

TOWARDS GLOBAL INTERPRETATION: AN EXPERIMENTALISTS' VIEW AND WISHES Highlights from workshop(s) discussions, some personal views P. Milenovic (University of Belgrade)

P. Milenovic (University of Belgrade) Ultimate Precision at Hadron Colliders, 25th Nov - 6th Dec 2019

Preface

Excellence of LHC & its experiments: Enabled rich physics program @ 7/8/13 TeV

- **LHC**: effective bunch collision schemes, high machine availability.
- **Experiments**: very good performance at high pile-up, and detector operation efficiency.

Performed a plethora of SM measurements and searches for new physics:

Need : LHC upgrade to fully exploit its potential and push the limits even further Consistent global interpretation of wide spectrum of measurements

From measurements to (global) interpretations...

Global interpretation: Formalism, tools & approaches

- Motivation for global interpretations and some general aspects
- EFT formulation, assumptions, approaches
- EFT effects & necessary tools, towards global sensitivity

No phenomenon is a true phenomenon until it is an observed phenomenon. John A. Wheeler

tions and some general aspects approaches owards global sensitivity

Effective Field Theory as a global approach

 $\mathcal{L}_n = \sum_i C_i \mathcal{O}_i^{d=n}$

Effective Field Theory (EFT) - general ideas:

- LHC results: no new resonance, indicate scale of new physics as >> ITeV
- (SM)EFT approach: only SM fields & symmetries are present at the accessible scale \rightarrow valid QFT-based description of Nature $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda}$
- Taylor expansion of Lagrangian in canonical dimensions: (large number of parameters)

EFT - possibilities:

- Allows: to perform gauge invariant calculations & loops (systematically improvable with higher orders)
- Use: as a self-consistent "theory" and systematically probe its parameters
- Approach: choose a basis (SILH, Warsaw), retain all/relevant operators in measurement

	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$			$(\bar{L}L)(\bar{L}L)$	L) $(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$		Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$		$Q_{qq}^{(1)}$	$(ar{q}_p \gamma_\mu q_r)(ar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}W^{K\mu}_{\nu}$						$Q_{lq}^{(1)}$	$(ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)$
	$\frac{\mu}{X^2 (\rho^2)}$		$ab^2 X \phi$		$ab^2 \omega^2 D$		$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$
	inter CA CAW		THE	ter	dios aro	hoc	on	hing roa		mature	$\mathcal{Q}_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
$Q_{\varphi G}$	$\varphi'\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$		$(l_p \sigma^\mu e) \tau \rho = \rho = \frac{1}{\mu\nu}$			NCC		ing i ca	$Q_{uu}^{(8)}$	$(u_p \gamma_\mu T^* u_r)(d_s \gamma^\mu T^* d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$		(base	es.	generat	OS.	tod	ols. NLC) p	recision	.e	$(\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I_{\mu u}}$	SuG	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\tilde{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$,	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -vio	lating	
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{q}_{p} \gamma^{\mu} q_{r})$		Q_{ledg}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{dug}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{lpha} ight) ight]$	TCu_r^{β}	$\left[(q_s^{\gamma j})^T C l_t^k ight]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$		$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[(q_p^{lpha j})\right]$	$TCq_r^{\beta k}$	$\left[(u_s^{\gamma})^T C e_t \right]$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{lpha}) ight]$	$(j)^T C q_r^{\beta}$	$\begin{bmatrix} R^k \end{bmatrix} \begin{bmatrix} (q_s^{\gamma m})^T C l_t^n \end{bmatrix}$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\left[(q_p^{\alpha j})^T ight]$	$\left[Cq_r^{\beta k} ight]\left[(q_s^{\gamma m})^T Cl_t^n ight]$
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		$Q_{lequ}^{(3)}$	$(\bar{l}^{j}_{p}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}^{k}_{s}\sigma^{\mu\nu}u_{t})$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	Cu_r^{β}	$\left[(u_s^\gamma)^T C e_t\right]$

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

$$rac{1}{\Lambda}\mathcal{L}_5+rac{1}{\Lambda^2}\mathcal{L}_6+rac{1}{\Lambda^3}\mathcal{L}_7+rac{1}{\Lambda^4}\mathcal{L}_8+\dots$$

C_i free parameters (Wilson coefficients)

 \mathcal{O}_i invariant operators that form a complete, non redundant basis

MC tools for **SMEFT**:

- Hard-coded MEs: POWHEG, MCFM; Lagrangian-level implementation: MG5_aMC@NLO, Sherpa
- State of the art: (N)NLO QCD for SM, NLO QCD for SMEFT, LO@EFT or NLO@EFT?

NLO@SMEFT:

- Non trivial EFT contributions could arise first at one-loop
- ' MC tools for SMEFT

Require MC tools for precise SMEFT predictions Selection of process specific & general purpose codes Process specific: hard-coded matrix elements

• Automated frameworks for IR subtractions & PS matching: POWHEG, MCFM

General purpose: Lagrangian-level implementation

- Fully automated event generation & PS matching: MG5_aMC@NLO, Sherpa
- Advantage: process independent
- Once validated, any desired process can be tested → global
- Disadvantage: takes longer to develop...

State of the art for SMEFT: NLO QCD

Essential to have more than one tool

Need for experimental & theoretical community validation

Proposal for the validation of Monte Carlo implementations of the standard model effective field theory

Gauthier Durieux¹ (ed.), Ilaria Brivio^{2,3} (ed.), Fabio Maltoni^{4,5} (ed. ex officio), Michael Trott² (ed. ex officio), Simone Alioli,⁶ Andy Buckley,⁷ Mauro Chiesa,⁸ Jorge de Blas,^{9,10} Athanasios Dedes,¹¹ Céline Degrande,⁴ Ansgar Denner,⁸ Christoph Englert,⁷ James Ferrando,¹² Benjamin Fuks,^{13,14} Peter Galler,⁷ Admir Greljo,¹⁵ Valentin Hirschi,¹⁶ Gino Isidori,¹⁷ Wolfgang Kilian,¹⁸ Frank Krauss,¹⁹ Jean-Nicolas Lang,¹⁷ Jonas Lindert,¹⁹ Michelangelo Mangano,¹⁵ David Marzocca,²⁰ Olivier Mattelaer,⁴ Kentarou Mawatari,²¹ Emanuele Mereghetti,²² David J. Miller,⁷ Ken Mimasu,⁴ Michael Paraskevas,²³ Tilman Plehn,³ Laura Reina,²⁴ Janusz Rosiek,²³ Jürgen Reuter,¹² José Santiago,²⁵ Kristaq Suxho,¹¹ Lampros Trifyllis,¹¹ Eleni Vryonidou,¹⁵ Christopher White,²⁷ Cen Zhang,^{28,29}

Hantian Zhang¹⁷

Agreement on a proposal for comparing & validating SMEFT MC tools

- Matrix elements point-by-point in phase space for many different processes
- LHE format for event kinematics and operators contributions as weights
- Also for loops (blha accord)

SMEFT codes

Single & double Higgs (partial SMEFT)

HiGlu, SusHi, HPAIR, HiggsPair

eHDECAY for BR

HAWK

VBF and VH @ NLO in QCD & EW for SM + 2 anomalous couplings

VBFNLO

General (FO) tool for Higgs/weak boson production @ NLO in QCD

POWHEG-BOX/MCFM

- VH NLO QCD + PS for Higgs/EW operators (SILH)
- Drell-Yan & EW Higgs production with more operators [Alioli et al.; JHEP 08 (2018) 205]
- WW with TGC & quark vertex operators [Baglio et al.; PRD 99 (2019) 035029]

[Spira; arXiv:hep-ph/9510347] [Harlander, Liebler & Mantler; arXiv: 1605.03190 [Dawson. Dittmaier & Spira: Phys. Rev. D58:115012 [Goertz et al.; JHEP 1504 (2015) 167]

[Contino et al.; Comp. Phys. Comm. 185 (2014) 3412-3423] https://www.itp.kit.edu/~maggie/eHDECAY/

[Denner et al.; JHEP 1203 (2012) 075 http://omnibus.uni-freiburg.de/~sd565/programs/hawk/hawk

> [Baglio et al.; arXiv:1404.3940] https://www.itp.kit.edu/vbfnlo

> > http://powhegbox.mib.infn.it

[KM et al.; JHEP 1608 (2016) 039]

MC tools for SMEFT:

- Hard-coded MEs: POWHEG, MCFM; Lagrangian-level implementation: MG5 aMC@NLO, Sherpa
- State of the art: (N)NLO QCD for SM, NLO QCD for SMEFT, LO@EFT or NLO@EFT?

NLO@SMEFT:

Non trivial EFT contributions could arise first at one-loop

Going NLO

Two main reasons to seek NLO precision

1. Same as for SM

- QCD corrections important for hadron colliders
- EW corrections can be important in relevant phase space regions (Sudakovs)
- Control normalisation, shapes and scale uncertainties

2. EFT-specific considerations

• Non trivial EFT contributions could arise first at one-loop (e.g. yt in ggF)

Useful if relatively weakly constrained directions contribute to precisely measured observables

Contribute indirectly in global fits through marginalisation effects

- Anomalous dimensions (operator running & mixing)
- [Alonso*, Jenkins, Manohar & Trott; JHEP 1310 (2013) 087, JHEP 1401 (2014) 035 & JHEP 1404 (2014) 159*]
 - Needed for scale uncertainties, can also estimate one-loop contributions

SMEFT models

HEL

- Flavor universal SILH basis @ LO
- Higgs/EW operators in SILH basis @ NLOQCD (HELatNLO)

SMEFTsim

Complete Warsaw basis (2499!) @ LO with flavor restriction options

SMEFTfr

FeynRules for Warsaw basis @ LO in R_ε-gauge

dim6top

[Aguilar-Saavedra et al.; arXiv:1802.07237] http://fevnrules.irmp.ucl.ac.be/wiki/dim6top

• top sector @ LO, several flavor symmetry scenarios (LH top WG)

SMEFTatNLO

top/Higgs/EW sector @ NLOQCD (4F operators being validated)

[Brivio et al.; JHEP 1712 (2017) 070] http://feynrules.irmp.ucl.ac.be/wiki/SMEFT

[Dedes et al.; JHEP 1706 (2017) 143] [Misiak et al.; JHEP 1902 (2019) 051] <u> htttps://www.few.edu.pl/smeft</u>

[Degrande et al.; in preparation] http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

Basis translation tool for SMEFT

Rosetta

Underlines basis independence

- No one basis is the 'best', all physically equivalent
- Some may be more practical for a given study (Higgs, EWPO,...)

Command line interface with SLHA input/output

- User-defined basis implementations & translations (pure python)
- Warsaw, SILH, Higgs Basis, HISZ, HiggsPO,...

Provides interfaces to third party codes

Developed in specific bases → increase user base & validation

Linked to anomalous couplings model: BSMCharacterisation

K. Mimasu talk

[Falkowski et al.; EPJ C75 (2015) no.12, 583

https://rosetta.hepforge.org

 FeynRules/UFO for LO event generation http://feynrules.irmp.ucl.ac.be/wiki/BSMCharacterisation

MC tools for **SMEFT**:

- Hard-coded MEs: POWHEG, MCFM; Lagrangian-level implementation: MG5 aMC@NLO, Sherpa
- State of the art: (N)NLO QCD for SM, NLO QCD for SMEFT, LO@EFT or NLO@EFT?

NLO@SMEFT:

Non trivial EFT contributions could arise first at one-loop

Going NLO

Two main reasons to seek NLO precision

1. Same as for SM

- QCD corrections important for hadron colliders
- EW corrections can be important in relevant phase space regions (Sudakovs)
- Control normalisation, shapes and scale uncertainties

2. EFT-specific considerations

• Non trivial EFT contributions could arise first at one-loop (e.g. yt in ggF)

Useful if relatively weakly constrained directions contribute to precisely measured observables

Contribute indirectly in global fits through marginalisation effects

Anomalous dimensions (operator running & mixing)

Alonso*, Jenkins, Manohar & Trott; JHEP 1310 (2013) 087, JHEP 1401 (2014) 035 & JHEP 1404 (2014) 159*]

Needed for scale uncertainties, can also estimate one-loop contributions

SMEFT models

HEL

- Flavor universal SILH basis @ LO
- Higgs/EW operators in SILH basis @ NLOQCD (HELatNLO)

SMEFTsim

Complete Warsaw basis (2499!) @ LO with flavor restriction options

SMEFTfr

[Dedes et al.; JHEP 1706 (2017) 143] [Misiak et al.; JHEP 1902 (2019) 051] tttps://www.few.edu.pl/smeft

FeynRules for Warsaw basis @ LO in R_ξ-gauge

dim6top

[Aguilar-Saavedra et al.; arXiv:1802.07237] http://fevnrules.irmp.ucl.ac.be/wiki/dim6top

• top sector @ LO, several flavor symmetry scenarios (LH top WG)

SMEFTatNLO

- top/Higgs/EW sector @ NLOQCD (4F operators being validated)

Essential requirements:

Have more than one (harmonised) tools, validated by EXP & TH community Optimised to handle large number of diagrams, vertices with up to 6 legs, etc. Aim for complete SMEFT@NLO (top/Higgs/EW sector with QCD@NLO)

[Brivio et al.; JHEP 1712 (2017) 070] http://feynrules.irmp.ucl.ac.be/wiki/SMEFT

[Degrande et al.; in preparation] http://feynrules.irmp.ucl.ac.be/wiki/SMEFTatNLO

Basis translation tool for SMEFT

Rosetta

Underlines basis independence

- No one basis is the 'best', all physically equivalent
- Some may be more practical for a given study (Higgs, EWPO,...)

Command line interface with SLHA input/output

- User-defined basis implementations & translations (pure python)
- Warsaw, SILH, Higgs Basis, HISZ, HiggsPO,...

Provides interfaces to third party codes

Developed in specific bases → increase user base & validation

Linked to anomalous couplings model: BSMCharacterisation

 FeynRules/UFO for LO event generation http://feynrules.irmp.ucl.ac.be/wiki/BSMCharacterisation

Other Toolboxes for global interpretation:

- Wide spectrum of TH tools for statistical statistical inference on new physics models/parameters
- Implementation/parameterisation of observables, DB of legacy measurements with global likelihoods

[Aebischer et al.; EPJ C79 (2019) no.6, 509] https://smelli.aithub.ic

Aebisher et al.; EPJ C78 (2018) no.12, 1026]

[Celis et a.; EPJ C77 (2017) no.6, 405]

Project for global, public SMEFT likelihood

Wrapper around flavio tool 😽 flavio

- Initially developed for flavour physics observables
- EFT predictions for flavour, EWPO, LFV decays, lepton MDM, neutron EDM

wilson

Interface to Wilson tool

- Running SMEFT coefficients down to EW scale
- Based on DsixTools implementation
- Matching to Weak Effective Theory below EW scale + running

"Full stack" suite of global EFT analysis software

Common interface: Wilson coefficient exchange format (WCxf)

[de Blas et al.; arXiv: 1910.14012]

Likelihood, Prior &

Bayesian evidence

Open source library for model parameter inference

Standard model & extensions (specifically SMEFT)

Bayesian statistical framework

 Markov-Chain Monte Carlo (MCMC) via Bayesian Analysis Toolkit [Caldwell et al.; Comp. Phys. Comm. 180 (2009) 2197]

Posterior distribution

 $P(D|\mathbf{\vec{x}})P_0(\mathbf{\vec{x}})$ $\int P(D|\vec{\mathbf{x}})P_0(\vec{\mathbf{x}})d\vec{\mathbf{x}}$

Metropolis-Hastings algorithm to sample parameter space from posterior

Observables

- Higgs signal strengths (LHC & Future lepton colliders incl. polarisation)
- EW precision data in (mZ, α , G_F) scheme
- Flavour observables
- BSM model-specific (incl. theoretical constraints)

Essential requirements: Need flexible, entirely scalable, open source tools to pool knowledge & effort Standardisation / harmonisation / uniformisation (EXP) user friendly interfaces to global knowledge

https://dsixtools.aithub.io

K. Mimasu talk

Community effort to uniformise input/output format Specifically for interfacing SMEFT tools

uphi_13:

- yaml, json formats for basis definition
- Rosetta-inspired translation functionality
- Predefined Warsaw, WET

		eft:	SMEFT	1	name:
		sect	ors:	2	eft: SI
EET f	ilo	dB	=dI.=0:	3	sector
	lie	d D	-dI -1.	4	dB = d
		uв	-46-11	5	G :
		dL	=2:	6	
				7	Gt
	eft:	SMEFT		8	
	basis	: Wars	aw	9	W :
	scale	: 1e16		10	
IC filo	value	s:		11	[.
	G	tilde:	3.1e-6	12	up
	υ	uphi11:		13	up
		Re: 0		14	up
		Im: C	.0001	15	Γ.

arsaw	
IEFT	
:	
.=0:	
ceal: true	
lde:	Basis
ceal: true	<u></u>
	TIIE
ceal: true	
.]	
ni_11:	
ni 12:	

ode	Import	Export
sixTools	1	√
S	1	
vio	1	√
avorKit		1
ormFlavor	1	1
lson	1	√
MEFT Feynman Rules	1	√
MEFTsim	1	
nelli	1	√
Pheno		1
cxf-python	1	√

Two approaches to construct EFT signal model:

- Full-sim @reco-level: captures EFT acceptance effects, typical for optimised analyses & not unfolded
- Fiducial @gen-level: typical for simple analyses & comb., unfolded with SM acceptance assumptions

cal for optimised analyses & not unfolded nfolded with SM acceptance assumptions

A.Gilbert (LHCHXSWG)

Parameterise gen-level fiducial bins

$$|c_j) = \sum_k \left(p_{\text{SM}}^k(\mathbf{x}) \cdot \sum_j c_j \mu_j^k \right)$$

where:

k runs over fiducial bins at generator

p^ks_M(x) is the SM reco.-level signal pdf
for events in gen.-level bin k
μ_j^k is a scaling constant for the effect of
c_j on bin k

Two approaches to construct EFT signal model:

- Full-sim @reco-level: captures EFT acceptance effects, typical for optimised analyses & not unfolded
- Fiducial @gen-level: typical for simple analyses & comb., unfolded with SM acceptance assumptions

Several exp-built tools available :

Exploiting MC computation of MEs and reweighting techniques

Two approaches to construct EFT signal model:

- Full-sim @reco-level: captures EFT acceptance effects, typical for optimised analyses & not unfolded
- Fiducial @gen-level: typical for simple analyses & comb., unfolded with SM acceptance assumptions

Several exp-built tools available :

Two approaches to construct EFT signal model:

- Full-sim @reco-level: captures EFT acceptance effects, typical for optimised analyses & not unfolded
- **Fiducial @gen-level:** typical for simple analyses & comb., unfolded with SM acceptance assumptions

Caveats in exploiting combination of STXS measurements:

Need TH involvement to include decay information and tackle acc. effects in STXS.

P. Francavilla talk

	$\sum_i A_i c_i$
GeV)	56c'g HEL
0 GeV)	$56c'_{g} + 18c3G + 11c2G$
)	$56c'_{g} + 52c3G + 34c2G$
V)	$56c'_g$
20 GeV)	$56c'_g + 8c3G + 7c2G$
200 GeV)	$56c'_{g} + 23c3G + 18c2G$
eV)	$56c'_{g} + 90c3G + 68c2G$
< 25 GeV)	$56c'_g$
$\geq 25 \text{ GeV})$	$56c'_g + 9c3G + 8c2G$
GeV)	$-1.0 {\tt cH} - 1.0 {\tt cT} + 1.3 {\tt cWW} - 0.023 {\tt cB} - 4.3 {\tt cHW}$
	-0.29 cHB + 0.092 cHQ - 5.3 cpHQ - 0.33 cHu + 0.12 cHd
GeV)	$-1.0 \mathtt{cH} - 1.1 \mathtt{cT} + 1.2 \mathtt{cWW} - 0.027 \mathtt{cB} - 5.8 \mathtt{cHW}$
	-0.41 cHB + 0.13 cHQ - 6.9 cpHQ - 0.45 cHu + 0.15 cHd
	$-1.0 {\tt cH} - 0.95 {\tt cT} + 1.5 {\tt cWW} - 0.025 {\tt cB} - 3.6 {\tt cHW}$
	-0.24 cHB + 0.084 cHQ - 4.5 cpHQ - 0.25 cHu + 0.1 cHd
V)	$-0.99 \mathtt{cH} - 1.2 \mathtt{cT} + 7.8 \mathtt{cWW} - 0.19 \mathtt{cB} - 31 \mathtt{cHW}$
	-2.4 cHB + 0.9 cHQ - 38 cpHQ - 2.8 cHu + 0.9 cHd
	$-1.0 \mathtt{cH} - 1.0 \mathtt{cT} + 1.4 \mathtt{cWW} - 0.028 \mathtt{cB} - 6.2 \mathtt{cHW}$
	-0.42 cHB + 0.14 cHQ - 6.9 cpHQ - 0.42 cHu + 0.16 cHd
	$-0.98 {\rm cH} + 2.9 {\rm cu} + 0.93 c'_g + 310 {\rm cuG}$
	+27c3G -13 c2G

Two approaches to construct EFT signal model:

- Full-sim @reco-level: captures EFT acceptance effects, typical for optimised analyses & not unfolded
- **Fiducial @gen-level:** typical for simple analyses & comb., unfolded with SM acceptance assumptions

Caveats in exploiting combination of STXS measurements:

BSM-SMEFT matching

BSM-SMEFT - automated matching:

• Matching the EFT results with non-minimal BSM scenarios using automated tools,

BSM-SMEFT matching

BSM-SMEFT - automated matching:

- Matching the EFT results with non-minimal BSM scenarios using automated tools,
- Goal: obtain the full I-loop UV/IR dictionary (MATCHMAKER: tree-level and dim-6 operators.)

MATCHMAKER

Anastasiou, AC, Lazopoulos, Santiago

FeynRules

Mathematica

BSM-SMEFT matching

BSM-SMEFT - automated matching:

- Matching the EFT results with non-minimal BSM scenarios using automated tools,
- Goal: obtain the full I-loop UV/IR dictionary (MATCHMAKER: tree-level and dim-6 operators)

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

Simplified models: renormalisable SM extensions

 χ^2

157

156

156

155

155

155

157

156

157

156

157

157

157

157

157

157

157

157

157

Model

SM

 \mathcal{S}_1

 φ , Type I

Ξ

N

 \mathcal{W}_1

E

 Δ_3

Σ

 Q_5

 T_2

 ${\mathcal S}$

 Δ_1

 Σ_1

U

D

 Q_7

 T_1

 \mathcal{B}_1

 $\chi^2/n_{
m d}$

0.987

0.986

0.986

0.984

0.978

0.984

0.993

0.990

0.992

0.990

0.992

0.993

0.993

0.993

0.993

0.993

0.993

0.993

0.993

 $\hat{g}_{\mathcal{W}_1}^{\phi}$

Coupling

 $|y_{\mathcal{S}_1}|^2 = (6.3 \pm 5.9) \cdot 10^{-3}$

 $Z_6 \cdot \cos \beta = -0.64 \pm 0.59$

 $|\kappa_{\Xi}|^2 = (4.2 \pm 3.4) \cdot 10^{-3}$

 $|\lambda_N|^2 = (1.8 \pm 1.2) \cdot 10^{-2}$

 $|\lambda_E|^2 < 1.2 \cdot 10^{-2}$

 $|\lambda_{\Sigma}|^2 < 2.9 \cdot 10^{-2}$

 $|\lambda_{Q_5}|^2 < 0.18$

 $|\lambda_{T_2}|^2 < 7.1 \cdot 10^{-2}$

 $\left|y_{\mathcal{S}}\right|^2 < 0.32$

 $|\lambda_U|^2 < 2.8 \cdot 10^{-2}$

 $|\lambda_D|^2 < 1.4 \cdot 10^{-2}$

 $|\lambda_{Q_7}|^2 < 7.7 \cdot 10^{-2}$

 $|\lambda_{T_1}|^2 < 0.13$

 $<2.4\cdot10^{-3}$

 $<5.7\cdot10^{-3}$

 $<7.3\cdot10^{-3}$

 $|\lambda_{\Delta_1}|^2$

 $|\lambda_{\Sigma_1}|^2$

 $\hat{g}^{\phi}_{\mathcal{B}_1}$

 $= (3.3 \pm 2.7) \cdot 10^{-3}$

 $<1.9\cdot10^{-2}$

T. You talk

Mass / TeV

 $M_{S_1} = (9.0, 49)$

 $M_{\varphi} = (0.9, 4.3)$

 $M_{\Xi} = (12, 35)$

 $M_N = (5.8, 13)$

 $M_{W_1} = (4.1, 13)$

 $M_E > 9.2$

 $M_{\Delta_3} > 7.3$

 $M_{\Sigma} > 5.9$

 $M_{Q_5} > 2.4$

 $M_{T_2} > 3.8$

 $M_{S} > 1.8$

 $M_{\Delta_1} > 13$

 $M_{\Sigma_1} > 12$

 $M_U > 6.0$

 $M_D > 8.4$

 $M_{Q_7} > 3.6$

 $M_{T_1} > 3.0$

 $M_{\mathcal{B}_1} > 21$

HEFT), treatment of light degrees of freedom,
2-loop RGEs/ADs (need development)

SMEFT matching to Low-energy EFT:

• Running/matching SMEFT coefficients down to EW scale (and to Weak Effective Theory below EW scale)

Importance for global sensitivity:

• Allow to exploit constraints from low-energy direct/indirect probes

SMEFT matching to Low-energy EFT:

• Running/matching SMEFT coefficients down to EW scale (and to Weak Effective Theory below EW scale)

Importance for global sensitivity:

- - neutron & atomic/molecular EDMs as probes of chirality-flipping TOP-HIG couplings, etc.

SMEFT matching to Low-energy EFT:

• Running/matching SMEFT coefficients down to EW scale (and to Weak Effective Theory below EW scale)

Importance for global sensitivity:

- Allow to exploit constraints from low-energy direct/indirect probes
 - neutron & atomic/molecular EDMs as probes of chirality-flipping TOP-HIG couplings, etc.
 - flavour observables (b \rightarrow s γ , b \rightarrow sII) as probes of flat directions in the LEP/LHC sensitivity.

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

SMEFT matching to Low-energy EFT:

Good tests kill flawed theories; we remain alive to guess again. Sir Karl Raimund Popper-

EFT : process modelling & analysis approaches

 TH process modelling & necessary/available precision EFT analysis approaches & results presentation

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

Advanced techniques

Analysis based on optimised discriminants :

Can we converge to optimised analyses and to present measurements in their unfolded distr.

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

Progress in higher-order pQCD computations: "NNLO revolution" becoming "NNLO standard" during recant years

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

riello crazzini zoro	
Anikov, Petrieno Ferrera, Gran Moch, Zaro	
uz diff., Meining Grazzini de Florian, 1 Maltoni, Maltoni, Tramonia Grazzini	
H diff., Catani, LC, Co Bolzon, Bolzon, Ferrera, Gran, Ferrera,	
WIZ diff., Or VBF to WH diff., I WH diff., I who and et al.	
γγ, Cataline Boughezard	
HJ (part HJ Czakon, Fiedler, Mitov	ļ
ttbar total, Ozanovy	
Z-γ, Grazzini, Rainwork, Hammery	
JJ (bartial). Genrmann-De Ridder, et al.	
ZZ, Cascioli it et al.	
⁷ ZH diff., Ferrera, Grazzini, Tramontano	
WW, Gehrmann et al.	
ttbar diff., Czakon, Fiedler, Mitov	
Z-γ, W-γ, Grazzini, Kallweit, Rathlev	
Hj, Boughezal et al.	
Wj, Boughezal, et al.	
Hj, Boughezal et al.	
VBF diff., Cacciari et al.	
Zj, Gehrmann-De Ridder et al.	
ZZ, Grazzini, Kallweit, Rathlev	
Hj, Caola, Melnikov, Schulze	
Zi Boughozal et al	
zj, boughezal et al.	
WH diff, ZH diff, Campbell et al	
γγ, Campbell et al	
WZ Grazzini et al	
-WW Grazzini	
MCFM at NN	
pT_Z, Gehm Boughezel et	
Single top, Bergen Berg	
pt _ PtH. Ch Berger, Gao, CYuan al.	
jj, Currie, Gehrman, et al.	
YI, Campbell Function Glover, et al	
Ptw, Gehrmann et al. Williams	
9	

Progress in higher-order pQCD computations: "NNLO revolution" becoming "NNLO standard" during recant years

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

riello crazzini zaro
Anikov, Petrieno Ferrera, Gran Moch, Laro
uz diff., Meining Grazzini de Florian, Maltoni, Maltoni, Tramona Grazzini
H diff., Catani, LC, Co Bolzon, Bolzon, Ferrera, Grammera, Ferrera,
WIZ diff., VBF to WH diff., LC, de Field al.
γγ, Catalon Bougneza
Hj (pur Hj (pur total, Czakon, Fiedler, Mitov
Z-y, Grazzini, Kallweit, Rathlev, Torre
ii (partial), Gehrmann-De Ridder, et al.
ZZ. Cascioli it et al.
ZH diff., Ferrera, Grazzini, Tramontano
WW , Gehrmann et al.
ttbar diff., Czakon, Fiedler, Mitov
Z-γ, W-γ, Grazzini, Kallweit, Rathlev
Hj, Boughezal et al.
Wj, Boughezal, et al.
Hj, Boughezal et al.
VBF diff., Cacciari et al.
Zj, Gehrmann-De Ridder et al.
ZZ, Grazzini, Kallweit, Rathlev
Hj, Caola, Melnikov, Schulze
Zj, Boughezal et al
WH diff. 711 m
WH diff, ZH diff, Campbell et al
WZ WZ
VVZ Grazzini et al.
WW Grazzini et al
MCFM at NNLO D
Single t
HH, de Floris Berger, Goo e Ridder, et al
pT Z Cal Chen et al
YI, Cam, YX, Cam, Glove, Glove
Ptw, Gebrean Ellis, Will, Ellis, Will
NLO, Grazzini

Progress in higher-order pQCD computations:

- "NNLO revolution" becoming "NNLO standard" during recant years
- Important progress in NNNLO computation methods for differential observables (e.g. Higgs rapidity)
 - Important reduction of ~50% in TH uncertainty from NNLO

N³LO DIFFERENTIAL DISTRIBUT

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

L. C, X. Chen, T. Gehrmann, E. W. N. Glover, and A. Huss (2018)

Rapidity distribution

Progress in higher-order pQCD computations:

- "NNLO revolution" becoming "NNLO standard" during recant years
- Important progress in NNNLO computation methods for differential observables (e.g. Higgs rapidity)
 - Important reduction of ~50% in TH uncertainty from NNLO

Are we on brink of a new "revolution" in next 10 years? Hope TH colleagues will make this dream come true...

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

33

Precision modelling: correlations & data-driven methods

Exploiting correlations:

- Correlations among: observables in each measurement, measurements in each experiment, all experiments
- Correlations between SR & CRs: crucial for applying precision TH to data-driven BKG determinations

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

· Pozzorini talk

S

QCD uncertainty model confirmed by NNLO calculations

• overall uncertainty at 1 TeV $\lesssim 5\%$ in distributions and $\lesssim 2\%$ in ratios reduction of TH uncertainty crucial for high-statistics monojet searches!

Inputs for global fit: PDFs

PDFs: Important ingredients in (HL-)LHC measurements

• The N(eural)N(etwork)PDFs : LHC data provide powerful constrain (especially at large x, large inv. mass)

HOW TO MAKE PDFS MORE ACCURATE?

Q²) [ref]

$\sigma = \alpha_s^p \sigma_0 + \alpha_s^{p+1} \sigma_1 + \alpha_s^{p+2} \sigma_2 + \mathcal{O}(\alpha_s^{p+3})$ 0. CT14HERA2NNLO Standard global PDF fits based on fixed-order QCD calculations So far PDF sets only account for experimental error. Error associated with truncation of perturbative series ignored NNLO theoretical predictions for observables entering PDF fits 6'0 Ratio ➡ Fast interface with NNLO codes Photon PDF and inclusion of EW corrections C. Voisey's talk Inclusion of theory uncertainties 10^{-6} 10^{-4} 10^{-3} NNPDF3.1, Q = 100 GeV NNPDF3.1, Q²=10⁴ GeV² error (NLO => NNLO shift) о^{1.05}

Understand the differences between the latest fits (NNPDF3.1 and CT18) and obtain more accurate PDFs

CTEQ-TEA collaboration, arXiv: 1908.11394

P. Nadolsky's talk

- NNPDF3.1 (2017) gluon softer at large x and with ~30% uncertainty reduction • CT18 (2019) - gluon harder at large x and milder uncertainty reduction
- CT18 releases separate CT18Z set that includes W and Z precision measurements at 7 TeV due to data tension
- Differences in datasets? Or theory: fitted versus perturbative charm? Methodology?

Interplay between EFT & PDFs

PDFs: Important ingredients in (HL-)LHC measurements

- The N(eural)N(etwork)PDFs : LHC data provide powerful constrain (especially at large x, large inv. mass)
- PDF are process universal but model dependent

PDFs importance in global interpretation

• Effect on gluon PDFs larger than for quark PDFs

Interplay between EFT & PDFs

PDFs: Important ingredients in (HL-)LHC measurements

- The N(eural)N(etwork)PDFs : LHC data provide powerful constrain (especially at large x, large inv. mass)
- PDF are process universal but model dependent

PDFs importance in global interpretation

• Effect on gluon PDFs larger than for quark PDFs

E. Vryonidou talk

Exploiting process/operator interplays : TOP-HIG EFT fits largely ignore the interplay between top and Higgs:

- Should we and/or can we avoid the messy picture? **Breaking degeneracies:**
- Important impact of differential information, extract maximal information from combination/interplay

HZ in gluon fusion : source of info. on top and Z / Higgs couplings

$$\begin{split} O_{\varphi Q}^{(3)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu}^{I} \varphi \right) (\bar{Q} \gamma^{\mu} \tau^{I} Q) \\ O_{\varphi Q}^{(1)} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{Q} \gamma^{\mu} Q) \\ O_{\varphi t} &= i \frac{1}{2} y_t^2 \left(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi \right) (\bar{t} \gamma^{\mu} t) \\ O_{tG} &= y_t g_s (\bar{Q} \sigma^{\mu\nu} T^A t) \tilde{\varphi} G_{\mu\nu}^A , \\ O_{t\phi} &= y_t^3 \left(\phi^{\dagger} \phi \right) (\bar{Q} t) \tilde{\phi} \end{split}$$

Off-shell Higgs production : source of information on ttZ

Higgs operators

$\mathcal{O}_{\varphi G}$	cpG	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) G^{\mu \nu}_A G^A_{\mu \nu}$	$\mathcal{O}_{\varphi W}$	cpW	$\left(\varphi^{\dagger} \varphi - \frac{v^2}{2} \right) W_I^{\mu \nu} W_{\mu \nu}^I$
$\mathcal{O}_{\varphi B}$	cpBB	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)B^{\mu\nu}B_{\mu\nu}$	$\mathcal{O}_{\varphi WB}$	cpWB	$(\varphi^{\dagger}\tau_{I}\varphi)B^{\mu\nu}W^{I}_{\mu\nu}$
\mathcal{O}_{φ}	ср	$\left(\varphi^{\dagger} \varphi - rac{v^2}{2} ight)^3$	$\mathcal{O}_{_{arphi d}}$	cdp	$\partial_{\mu}(\varphi^{\dagger}\varphi)\partial^{\mu}(\varphi^{\dagger}\varphi)$
$\mathcal{O}_{\omega D}$	cpDC	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$			

Top operators

$\mathcal{O}_{t\varphi}$	ctp	$\left(\varphi^{\dagger}\varphi - \frac{v^2}{2}\right)\bar{Q}t\tilde{\varphi} + \text{h.c.}$	\mathcal{O}_{tW}	ctW	$i(\bar{Q}\tau^{\mu\nu}\tau_I t)\tilde{\varphi}W^I_{\mu\nu}$ + h.c.
\mathcal{O}_{tG}	ctG	$ig_{s}\left(\bar{Q}\tau^{\mu\nu}T_{A}t\right)\tilde{\varphi}G^{A}_{\mu\nu}+\text{h.c.}$	\mathcal{O}_{tB}	-	$i(\bar{Q}\tau^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$ + h.c.
$\mathcal{O}^{(3)}_{arphi Q}$	cpQ3	$i(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \tau_{I} \varphi) (\bar{Q} \gamma^{\mu} \tau^{I} Q)$	\mathcal{O}_{tZ}	ctZ	$-\sin \theta_W \mathcal{O}_{tB} + \cos \theta_W \mathcal{O}_{tW}$
$\mathcal{O}_{arphi Q}^{(-)}$	срQМ	${\cal O}^{(1)}_{arphi Q} - {\cal O}^{(3)}_{arphi Q}$	$\mathcal{O}_{\varphi t}$	cpt	$i(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi)(\bar{t} \gamma^{\mu} t)$

Need close TH-EXP interaction: to enlighten interplays

4-parameter fit:

 c_t, c_g, c_V, c_A

Constraint from gg to ZH Englert et al arXiv:1603.05304

Constraints on ttZ couplings competitive with ttZ process

Loops for tree-level processes

processes interplay and one-loop contributions

• Process interplay breaks degeneracies, one-loop process contributions can be important (with limited information on top couplings one-loop Higgs processes can be significantly modified)

 $O_{t\varphi} = \bar{Q}t\tilde{\varphi}\left(\varphi^{\dagger}\varphi\right) + h.c.,$ $O^{(3)}_{\varphi Q} = (\varphi^{\dagger} \overleftrightarrow{D}^{I}_{\mu} \varphi) (\bar{Q} \gamma^{\mu} \tau^{I} Q),$ $O_{\varphi tb} = (\tilde{\varphi}^{\dagger} i D_{\mu} \varphi) (\bar{t} \gamma^{\mu} b) + h.c.,$ + $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\,\tilde{\varphi}B_{\mu\nu} + h.c.,$ $O_{\varphi t} = (\varphi^{\dagger}iD_{\mu}\varphi)(\bar{t}\gamma^{\mu}t),$ + Current constraints from top LHC measurements $O^{(1)}_{\varphi Q} = (\varphi^{\dagger} \overleftarrow{iD}_{\mu} \varphi) (\bar{Q} \gamma^{\mu} Q),$ $O_{tW} = (\bar{Q}\sigma^{\mu\nu}\tau^{I}t)\,\tilde{\varphi}W^{I}_{\mu\nu} + h.c.,$

Poor knowledge of top couplings leads to uncertainties on Higgs measurements at the LHC:

loop-induced

E. Vryonidou talk

Instead of a summary...

Measurements @ 7, 8, I 3 TeV confirmed the immense potential of LHC

 Understanding of the true nature of SM of particles physics is one of the central subjects in the particles physics today

EFT offers one of the most important global approaches:

- SMP/TOP/HIG already perform high-precision measurements. TH studies & tools are becoming mature and ready to be used in global EFT fit!
- TH and EXP need to continue working together

HL-LHC will enable full discovery potential

- Major effort of the community of theoretical and experimental physicists is required (and is already ongoing)
- Estimates of the HL-LHC performance are extremely encouraging

Next-generation accelerators & experiments are key to our understanding of Nature

If your experiment needs statistics, you ought to have done a better experiment. E. Rutherford

UPHC workshop, Institut "Pascal", Orsay, 25 Nov - 6 Dec, 2019

 $\mathcal{B}_{\text{HZZ}}^{\text{eff}} = \mathcal{B}_{\text{HWW}}^{\text{eff}} = \mathcal{B}_{\text{HZY}}^{\text{eff}} = \mathcal{B}_{\text{Hgg}}^{\text{eff}} = \mathcal{B}_{\text{Htt}}^{\text{eff}} = \mathcal{B}_{\text{Hbb}}^{\text{eff}} = \mathcal{B}_{\text{H}\tau\tau}^{\text{eff}} = \mathcal{B}_{\text{H}\tau\tau}^{\text{eff}} = \mathcal{B}_{\text{H}\tau\tau}^{\text{eff}} = \mathcal{B}_{\text{H}\tau\tau}^{\text{eff}} = \mathcal{B}_{\text{H}\tau\tau}^{\text{eff}}$

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

Detector performance after Phase-2 upgrades:

- **Overall** performance similar or better than during Run 2
- Extended capabilities with new algorithms

Systematics recommendations & extrapolation methodology

General:

- Systematic uncertainties will be limiting factor for a wide range of measurements
- Assume similar detector & trigger performances
- Aim for as realistic assumptions as possible

Theoretical uncertainties:

- Build upon existing/recent TH progress/studies
- Assume a scaling down by a constant factor
 - QCD calculations (1/2), understanding of **PDFs (1/3), top p_T (1/2), etc.**

Experimental uncertainties:

- Estimates of ultimately achievable accuracy based on the upgraded Phase-2 detectors studies (TDRs).
- Assumption that sufficiently large simulation samples will be available.

Expected experimental systematic uncertainties

Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1–0.2%
	Relative	0.1–3%	0.1–0.5%
	Pileup	0–2%	Same as Run 2
Jet energy res.		Varies with $p_{\rm T}$ and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
Integrated lumi.		2.5%	1%

Ultimate precision for PDFs @ HL-LHC

Knowledge of PDFs required to extract:

- fundamental couplings from cross section measurements
- predict the tails of SM distributions at large Q2
- probe the existence of new physics at high scales

Estimate of PDFs constraints:

- Based on precision differential measurements of processes with: jets, top quarks, photons and EW gauge bosons
- Improvement from use of LHCb data, and access to large rapidities in ATLAS and CMS

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

arXiv:1810.0363c

Precision cross sections, EWK mixing sin² θ_W

Ultimate precision for cross sections:

- @LHC: $\sigma(Z \rightarrow \mu\mu) = 502.2 \pm 0.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 9.0 \text{ (lumi)}$
 - single dominant uncertainty : luminosity ~2%
- Measurement @HL-LHC:
 - Improved lumi. detectors, refined VdM scans, use of low-PU runs
- Once measured at (sub-)percent level, use Z cross section to help luminosity measurement.

Target luminosity uncertainty: 1%

Electroweak mixing $sin^2\theta_W$:

- Total uncertainty likely reduced by a factor of 3 @ HL-LHC
- Individual measurements reach current world-combination uncer
 - Strong benefit from tracker/muon system coverage
 - Complementary ATLAS (electron) and CMS (muon) measurements
- Study effect of improved PDFs

Precision cross sections, EWK mixing sin² θ_W

Ultimate precision for cross sections:

- @LHC: $\sigma(Z \rightarrow \mu\mu) = 502.2 \pm 0.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 9.0 \text{ (lumi)}$
 - single dominant uncertainty : luminosity ~2%
- Measurement @HL-LHC:
 - Improved lumi. detectors, refined VdM scans, use of low-PU runs
- Once measured at (sub-)percent level, use Z cross section to help luminosity measurement.

Target luminosity uncertainty: 1%

Electroweak mixing $sin^2\theta_W$:

- Total uncertainty likely reduced by a factor of 3 @ HL-LHC
- Individual measurements reach current world-combination uncertainty
 - Strong benefit from tracker/muon system coverage
 - Complementary ATLAS (electron) and CMS (muon) measurements
- Study effect of improved PDFs

Ultimate precision for W mass

W mass measurement:

- Improved knowledge of the W mass key target of HL-LHC
- Current dominant uncertainty from PDFs
 - limit PDF sensitivity via extended leptonic coverage $|\eta| < 4$
- Required optimal reconstruction of missing transverse momentum
 - low-pile-up runs are a necessity

Precision @HL-LHC:

- Low-PU runs (with $\mu \sim 2$)
 - run I week: statistical precision ~9 MeV
 - run 5 weeks: statistical precision ~4 MeV
- Systematics with HL-LHC ultimate PDF ~4 MeV

overall target of $\Delta m_W = \pm 6$ MeV

Gluino pair production

Ultimate precision for top mass

Top mass measurement @HL-LHC:

- Improved uncertainty through more statistics, calibration, better modelling, etc.
- Require future theoretical developments for interpretation in terms of a theoretically well defined mass
- Several methods available

Precision for different methods

CMS FTR-18-005 "J/ ψ method" (t \rightarrow bW \rightarrow J/ ψ lvX)

$t\bar{t}$ lepton+jets	t-channel single top	$m_{SV\ell}$	J/ψ	$\sigma_{t\bar{t}}$
0.17	0.58	0.62	0.45	1.2

Anomalies in "Flavour" Physics

Flavour anomalies - low-q²:

- Asymmetry between **e** and **\mu** in decay width **B** \rightarrow **K**(*) ℓ + ℓ -
 - observed by LHCb, but not by Belle, BaBar
- Asymmetry between **T** and μ/e in decay width $\mathbf{B} \rightarrow \mathbf{D}^{(*)}\ell^+\ell^-$
 - incompatibility with SM (by LHCb, Belle, BaBar)

Flavour anomalies - high-q²:

- R(K*) & b → s ℓ⁺ℓ⁻
 - Minimally flavour violating Z' ruled out (res. searches)
- R(D) / R(D*) & b → с т v
 - Good fits for W' vector, scalar, or vector LQ

Flavour anomalies & LHCb

Flavour anomalies & Lepto-Quarks

Anomalies in "Flavour" Physics

Flavour anomalies - low-q²:

- Asymmetry between **e** and **\mu** in decay width **B** \rightarrow **K**(*) ℓ + ℓ -
 - observed by LHCb, but not by Belle, BaBar
- Asymmetry between **T** and μ/e in decay width $\mathbf{B} \rightarrow \mathbf{D}^{(*)}\ell^+\ell^-$
 - incompatibility with SM (by LHCb, Belle, BaBar)

LHCb able to measure in several channels

Flavour anomalies - high-q²:

- R(K*) & b → s ℓ+ℓ-
 - Minimally flavour violating Z' ruled out (res. searches)
- R(D) / R(D*) & b → с т v
 - Good fits for W' vector, scalar, or vector LQ

Vector boson scattering

Vector boson scattering @ HL-LHC:

- Precision test of triple & quartic gauge couplings (TGC, QGC)
 - Electroweak WW and WZ scattering observed in Run-2
- Unitarization of $V_L V_L \rightarrow V_L V_L$ cross section at TeV scale:
 - Scalar Higgs and/or new physics to cancel divergence ·
- Direct test of EW-symmetry breaking mechanism

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

ATI-PHYS-PUB-2018-029 **Vector boson scattering**

ATL-PHYS-PUB-ZUTB-UZJ

Vector boson scattering

Vector boson scattering @ HL-LHC:

- Precision test of triple & quartic gauge couplings (TGC, QGC)
 - Electroweak WW and WZ scattering observed in Run-2
- Unitarization of $V_L V_L \rightarrow V_L V_L$ cross section at TeV scale:
 - Scalar Higgs and/or new physics to cancel divergence \cdot
- Direct test of EW-symmetry breaking mechanism

Vector boson scattering

ATL-PHYS-PUB-2018-02:

$gg \rightarrow H @ HE/HL-LHC$

Inclusive NNLO estimates for $gg \rightarrow H$:

Huge sample of H decays expected at HE/HL-LHC

14 TeV with 3 ab⁻¹ :
$$\sigma_{tot} = 49.6 \frac{54.1}{45.2} \text{ pb}$$
 -
27 TeV with 15 ab⁻¹ : $\sigma_{tot} = 133 \frac{145.6}{122.2} \text{ pb}$ -

NNLO estimates for differential effects:

- Rapidity distn shape significantly broadened from 14 TeV \rightarrow 27 TeV
- Markedly hardened & broadened pT spectrum already in [0,100] GeV

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

gg → H @ HE/HL-LHC

Inclusive NNLO estimates for $gg \rightarrow H$:

Huge sample of H decays expected at HE/HL-LHC

event yield for p_T(H) > p*_T

NNLO estimates for differential effects:

- Factor ~1.8 increased reach in pT for a given event yield, N<105, for $14 \rightarrow 27 \text{ TeV}$
- No Higgs after 2 TeV with 3 ab-1 @14 TeV, or 3.8 TeV with 15 ab-1@27 TeV

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

<105, for 14 → 27 TeV 5 ab-1@27 TeV

Higgs boson coupling to

Establishing coupling to charm is one of the key t

- **LHCb:** Leading the effort already at 300 fb⁻¹ expect limits < 7x SM. Ongoing development of multi-class flavour separation algorithms for further improvements.
- ATLAS: At 3000 fb⁻¹ expect limits < 6.3x SM.

Establishing coupling to muons is another key tasks: • **@HL-LHC:** New analyses techniques exploiting the improved resolution of upgraded detectors. Expected uncertainty on coupling about 5%.

Anomalous Hff interactions

Decays H \rightarrow TT offer possibility to probe anomalous Hff interactions (CP-odd):

- Sensitivity from the angle between tau decay planes Φ_{CP}
- Consider several decay modes (I π , I ρ , $\pi\pi$, $\pi\rho$, $\rho\rho$, etc.). Apply conventional CMS H $\rightarrow \tau\tau$ selection

Limiting factors in the measurement and to-do list:

- Detector effects (PCA resolution) and large statistical uncertainty in dominant $Z \rightarrow \tau \tau$ background
- Need to perform study with Phase-2 upgrade, and to obtain realistic estimate of sensitivity

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

HH production and self-coupling

Probing HIG boson trilinear coupling λ_{HHH} important @HL-LHC

• Information on the shape of the scalar Higgs potential, and potential anomalous effects

ATLAS and **CMS** performing extensive sensitivity studies in individual channels:

- Analyses in bbbb, bbVV, $bb\tau\tau$, $bb\gamma\gamma$ (expertise from LHC Run-2 + further optimisation/developments) Performed combination of all channels, and also ATLAS+CMS combination

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

CMS-FTR-18-02C **Differential XS and limits on self-coupling**

Performed first studies of differential XS for exclusive production (@HL-LHC): • Sensitivity of differential distributions to loop-corrections involving self-coupling.

Constraints on effective k_{\lambda} coupling :

- Need to study all production modes and decays channels to fully exploit the potential.
- Important complementarity with direct probes of HH production.

Higgs boson width

Some points to be understood/answered/addressed:

- Direct constraints: suffer from limited experimental sensitivity.
- Indirect constraints: need better understanding of dominant TH uncertainties. •

ATL-PHYS-PUB-2017 2013-07

Anomalous HVV interactions

Performance to be estimated using the $H \rightarrow 4\ell$ analysis @13 TeV.

• Parameterisation of decay amplitude:

$$A = \frac{1}{v} \begin{bmatrix} \mathbf{SM} & \mathbf{leading momentum expansion} \\ \kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2 \\ \kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2 \\ \kappa_2^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_1^2 \\ \kappa_2^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}$$

Powerful constraints on anomalous couplings:

- Exploiting information from:
 - H decay (on-shell)
 - H on-shell production
 - H off-shell production:
- Sensitivity driven by on-shell production-level info.
 Some model dependance from assumption on HWW/HZZ relation.

Parameter	Information from	95% CL interva
f _a 3	decay	±120 · 10-4
f _{a3}	decay & production	±1.8 · 10-4
f _{a3}	decay & production & off-shell	±1.6 · 10-4

P. Milenovic, Towards Global Interpretation: Experimentalists' wish-list

New resonances @ HL-LHC

Performance estimated using Z' and W' searches @ I3 TeV (HVT or RS model)

- W' \rightarrow tb \rightarrow bb ℓv : high-p_T lepton, significant E_{Tmiss}, two b-jets
- $\mathbf{Z'} \rightarrow \mathbf{tt} \rightarrow \ell \mathbf{vb} \mathbf{qq'b} / \mathbf{qq'b} \mathbf{qq'b}$: Exploit boosted topologies

Search for resonance decaying to HH (WED or KK model)

• Exploit boosted H->bb final states (narrow width approximation).

ATL-PHYS-PUB-2018-02:

Low top p_T

High top p_T

SUSY searches (*a*) **HL-LHC**

Performance estimated using the (simplified) analyses

- **Direct stau pair production:** Simplified models, assume 100% BR of $\tau \rightarrow \tau \chi^{0}$
 - Main background: W+jets, ttbar
- **Direct stop pair production:** Compressed mass spectra
 - Low stop neutralino mass difference, channel needs high luminosity

Direct stop pair production:

Direct stau pair production:

ATL-PHYS-PUB-2018-02

Expected exclusion — Expected discovery 300 m_{LSP} [GeV] section [pb] pp → $\tilde{\tau}\tilde{\tau}$, m $\tilde{\tau}_{-}$ = m $\tilde{\tau}$ (YR1& syst. uncert. 250 10⁻¹ 200 **Cross** 150 upper limit on 10⁻² · 100 10⁻³ 50 \overline{O} 95% 600 200 400 800 m_~ [GeV] Discovery reach m(stau) < 470 GeV

current exclusion limits about 110 GeV

Dark sector @ HL-LHC

Simplified models for comparisons with direct detection:

- mono-Z: Z accompanied by a mediator decaying to DM particles
- **mono-top**: Top accompanied by a mediator decaying to DM particles
- dark photon : It can couple to SM particles via kinetic mixing. (possible long-lived signatures for small kinetic mixing)

Excl.: $10 < m(\gamma_D) < 30 \text{ GeV}$ depending on kin. mixing.