PDF Prospects at the HL-LHC RABAH ABDUL KHALEK, SHAUN BAILEY, JUN GAO, LUCIAN HARLAND-LANG, AND JUAN ROJO arXiv: 1810.03639, 1906.10127 ### Contents - □ Data sets and errors - ☐ Hessian profiling - ☐HL-LHC results - ☐ LHeC results ### HL-LHC - A new phase of the LHC starting in 2025 - Increased luminosity results in improved statistics - Question: What will PDFs look like after this phase? ATLAS + CMS: $\mathcal{L} = 3 \text{ ab}^{-1}$ LHCb: $\mathcal{L} = 0.3 \text{ ab}^{-1}$ CERN-LPCC-2018-03 February 26, 2019 #### **Standard Model Physics** at the HL-LHC and HE-LHC Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC P. Azzi¹, S. Farry², P. Nason^{3,4}, A. Tricoli⁵, D. Zeppenfeld⁶ R. Abdul Khalek^{7,8}, J. Alimena⁹, N. Andari¹⁰, L. Aperio Bella¹¹, A.J. Armbruster¹¹, J. Baglio¹², S. Bailey¹³, E. Bakos¹⁴, A. Bakshi¹⁵, C. Baldenegro¹⁶, F. Balli¹⁰, A. Barker¹⁵, W. Barter¹⁷, J. de Blas^{18,1} F. Blekman¹⁹, D. Bloch²⁰, A. Bodek²¹, M. Boonekamp¹⁰, E. Boos²², J.D. Bossio Sola²³, L. F. Biesman, D. Bioch, A. Bouek, M. Boonekamp, E. Boos, J.D. Bossio Sola, L. Cadamuro²⁴, S. Camarda¹¹, F. Campanario²⁵, M. Campanelli²⁶, J.M. Campbell²⁷, Q.-H. Cao^{28,29,30}, V. Cavaliere³, A. Cerri³, G.S. Chahali^{7,32}, B. Chargeishvili²⁸, C. Charlor³, S.-L. Chen³⁵, T. Chen³⁶, L. Cieri³, M. Ciuchini³⁷, G. Corcella³⁸, S. Cotogno³⁴, R. Covarelli^{39,40}, J.M. Cruz-Martineç⁴¹, M. Czakon⁴², A. Dainese¹, N.P. Dang⁴³, L. Darme⁴⁴, S. Dawson⁵, H. De la Torre⁴⁵, M. Deile¹¹, F. Delioi¹⁰, S. Demers⁴⁶, A. Denner³⁷, F. Derue⁴⁸, L. Di Ciaccio⁴⁹, W.K. Di Clemente⁵⁰, D. Dominguez Damiani⁵¹, L. Dudko²², A. Durglishvili³³, M. Dünser¹¹, J. Ebadi⁵², R.B. Ferreira De Faria⁵³, G. Damiant , L. Dulaco , A. Durgisiwitt , M. Dunser , J. Ebdat , R.B. Ferreira De Faria , G. Ferrera ^{1,1,4}, A. Ferroglia ⁵, T.M. Fig. ³⁰, K.D. Finelli ⁵, M.C.N. Fiolhais ^{57,53} E. Franco ⁵⁸, R. Frederix ⁵⁹, B. Fuks ^{50,6}, B. Galhardo ^{53,62}, J. Gao ⁵³, J.R. Gaunt ¹¹, T. Gehrmann ⁶⁴, A. Gehrmann-De Ridder ⁵⁵, D. Giljanovic ^{66,34}, F. Giuli ⁶⁷, E.W.N. Glover ³², M.D. Goodself ⁸⁸, E. Gouveia ⁵³, P. Goveni^{3,4} C. Goy¹⁰, M. Grazzini^{5,4} A. Grohsjean^{5,1} J. F. Grosse-Oetringhaus¹¹ P. Gumellini^{6,6} C. Gwenlan^{7,6} L.A. Harland-Lang¹³, P.F. Harrison^{7,1} G. Heinrich^{7,2} C. Helsens¹¹, M. Hemdon^{7,3} O. Hindrichs^{2,1} V. Hirschi^{6,5} A. Hoang^{7,4} K. Hoepfner^{4,2} J.M. Hogan^{7,5,6} A. Huss¹¹ S. Jahn^{7,2} Sa. arXiv: 1902.04070 - Central value determined by NLO theory and then shifted according to errors - No need for NNLO theory due to closure test - Acceptance, *a*, accounts for detector effects /branching ratio/... - Acceptance taken from existing experimental data set (nearest bin) ### Statistics: stat $$\sim \sqrt{N_{\rm obs}}$$ $$N \sim a \mathcal{L} \frac{\partial \sigma^{\text{th}}}{\partial x} \Delta x$$ $$a = Br \times \frac{N_{obs}}{N_{predicted}}$$ - Systematics taken from existing data set - Treated as uncorrelated, with a factor f_{corr} to account for this - A variable factor, f_{red} , used to estimate improvement to systematics - Exception: Luminosity error $$sys(14 \text{ TeV}) \sim f_{corr} \times f_{red} \times sys(8/13 \text{ TeV})$$ $$f_{corr} = 0.5$$ Scenario A: (Conservative) $$f_{red} = \begin{cases} 1.0 \ (8 \ \text{TeV}) \\ 0.5 \ (13 \ \text{TeV}) \end{cases}$$ Scenario C: (Optimistic) $$f_{red} = \begin{cases} 0.2 \ (8 \ \text{TeV}) \\ 0.1 \ (13 \ \text{TeV}) \end{cases}$$ ## Hessian Profiling - Estimates the effect of adding new data sets to a Hessian PDF set - We will be using PDF4LHC for this study - Hessian PDF set described by eigenvectors of the Hessian matrix. - Tolerance, *T*, takes into account data/theory inconsistencies, parameterisation effects.. - We take T = 3, roughly in line with MMHT and CT $$Hessian: H_{ij} = \frac{\partial^2 \chi^2}{\partial z_i \partial z_j}$$ Expand: $$\chi^2 = \chi_0^2 + T^2 \sum_{\alpha} \beta_{\alpha}^2$$ eta_lpha along Hessian's eigenvector directions At $$\beta_{\alpha} = 1$$ define error PDF: $f_{S_{\alpha}}(x)$ Error on PDF: $$\delta f(x) = \sqrt{\sum_{\alpha} \left(f_{S_{\alpha}}(x) - f_{0}(x) \right)^{2}}$$ ## Hessian Profiling - Can add in new data set with typical χ^2 formula - Theory values parametrised using error PDFs - χ^2 minimised with respect to Hessian parameters \rightarrow new central PDF - Calculate new Hessian → new error PDFS $$\sigma_i^{\rm th} \to \sigma_i^{\rm th} + \sum_{\alpha} \Gamma_{i\alpha} \beta_{\alpha}$$ $$\Gamma_{i\alpha} = \sigma_i^{\text{th}}(S_\alpha) - \sigma_i^{\text{th}}(S_0)$$ $$\Delta \chi^2 = \sum_{ij} \left(\sigma_i^{\text{exp}} - \sigma_i^{\text{th}} + \sum_{\alpha} \Gamma_{i\alpha} \beta_{\alpha} \right) (\text{cov})_{ij}^{-1} \left(\sigma_j^{\text{exp}} - \sigma_j^{\text{th}} + \sum_{\gamma} \Gamma_{j\gamma} \beta_{\gamma} \right) + T^2 \sum_{\alpha} \beta_{\alpha}^2$$ New Hessian: $$H_{\alpha\gamma} = \frac{\partial^2 \chi^2}{\partial \beta_{\alpha} \partial \beta_{\gamma}}$$ ### Individual Data Sets PDF4LHC15 PDF4LHC15 + HLLHC tī 10^{-3} 10-2 10-1 0.8 - $t\bar{t}$ has good constraints on high-x gluon - Results from extended kinematic region - Forward W + charm data constrains the strange PDF - Limited by overall normalisation error ### Parton Distributions and Luminosities ### Scenario A: $$f_{red} = \begin{cases} 1 \text{ (8 TeV)} \\ 0.5 \text{ (13 TeV)} \end{cases}$$ ### Scenario C: $$f_{red} = \begin{cases} 0.2 \ (8 \text{ TeV}) \\ 0.1 \ (13 \text{ TeV}) \end{cases}$$ - Good reduction overall - Not much difference between scenarios ### Luminosities - Overall factor of \sim 2-4 improvement over a wide range of kinematics - Not much difference between optimistic and conservative (in brackets) scenarios | Ratio to baseline | $10 \text{ GeV} \le M_X \le 40 \text{ GeV}$ | $40~{\rm GeV} \le M_X \le 1~{\rm TeV}$ | $1 \text{ TeV} \le M_X \le 6 \text{ TeV}$ | |------------------------|---|--|---| | gluon-gluon | 0.50 (0.60) | 0.28 (0.40) | 0.22 (0.34) | | ${\rm gluon-quark}$ | 0.66 (0.72) | 0.42 (0.45) | 0.28 (0.37) | | quark-quark | 0.74 (0.79) | 0.37 (0.46) | 0.43 (0.59) | | quark-antiquark | 0.71 (0.76) | 0.31 (0.40) | 0.50 (0.60) | | strange-antistrange | 0.34 (0.44) | 0.19 (0.30) | 0.23 (0.27) | | ${\it strange-antiup}$ | 0.67 (0.73) | 0.27 (0.38) | 0.38 (0.43) | ### Higgs and BSM - PDF errors down to ~ 2% - Potential for new heavy particles at high p_T - Example BSM theory with good reduction - Will help constrain parameter space ### Yellow Report Studies - W mass measurement - Up to a factor of 2 improvement - Dijet theory - Significant error reduction over a broad range of $m_{i\,i}$ ### LHeC - Proposed electron-proton collider - Much cleaner results, expected significant improvement to PDF errors, all the way down to low x - What happens when applying the same formalism? - See talk by A. Cooper Sarkar for further details | | | Observable | E_p | Kinematics | $N_{ m dat}$ | $\mathcal{L}_{\mathrm{int}} [\mathrm{ab}^{-1}]$ | |---------------|----------|---------------------------------------|-------------------|--|--------------|---| | | | $\tilde{\sigma}^{\rm NC}~(e^-p)$ | $7 \mathrm{TeV}$ | $5 \times 10^{-6} \le x \le 0.8, 5 \le Q^2 \le 10^6 \mathrm{GeV^2}$ | 150 | 1.0 | | Inclusive — | | $\tilde{\sigma}^{\text{CC}} \ (e^-p)$ | 7 TeV | $8.5 \times 10^{-5} \le x \le 0.8, 10^2 \le Q^2 \le 10^6 \mathrm{GeV}^2$ | 114 | 1.0 | | | | $\tilde{\sigma}^{\rm NC} \; (e^+ p)$ | $7 \mathrm{TeV}$ | $5 \times 10^{-6} \le x \le 0.8, 5 \le Q^2 \le 5 \times 10^5 \mathrm{GeV}^2$ | 148 | 0.1 | | | | $\tilde{\sigma}^{\text{CC}} (e^+ p)$ | $7~{ m TeV}$ | $8.5 \times 10^{-5} \le x \le 0.7, 10^2 \le Q^2 \le 5 \times 10^5 \text{ GeV}^2$ | 109 | 0.1 | | | | $\tilde{\sigma}^{\rm NC}~(e^-p)$ | $1 \mathrm{TeV}$ | $5 \times 10^{-5} \le x \le 0.8, 2.2 \le Q^2 \le 10^5 \mathrm{GeV}^2$ | 128 | 0.1 | | | | $\tilde{\sigma}^{\text{CC}} (e^-p)$ | 1 TeV | $5 \times 10^{-4} \le x \le 0.8, 10^2 \le Q^2 \le 10^5 \text{ GeV}^2$ | 94 | 0.1 | | Heavy quark - | | $F_2^{c,NC} \ (e^-p)$ | $7~{ m TeV}$ | $7\times 10^{-6} \le x \le 0.3, 4 \le Q^2 \le 2\times 10^5 \mathrm{GeV^2}$ | 111 | 0.1 | | | \dashv | $F_2^{b,NC} \ (e^-p)$ | 7 TeV | $3 \times 10^{-5} \le x \le 0.3, 32 \le Q^2 \le 2 \times 10^5 \text{ GeV}^2$ | 77 | 0.1 | | | | $F_2^{c,CC}$ (e^-p) | $7 \mathrm{TeV}$ | $10^{-4} \le x \le 0.25, 10^2 \le Q^2 \le 10^5 \text{ GeV}^2$ | 14 | 0.1 | | | | Total | | | 945 | | Ignore polarisation: not expected to have a large effect ### LHeC - Very good reduction overall, particularly at low x - Heavy quark data had good improvement over a broad range of x, especially around x = 0.1-0.3 - Fits have also been done with T = 1, with a factor of 2 improvment ### LHeC + HL-LHC - HL-LHC and LHeC complementary, reducing errors in different regions - e.g. HL-LHC reduces high-x gluon, while LHeC reduces low-x gluon - However, not all data-sets chosen to concentrate on these regions and others such as jets at LHeC can constrain high-x gluon ### Conclusions - HL-LHC will have significant constraining power, reducing luminosity errors by 2-4 over a wide range of kinematics - Reduced errors on SM measurements and BSM searches - Caveats: - Ignored issues such as difficulties in data/theory comparisons and data incompatibilities - Not included all possible data sets - HL-LHC and LHeC are complementary in their PDF constraining abilities ### LHAPDF Sets https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen1.tgz https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen2.tgz https://data.nnpdf.science/HLLHC_YR/PDF4LHC15_nnlo_hllhc_scen3.tgz # Thank you for listening Any questions? | Process | Kinematics | $N_{ m dat}$ | $f_{ m corr}$ | $f_{ m red}$ | Baseline | |---------------------------|---|--------------|---------------|--------------|-----------------| | $Z p_T$ | $20 \text{GeV} \le p_T^{ll} \le 3.5 \text{TeV}$ $12 \text{GeV} \le m_{ll} \le 150 \text{GeV}$ $ y_{ll} \le 2.4$ | 338 | 0.5 | (0.4, 1) | [52] (8 TeV) | | high-mass Drell-Yan | $p_T^{l1(2)} \ge 40(30) \text{ GeV}$
$ \eta^l \le 2.5, m_{ll} \ge 116 \text{ GeV}$ | 32 | 0.5 | (0.4, 1) | [47] (8 TeV) | | top quark pair | $m_{t\bar{t}} \simeq 5 \text{ TeV}, y_t \leq 2.5$ | 110 | 0.5 | (0.4, 1) | [50] (8 TeV) | | $W+{\rm charm~(central)}$ | $\begin{aligned} p_T^{\mu} & \geq 26 \mathrm{GeV}, p_T^c \geq 5 \mathrm{GeV} \\ \eta^{\mu} & \leq 2.4 \end{aligned}$ | 12 | 0.5 | (0.2, 0.5) | [24] (13 TeV) | | $W+{ m charm}$ (forward) | $\begin{aligned} p_T^{\mu} & \geq 20 \mathrm{GeV}, p_T^c \geq 20 \mathrm{GeV} \\ p_T^{\mu + c} & \geq 20 \mathrm{GeV} \\ 2 & \leq \eta^{\mu} \leq 4.5, 2.2 \leq \eta^c \leq 4.2 \end{aligned}$ | 10 | 0.5 | (0.4, 1) | LHCb projection | | Direct photon | $E_T^{\gamma} \lesssim 3 \text{ TeV}, \eta_{\gamma} \leq 2.5$ | 118 | 0.5 | (0.2, 0.5) | [55] (13 TeV) | | Forward W, Z | $ \begin{vmatrix} p_T^l \ge 20 \text{GeV}, 2.0 \le \eta^l \le 4.5 \\ 60 \text{GeV} \le m_{ll} \le 120 \text{GeV} \end{vmatrix} $ | 90 | 0.5 | (0.4, 1) | [49] (8 TeV) | | Inclusive jets | $ y \le 3, R = 0.4$ | 58 | 0.5 | (0.2, 0.5) | [61] (13 TeV) | | Total | | 768 | | | | ### Kinematic coverage ### Parton Densities ### Luminosities ### **SM Cross Sections** ### **BSM Cross Sections** ### Hessian Profiling $$H_{\alpha\beta} = \Gamma_{i\alpha}(\text{cov})_{ij}^{-1}\Gamma_{j\beta} + T^2\delta_{\alpha\beta}$$ $$f_{S_i'}' = \sum_{k}^{N_{\text{eig}}} (f_{S_k} - f_0) v_k^{(i)} \sqrt{\frac{1}{\epsilon_i}} T$$ Data dominant -> ϵ independent of T -> $\delta f \sim T$ Data not constraining -> $\epsilon \sim T$ -> δf independent of T # High Mass DY ### Forward DY ### Inclusive Jet ### Direct Photon ### Central W + charm ### Forward W + charm # Z production ### Kinematic coverage LHeC ### LHeC - tolerance ### Prue LHeC ### LHeC - HERAPDF