,2} Sa.

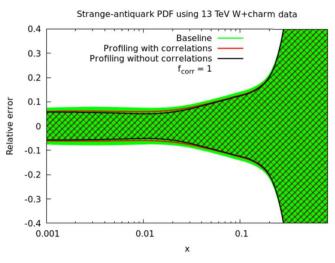
arXiv: 1902.04070

- Central value determined by NLO theory and then shifted according to errors
- No need for NNLO theory due to closure test
- Acceptance, *a*, accounts for detector effects /branching ratio/...
- Acceptance taken from existing experimental data set (nearest bin)

Statistics:

stat
$$\sim \sqrt{N_{\rm obs}}$$


$$N \sim a \mathcal{L} \frac{\partial \sigma^{\text{th}}}{\partial x} \Delta x$$


$$a = Br \times \frac{N_{obs}}{N_{predicted}}$$

- Systematics taken from existing data set
- Treated as uncorrelated, with a factor f_{corr} to account for this
- A variable factor, f_{red} , used to estimate improvement to systematics
- Exception: Luminosity error

$$sys(14 \text{ TeV}) \sim f_{corr} \times f_{red} \times sys(8/13 \text{ TeV})$$
$$f_{corr} = 0.5$$

Scenario A: (Conservative)
$$f_{red} = \begin{cases} 1.0 \ (8 \ \text{TeV}) \\ 0.5 \ (13 \ \text{TeV}) \end{cases}$$
Scenario C: (Optimistic)
$$f_{red} = \begin{cases} 0.2 \ (8 \ \text{TeV}) \\ 0.1 \ (13 \ \text{TeV}) \end{cases}$$

Hessian Profiling

- Estimates the effect of adding new data sets to a Hessian PDF set
- We will be using PDF4LHC for this study
- Hessian PDF set described by eigenvectors of the Hessian matrix.
- Tolerance, *T*, takes into account data/theory inconsistencies, parameterisation effects..
- We take T = 3, roughly in line with MMHT and CT

$$Hessian: H_{ij} = \frac{\partial^2 \chi^2}{\partial z_i \partial z_j}$$

Expand:
$$\chi^2 = \chi_0^2 + T^2 \sum_{\alpha} \beta_{\alpha}^2$$

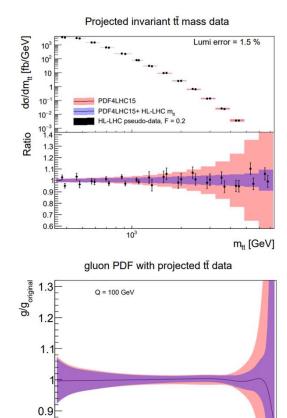
 eta_lpha along Hessian's eigenvector directions

At
$$\beta_{\alpha} = 1$$
 define error PDF: $f_{S_{\alpha}}(x)$

Error on PDF:
$$\delta f(x) = \sqrt{\sum_{\alpha} \left(f_{S_{\alpha}}(x) - f_{0}(x) \right)^{2}}$$

Hessian Profiling

- Can add in new data set with typical χ^2 formula
- Theory values parametrised using error PDFs
- χ^2 minimised with respect to Hessian parameters \rightarrow new central PDF
- Calculate new Hessian → new error PDFS


$$\sigma_i^{\rm th} \to \sigma_i^{\rm th} + \sum_{\alpha} \Gamma_{i\alpha} \beta_{\alpha}$$

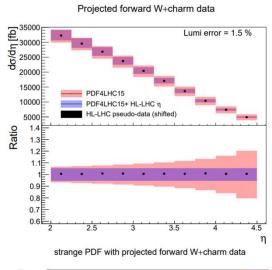
$$\Gamma_{i\alpha} = \sigma_i^{\text{th}}(S_\alpha) - \sigma_i^{\text{th}}(S_0)$$

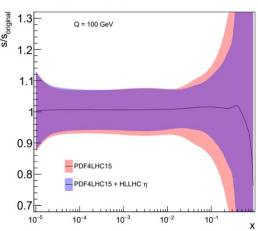
$$\Delta \chi^2 = \sum_{ij} \left(\sigma_i^{\text{exp}} - \sigma_i^{\text{th}} + \sum_{\alpha} \Gamma_{i\alpha} \beta_{\alpha} \right) (\text{cov})_{ij}^{-1} \left(\sigma_j^{\text{exp}} - \sigma_j^{\text{th}} + \sum_{\gamma} \Gamma_{j\gamma} \beta_{\gamma} \right) + T^2 \sum_{\alpha} \beta_{\alpha}^2$$

New Hessian:
$$H_{\alpha\gamma} = \frac{\partial^2 \chi^2}{\partial \beta_{\alpha} \partial \beta_{\gamma}}$$

Individual Data Sets

PDF4LHC15

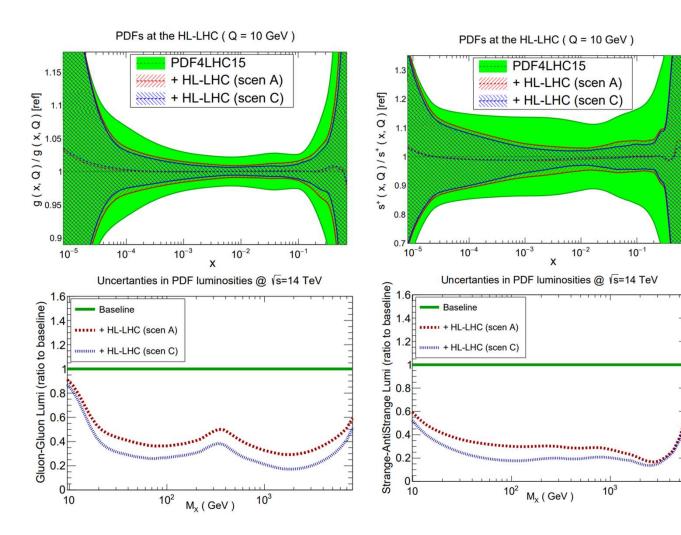

PDF4LHC15 + HLLHC tī


 10^{-3}

10-2

10-1

0.8



- $t\bar{t}$ has good constraints on high-x gluon
- Results from extended kinematic region

- Forward W + charm data constrains the strange PDF
- Limited by overall normalisation error

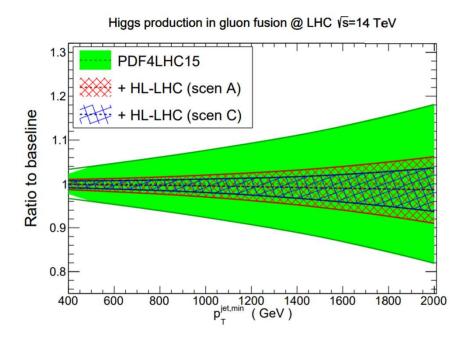
Parton Distributions and Luminosities

Scenario A:

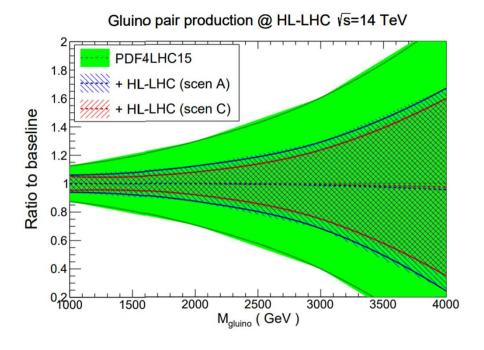
$$f_{red} = \begin{cases} 1 \text{ (8 TeV)} \\ 0.5 \text{ (13 TeV)} \end{cases}$$

Scenario C:

$$f_{red} = \begin{cases} 0.2 \ (8 \text{ TeV}) \\ 0.1 \ (13 \text{ TeV}) \end{cases}$$

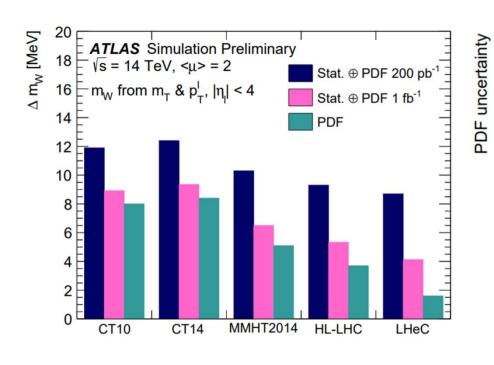

- Good reduction overall
- Not much difference between scenarios

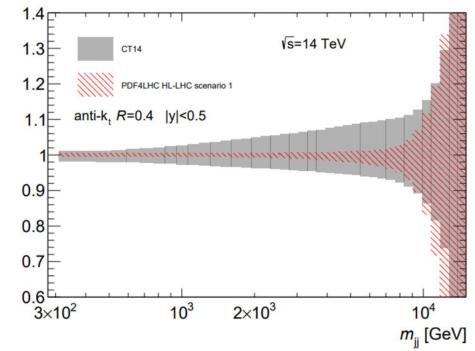
Luminosities


- Overall factor of \sim 2-4 improvement over a wide range of kinematics
- Not much difference between optimistic and conservative (in brackets) scenarios

Ratio to baseline	$10 \text{ GeV} \le M_X \le 40 \text{ GeV}$	$40~{\rm GeV} \le M_X \le 1~{\rm TeV}$	$1 \text{ TeV} \le M_X \le 6 \text{ TeV}$
gluon-gluon	0.50 (0.60)	0.28 (0.40)	0.22 (0.34)
${\rm gluon-quark}$	0.66 (0.72)	0.42 (0.45)	0.28 (0.37)
quark-quark	0.74 (0.79)	0.37 (0.46)	0.43 (0.59)
quark-antiquark	0.71 (0.76)	0.31 (0.40)	0.50 (0.60)
strange-antistrange	0.34 (0.44)	0.19 (0.30)	0.23 (0.27)
${\it strange-antiup}$	0.67 (0.73)	0.27 (0.38)	0.38 (0.43)

Higgs and BSM



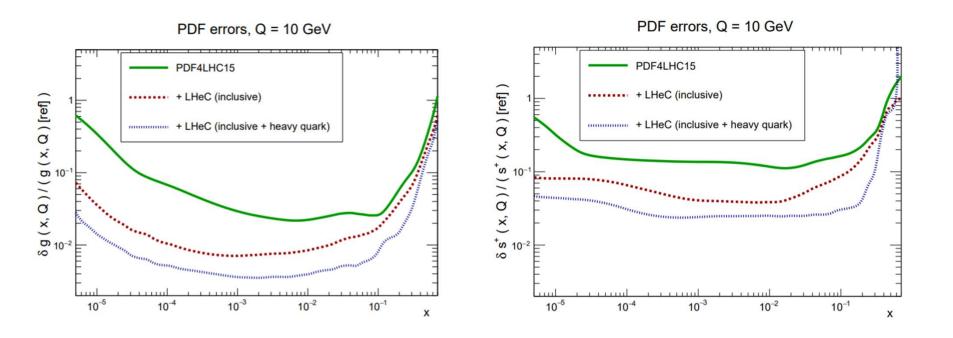

- PDF errors down to ~ 2%
- Potential for new heavy particles at high p_T

- Example BSM theory with good reduction
- Will help constrain parameter space

Yellow Report Studies

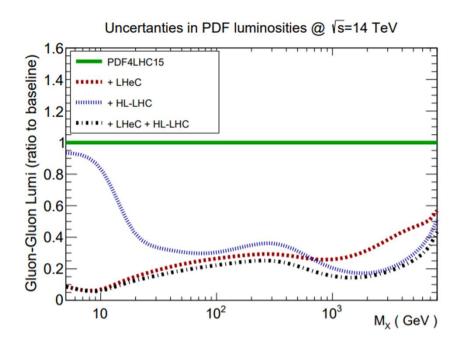
- W mass measurement
- Up to a factor of 2 improvement

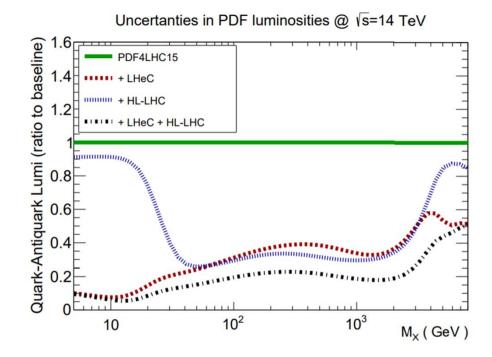
- Dijet theory
- Significant error reduction over a broad range of $m_{i\,i}$


LHeC

- Proposed electron-proton collider
- Much cleaner results, expected significant improvement to PDF errors, all the way down to low x
- What happens when applying the same formalism?
- See talk by A. Cooper Sarkar for further details

		Observable	E_p	Kinematics	$N_{ m dat}$	$\mathcal{L}_{\mathrm{int}} [\mathrm{ab}^{-1}]$
		$\tilde{\sigma}^{\rm NC}~(e^-p)$	$7 \mathrm{TeV}$	$5 \times 10^{-6} \le x \le 0.8, 5 \le Q^2 \le 10^6 \mathrm{GeV^2}$	150	1.0
Inclusive —		$\tilde{\sigma}^{\text{CC}} \ (e^-p)$	7 TeV	$8.5 \times 10^{-5} \le x \le 0.8, 10^2 \le Q^2 \le 10^6 \mathrm{GeV}^2$	114	1.0
		$\tilde{\sigma}^{\rm NC} \; (e^+ p)$	$7 \mathrm{TeV}$	$5 \times 10^{-6} \le x \le 0.8, 5 \le Q^2 \le 5 \times 10^5 \mathrm{GeV}^2$	148	0.1
		$\tilde{\sigma}^{\text{CC}} (e^+ p)$	$7~{ m TeV}$	$8.5 \times 10^{-5} \le x \le 0.7, 10^2 \le Q^2 \le 5 \times 10^5 \text{ GeV}^2$	109	0.1
		$\tilde{\sigma}^{\rm NC}~(e^-p)$	$1 \mathrm{TeV}$	$5 \times 10^{-5} \le x \le 0.8, 2.2 \le Q^2 \le 10^5 \mathrm{GeV}^2$	128	0.1
		$\tilde{\sigma}^{\text{CC}} (e^-p)$	1 TeV	$5 \times 10^{-4} \le x \le 0.8, 10^2 \le Q^2 \le 10^5 \text{ GeV}^2$	94	0.1
Heavy quark -		$F_2^{c,NC} \ (e^-p)$	$7~{ m TeV}$	$7\times 10^{-6} \le x \le 0.3, 4 \le Q^2 \le 2\times 10^5 \mathrm{GeV^2}$	111	0.1
	\dashv	$F_2^{b,NC} \ (e^-p)$	7 TeV	$3 \times 10^{-5} \le x \le 0.3, 32 \le Q^2 \le 2 \times 10^5 \text{ GeV}^2$	77	0.1
		$F_2^{c,CC}$ (e^-p)	$7 \mathrm{TeV}$	$10^{-4} \le x \le 0.25, 10^2 \le Q^2 \le 10^5 \text{ GeV}^2$	14	0.1
		Total			945	


Ignore polarisation: not expected to have a large effect


LHeC

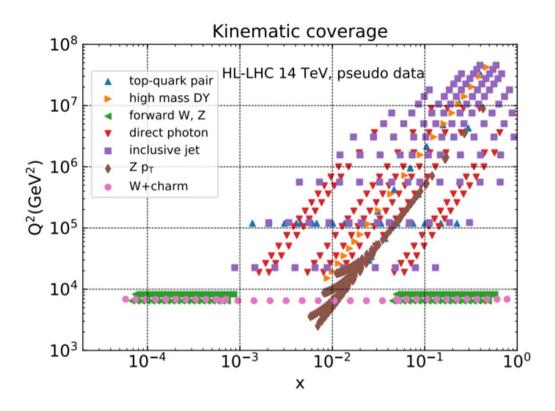
- Very good reduction overall, particularly at low x
- Heavy quark data had good improvement over a broad range of x, especially around x = 0.1-0.3
- Fits have also been done with T = 1, with a factor of 2 improvment

LHeC + HL-LHC

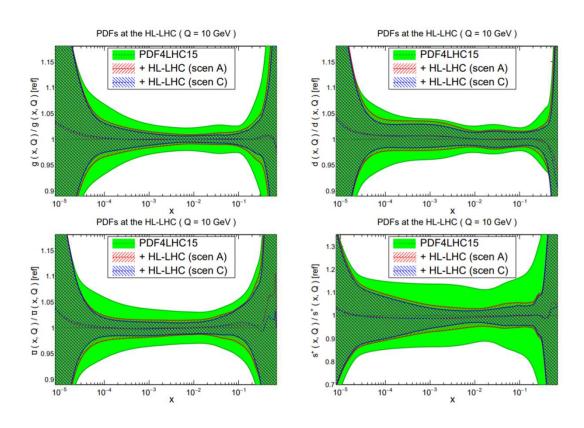
- HL-LHC and LHeC complementary, reducing errors in different regions
- e.g. HL-LHC reduces high-x gluon, while LHeC reduces low-x gluon
- However, not all data-sets chosen to concentrate on these regions and others such as jets at LHeC can constrain high-x gluon

Conclusions

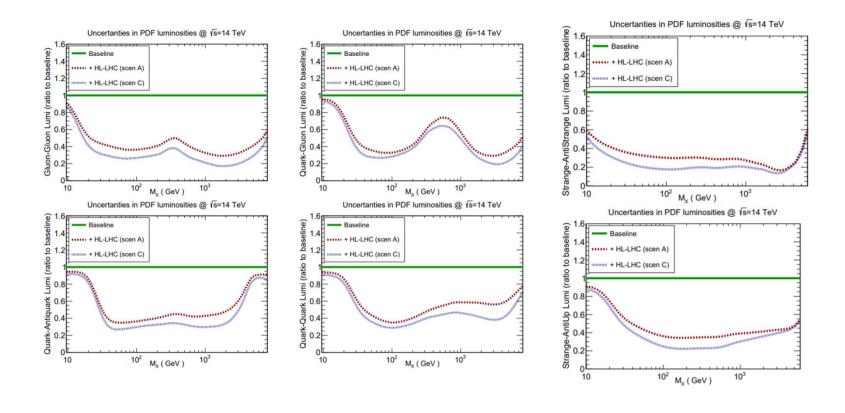
- HL-LHC will have significant constraining power, reducing luminosity errors by 2-4 over a wide range of kinematics
- Reduced errors on SM measurements and BSM searches
- Caveats:
 - Ignored issues such as difficulties in data/theory comparisons and data incompatibilities
 - Not included all possible data sets
- HL-LHC and LHeC are complementary in their PDF constraining abilities

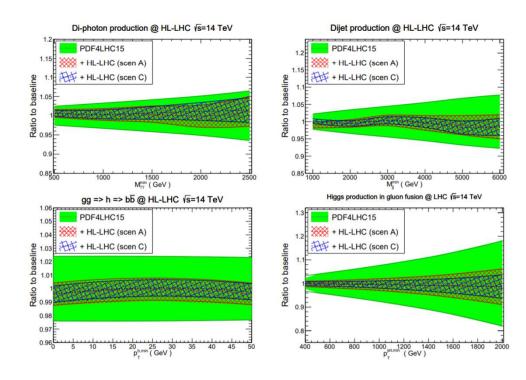

LHAPDF Sets

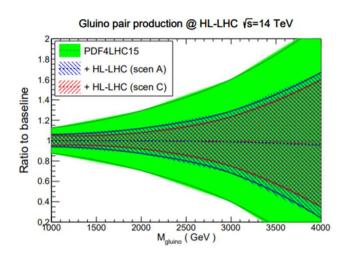
https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen1.tgz https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen2.tgz https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen3.tgz

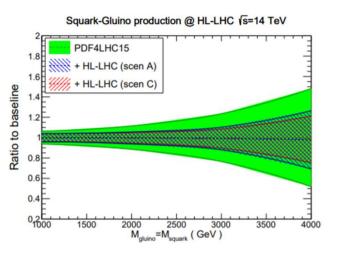

Thank you for listening Any questions?

Process	Kinematics	$N_{ m dat}$	$f_{ m corr}$	$f_{ m red}$	Baseline
$Z p_T$	$20 \text{GeV} \le p_T^{ll} \le 3.5 \text{TeV}$ $12 \text{GeV} \le m_{ll} \le 150 \text{GeV}$ $ y_{ll} \le 2.4$	338	0.5	(0.4, 1)	[52] (8 TeV)
high-mass Drell-Yan	$p_T^{l1(2)} \ge 40(30) \text{ GeV}$ $ \eta^l \le 2.5, m_{ll} \ge 116 \text{ GeV}$	32	0.5	(0.4, 1)	[47] (8 TeV)
top quark pair	$m_{t\bar{t}} \simeq 5 \text{ TeV}, y_t \leq 2.5$	110	0.5	(0.4, 1)	[50] (8 TeV)
$W+{\rm charm~(central)}$	$\begin{aligned} p_T^{\mu} & \geq 26 \mathrm{GeV}, p_T^c \geq 5 \mathrm{GeV} \\ \eta^{\mu} & \leq 2.4 \end{aligned}$	12	0.5	(0.2, 0.5)	[24] (13 TeV)
$W+{ m charm}$ (forward)	$\begin{aligned} p_T^{\mu} & \geq 20 \mathrm{GeV}, p_T^c \geq 20 \mathrm{GeV} \\ p_T^{\mu + c} & \geq 20 \mathrm{GeV} \\ 2 & \leq \eta^{\mu} \leq 4.5, 2.2 \leq \eta^c \leq 4.2 \end{aligned}$	10	0.5	(0.4, 1)	LHCb projection
Direct photon	$E_T^{\gamma} \lesssim 3 \text{ TeV}, \eta_{\gamma} \leq 2.5$	118	0.5	(0.2, 0.5)	[55] (13 TeV)
Forward W, Z	$ \begin{vmatrix} p_T^l \ge 20 \text{GeV}, 2.0 \le \eta^l \le 4.5 \\ 60 \text{GeV} \le m_{ll} \le 120 \text{GeV} \end{vmatrix} $	90	0.5	(0.4, 1)	[49] (8 TeV)
Inclusive jets	$ y \le 3, R = 0.4$	58	0.5	(0.2, 0.5)	[61] (13 TeV)
Total		768			


Kinematic coverage


Parton Densities

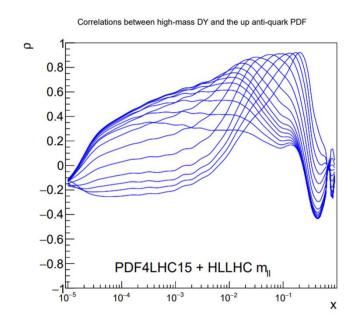

Luminosities

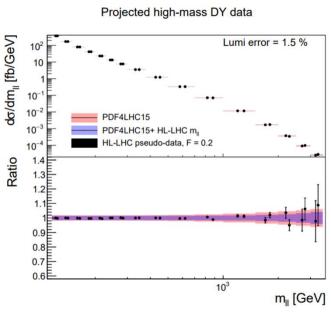


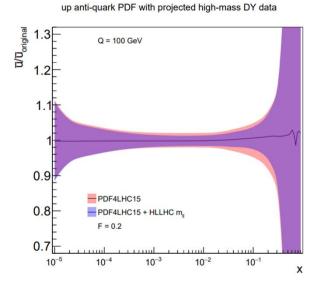
SM Cross Sections

BSM Cross Sections

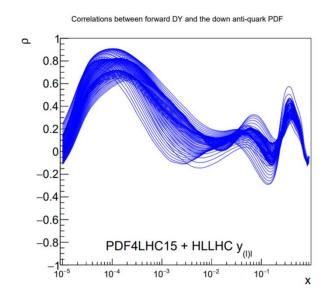
Hessian Profiling

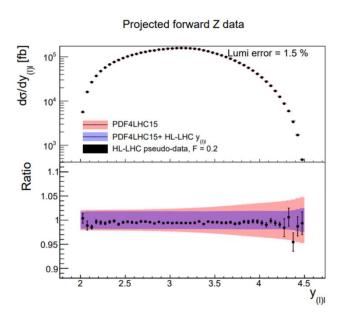

$$H_{\alpha\beta} = \Gamma_{i\alpha}(\text{cov})_{ij}^{-1}\Gamma_{j\beta} + T^2\delta_{\alpha\beta}$$


$$f_{S_i'}' = \sum_{k}^{N_{\text{eig}}} (f_{S_k} - f_0) v_k^{(i)} \sqrt{\frac{1}{\epsilon_i}} T$$

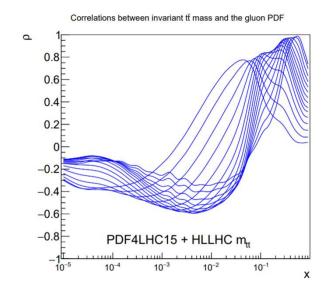

Data dominant -> ϵ independent of T -> $\delta f \sim T$

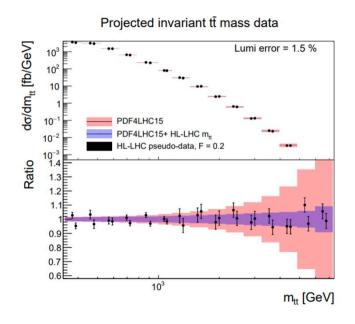
Data not constraining -> $\epsilon \sim T$ -> δf independent of T

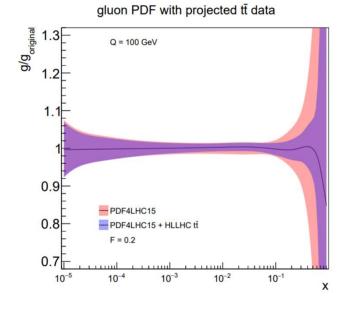

High Mass DY

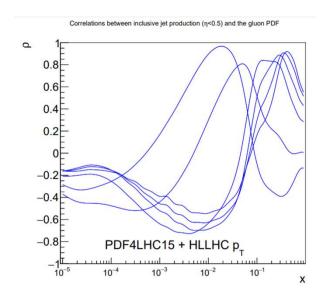


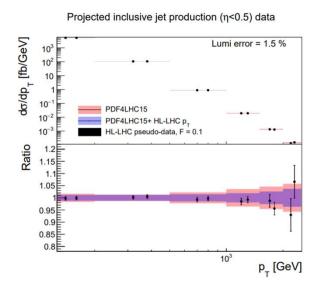


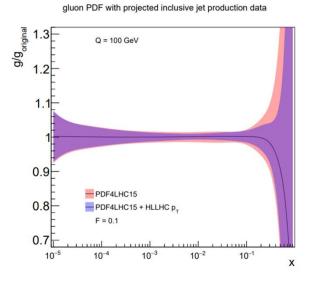


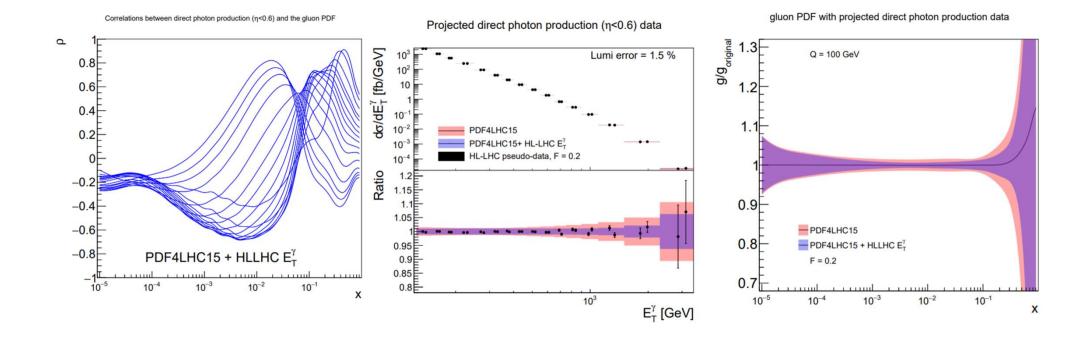

Forward DY

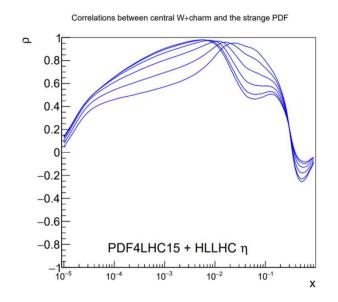


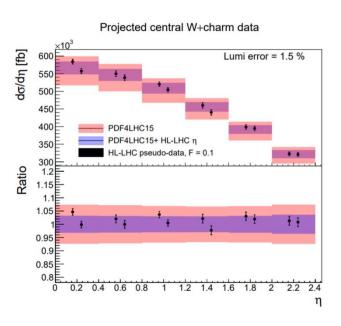


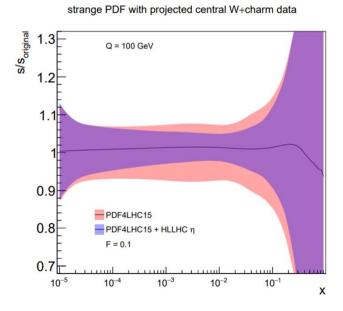


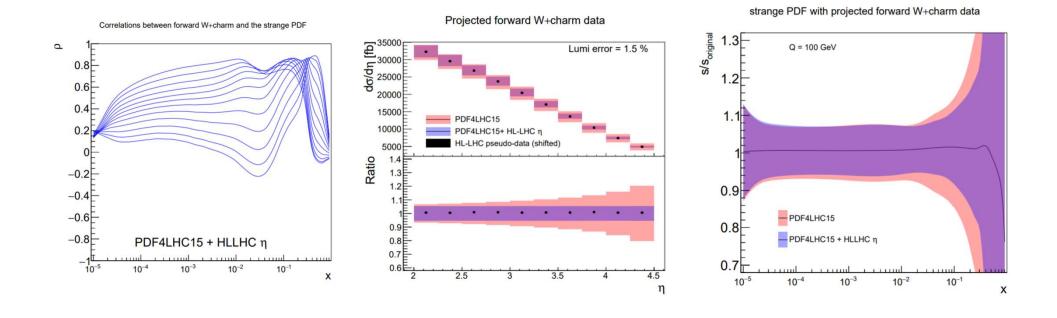


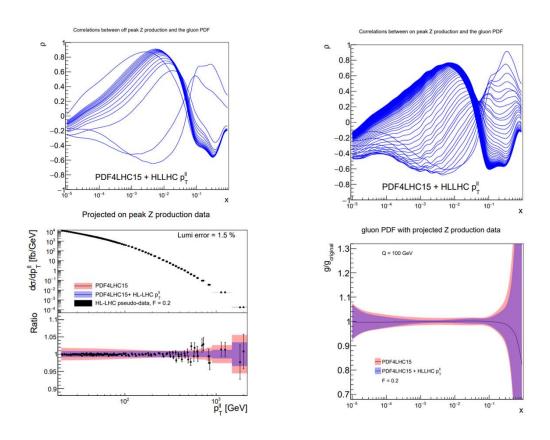

Inclusive Jet

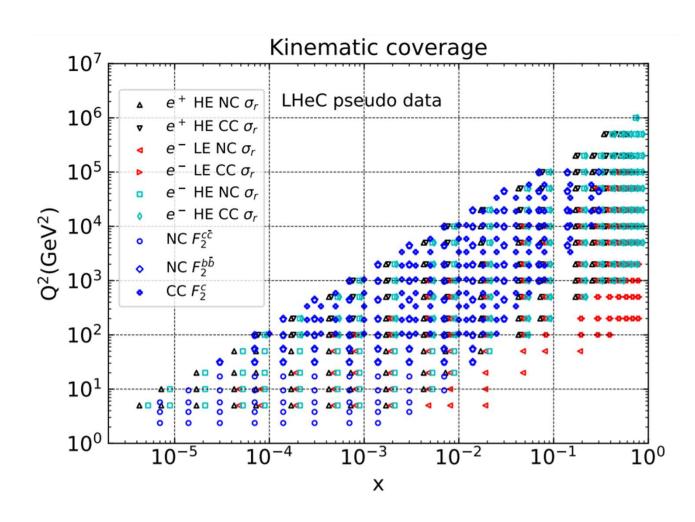


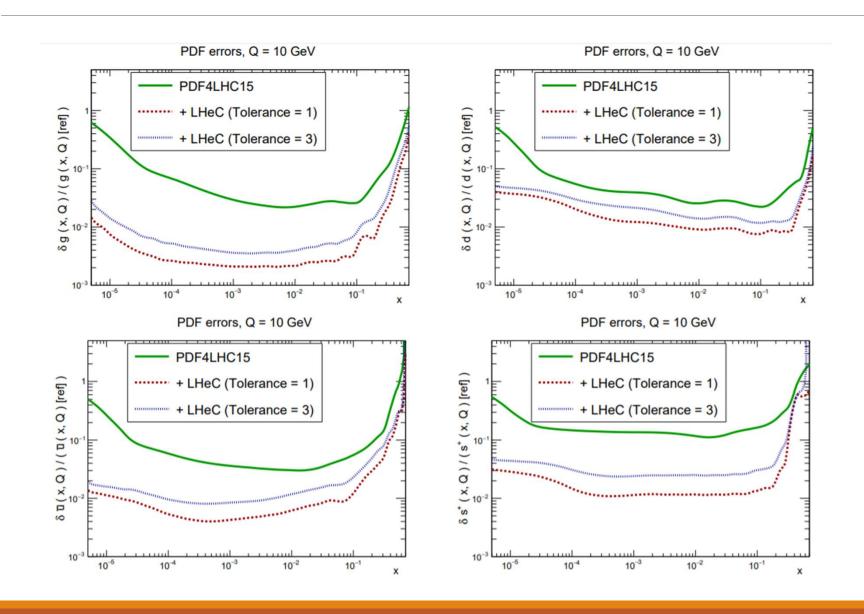


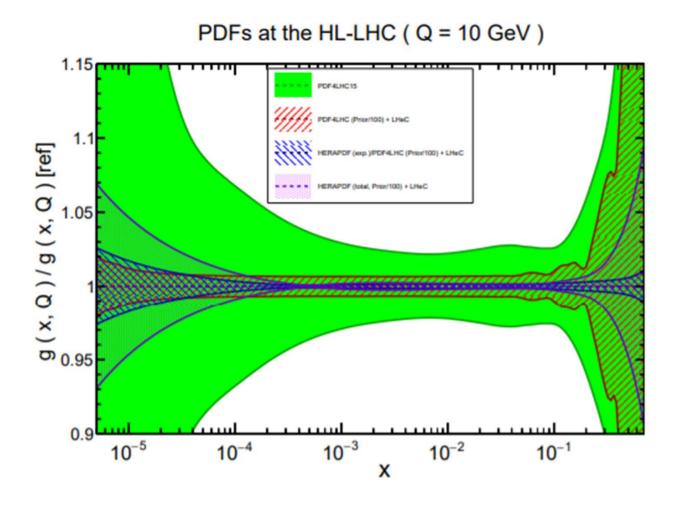

Direct Photon

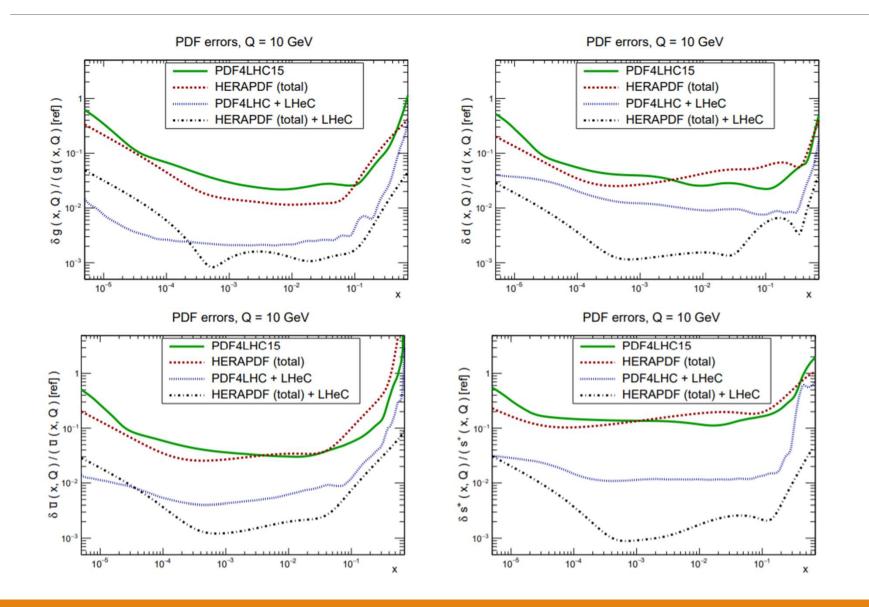

Central W + charm




Forward W + charm


Z production


Kinematic coverage LHeC


LHeC - tolerance

Prue LHeC

LHeC - HERAPDF

