Revisiting the role of bin-bin correlations in PDF uncertainties for the M_W measurement

Emanuele A. Bagnaschi (PSI)

PAUL SCHERRER INSTITUT

28 November 2019 Ultimate precision at hadron colliders workshop Orsay, France

emanuele.bagnaschi@psi.ch

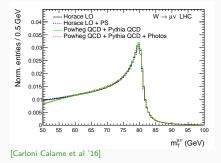
Introduction and motivations

Introduction and motivations

- Study the role of bin-bin correlations in the procedure used to estimate/include PDF uncertainty in the extraction of M_W at the LHC, with a specific focus on the long term perspectives.
- Three sets of uncertainties linked to PDFs:
 - 1. Uncertainty in the PDFs from the experimental uncertainty of the dataset used in the fit.
 - 2. Different fit methodologies (i.e. differences between PDF sets of different collaborations).
 - Theoretical uncertainties of the predictions used in PDF fits. Concerning Missing Higher Order Uncertainties (MHOUs), their inclusion is starting to be addressed systematically only recently ([L. A. Harland-Lang, R. S. Thorne – 1811.08434], [R. A. Khalek et al. (NNPDF) – 1906.10698]).

Measuring the W mass at the LHC

Three observables sensitive to the W mass: M_T^W , p_{\perp}^I , $p_T(missing)$.



- Peak around m_W.
- $M_T = \sqrt{2p_T^l p_T^{miss}(1 \cos \Delta \phi)}$
- Suffer from pileup and detector effects since it relies on *E_T*.
- Stability under QCD radiative corrections.

W-boson charge	W^+		W^-		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_T}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \rightarrow W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

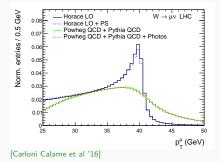
[ATLAS 1701.07240]

Revisiting the role of correlations in PDF uncertainties for the M_W measurement

Emanuele A. Bagnaschi (PSI) 2 / 14

Measuring the W mass at the LHC

Three observables sensitive to the W mass: M_T^W , p_1' , $p_T(missing)$.



- Peak around m_W/2.
- Detector modeling under control.w
- High sensitivity to radiative corrections.
- We focus on p_{\perp}^{l} .

W-boson charge	W^+		W^{-}		Combined	
Kinematic distribution	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$	p_{T}^{ℓ}	$m_{\rm T}$
δm_W [MeV]						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
ΣE_T correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \rightarrow W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

Revisiting the role of correlations in PDF uncertainties for the M_W measurement

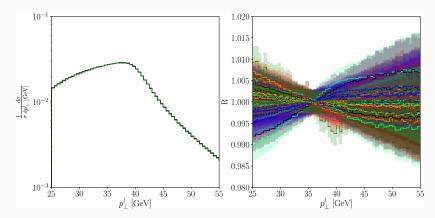
Emanuele A. Bagnaschi (PSI) 2 / 14

[[]ATLAS 1701.07240]

The study

Monte-Carlo setup

- W^+ generated with POWHEG-BOX-v2 W_ew-BMNNP, $\sqrt{S} = 13$ TeV, $\mu_r = \mu_f = m_W$.
- Accuracy: NLO-QCD+PS, showered with PYTHIA82.
- Cuts: $|\eta_l| < 2.5, \ p_l > 25 \text{ GeV}, \not E_T > 25 \text{ GeV}.$
- 15 million events; reweighted to the full set of 1000 replicae of NNPDF30-1000.



Previous studies for M_W

- Tevatron collaborations [0707.0085,0708.3642,0908.0766,1203.0275,1203.0293,1307.7627].
- Comprehensive study on the PDF uncertainty on M^W_T using modern matched MCs (see also [Bozzi, Rojo, Vicini – 1104.2056]), however with inaccurate M^W_T modeling.
- Subsequent study on p^I_T presented in [Bozzi, Citelli, Vicini 1501.05587] and extended to the study of a high-rapidity lepton in [Bozzi, Citelli, Vesterinen, Vicini – 1508.06954].

Prescription for the estimation of the uncertainty in those studies

• Generate M_W -templates using the central replica of the NNPDF set.

•
$$\chi^2_{k,r} = \sum_{i \in bins} (\mathcal{T}_{0,k} - \mathcal{D}_r)^2_i / \sigma^2_i.$$

- Fit other NNPDF replicae; compute the standard deviation of the M_W corresponding to minima of the replica χ^2 and take it as a proxy of the PDF uncertainty.
- Neglect the value of the χ^2 .
- Fixed fit range, $p'_{\perp} \in [29, 49]$ GeV.
- ATLAS [1701.07240], [Kotwal PRD 98, 033008].
- Other recent studies: [E. Manca, O. Cerri, N. Foppiani, L. Rolandi 1707.09344], [L. Bianchini and G. Rolandi – 1902.03028], [S. Farry, O. Lupton, M. Pili, M. Vesterinen – 1902.04323], [M. Hussein, J. Isaacson, J. Huston – 1905.00110].

Revisiting the role of correlations in PDF uncertainties for the M_W measurement

Emanuele A. Bagnaschi (PSI) 4 / 14

The role of bin-bin PDF correlations

Experimental side

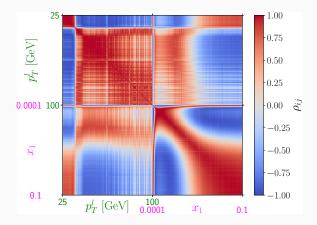
- They were not included in the published M_W measurement from ATLAS, though the effect has been partially included through the combination of different categories.
- They will be included in future measurements both from ATLAS and CMS.
- They were included in other measurements (e.g. sin² θ₁^{eff}, or α_s).

Phenomenological studies

Included in the recent [S. Farry,
 O. Lupton, M. Pili, M. Vesterinen –
 1902.04323], through a reweighting procedure.

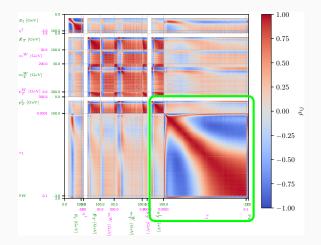
- What is the structure and origin of the bin-bin p^l_T correlations?
- What is the perspective for a measurement with a large integrated luminosity?

p'_{\perp} and PDF correlations



- Different elements drive correlation between replicae (QCD framework)
- $(\Sigma_{PDF})_{rs} = \langle (\mathcal{T} \langle \mathcal{T} \rangle_{PDF})_r (\mathcal{T} \langle \mathcal{T} \rangle_{PDF})_s \rangle_{PDF}$
- Block-structure in the p'_{\perp} self-correlation (top-left corner).
- Interplay in the hadron level cross-section between the parton-level cross-section and the luminosity.

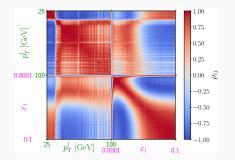
Other observables



(caveat: only this plot at NNPDF30-100/LHEF)

Shapes of differential observables non-trivially correlated under PDF variation

Fitting methodology

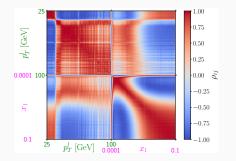


$$\chi_k^2 = \sum_{i \in bins} \frac{\left((\mathcal{T}_{0,k})_i - (\mathcal{D}^{exp})_i - \sum_{r \in \mathcal{R}} \alpha_r (\mathcal{S}_{r,k})_i \right)^2}{\sigma_i^2} + \sum_{r \in \mathcal{R}} \alpha_r^2$$

 $S_{r,k} \equiv T_{r,k} - T_{0,k}$

- Treat PDF uncertainty in a frequentist framework, associating a nuisance parameter to each replica
 → covariance matrix (for the best-fit values of the nuisances).
- Fit the (pseudo)data using the templates (in our case the central replica in both cases), introducing a covariance matrix in the χ^2 definition.
- Estimate the PDF uncertainty as the half-width of the $\Delta\chi^2 = 1, 4, 9$ interval.
- The covariance matrix shows a non-trivial structure that has an impact in reducing the sensitivity to the PDF in the fit.

Fitting methodology



$$\chi^{2}_{k,\min} = \sum_{(r,s) \in bins} (\mathcal{T}_{0,k} - \mathcal{D}^{exp})_{r} \left(\mathcal{C}^{-1} \right)_{rs} (\mathcal{T}_{0,k} - \mathcal{D}^{exp})_{s}$$

$$C = \Sigma_{PDF} + \Sigma_{stat} + \Sigma_{MC} + \Sigma_{exp, syst}$$

$$(\Sigma_{PDF})_{rs} =$$

 $\langle \mathcal{O} \rangle$

$$\langle (\mathcal{T} - \langle \mathcal{T} \rangle_{PDF})_r (\mathcal{T} - \langle \mathcal{T} \rangle_{PDF})_s \rangle_{PDF}$$

$$PDF \equiv \frac{1}{N_{cov}} \sum_{l=1}^{N_{cov}} \mathcal{O}^{(l)}$$

- Treat PDF uncertainty in a frequentist framework, associating a nuisance parameter to each replica
 → covariance matrix (for the best-fit values of the nuisances).
- Fit the (pseudo)data using the templates (in our case the central replica in both cases), introducing a covariance matrix in the χ^2 definition.
- Estimate the PDF uncertainty as the half-width of the $\Delta\chi^2 = 1, 4, 9$ interval.
- The covariance matrix shows a non-trivial structure that has an impact in reducing the sensitivity to the PDF in the fit.

Results

Numerical results: without any covariance

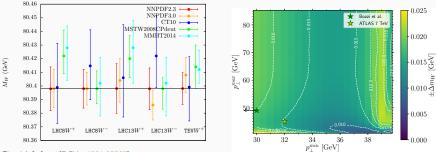
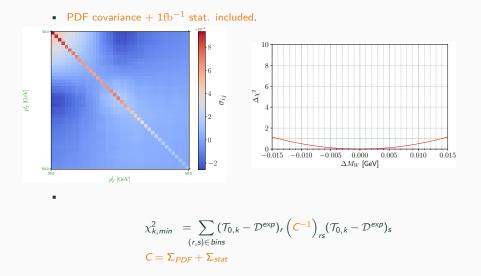


Fig. 4 left from [BCV - 1501.05587]

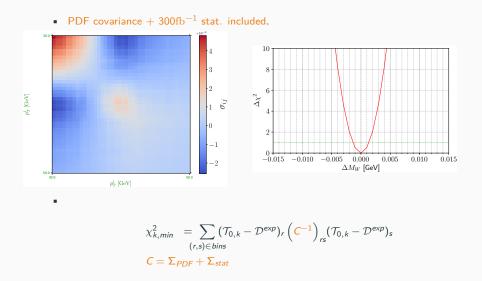
•
$$\chi^2_{k,r} = \sum_{i \in bins} (\mathcal{T}_{0,k} - \mathcal{D}_r)^2_i / \sigma^2_i$$
.

- Compatible results for (nearly) the same fit window.
- The study shows a sizable variability on the fit range.

Numerical results: with stat+PDF covariance

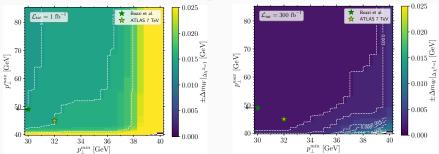


Numerical results: with stat+PDF covariance



Numerical results: with MC+stat+PDF covariance

- No MC uncertainty.
- Add MC uncertainty corresponding to 10¹⁰ events.



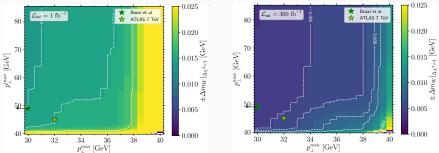
- Large statistics is needed but it does not seem a limiting factor.

$$\chi^{2}_{k,min} = \sum_{(r,s)\in bins} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) r \left(C^{-1}\right)_{rs} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) s$$
$$C = \Sigma_{PDF} + \Sigma_{stat} + \Sigma_{MC}$$

What about other source of uncertainties?

Numerical results: with MC+stat+PDF covariance

- No MC uncertainty.
- Add MC uncertainty corresponding to 10¹⁰ events.



- Large statistics is needed but it does not seem a limiting factor.

$$\chi^{2}_{k,min} = \sum_{(r,s)\in bins} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) r \left(C^{-1}\right)_{rs} (\mathcal{T}_{0,k} - \mathcal{D}^{exp}) s$$
$$C = \Sigma_{PDF} + \Sigma_{stat} + \Sigma_{MC}$$

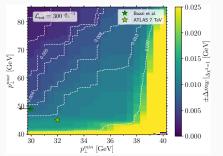
What about other source of uncertainties?

Numerical results: with sys+stat+PDF covariance

- We tried to qualitative understand the impact of detector effects on p^l.
- We used the model proposed by E. Manca (CMS) [CERN-THESIS-2016-173].

$$\left(\frac{\sigma_{p_T'}}{\rho_T^l}\right)^2 = a^2(\eta_l) \cdot r_L^2(\eta_l) + c^2(\eta_l)p^2 \cdot r_L^4(\eta_l) + \frac{b^2(\eta_l) \cdot r_L^2(\eta_l)}{1 + \frac{d^2(\eta_l)}{p^2} \cdot \frac{1}{r_L^2(\eta_l)}}$$

• Uncertainty of 10^{-4} GeV on the overall muon scale.



.

- We compute a "CMS-covariance matrix" using 100 toys. We sum it to the PDF+stat covariance matrix.
- Detector effects reduce the efficacy of the method.
- A quantitative precise statement on the PDF uncertainty depends on the details of the all the systematics of the measurements.

13/14

Revisiting the role of correlations in PDF uncertainties for the M_W measurement Emanuele A. Bagnaschi (PSI)

Conclusions and outlook

Conclusions and outlook

Summary

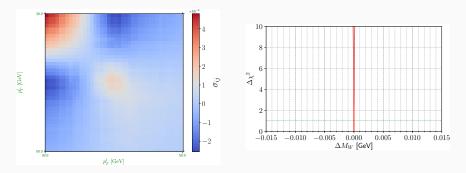
- Treat PDF uncertainty in a frequentist framework as nuisances \rightarrow covariance matrix.
- Correlation structure of bin above/below the Jacobian peak non-trivial.
- Fitting including the full covariance matrix shows a reduced sensitivity to the PDF uncertainty, if other source of errors are under control.
- Inclusion of bin-bin correlations especially beneficial with large integrated luminosity and good control over the systematics.

Future developments

- What happens to the correlations if we fix the PDF methodology but we change data sets? Disentangle theory vs experimental effects.
- Correlation structure in the other (Hessian) PDF sets.
- Differences between different sets.
- Scale/smearing/MC-modelling dependence of the covariance matrix?

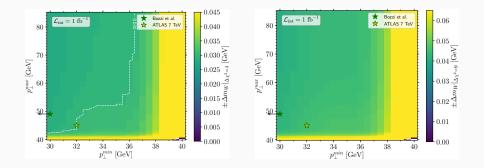
Backup slides

Numerical results: with PDF covariance



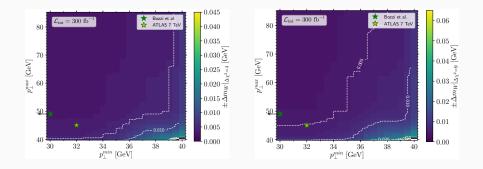
- Shape fit in $p'_{\perp} \in [30, 50]$ GeV.
- Only PDF covariance included.

$\mathcal{L}_{\mathrm{int}} = 1~\mathrm{fb}^{-1}$, 2 σ and 3 σ intervals

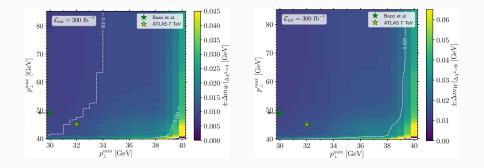


• $\Delta \chi^2 = 4$ half-interval.

$\mathcal{L}_{ m int}=$ 300 ${ m fb}^{-1}$, 2 σ and 3 σ intervals

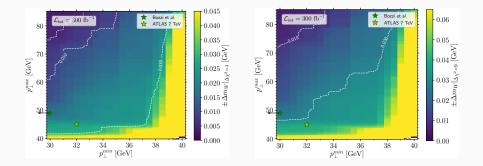


• $\Delta \chi^2 = 4$ half-interval.



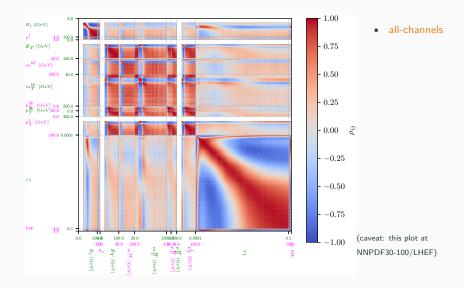
• $\Delta \chi^2 = 4$ half-interval.

$\mathcal{L}_{\mathrm{int}} =$ 300 fb^{-1} + smearing 2 σ and 3 σ intervals

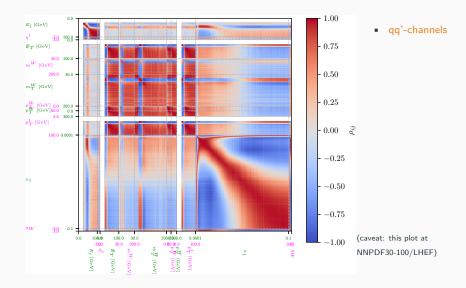


• $\Delta \chi^2 = 4$ half-interval.

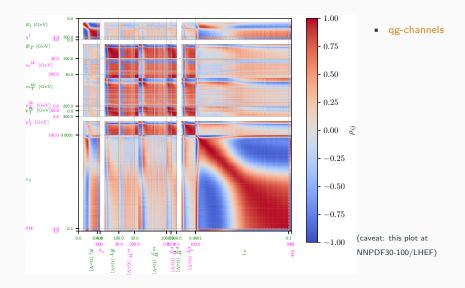
Bin-bin PDF correlation and partonic channels



Bin-bin PDF correlation and partonic channels



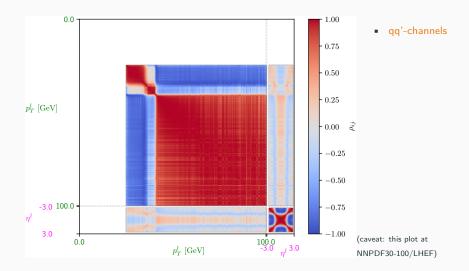
Bin-bin PDF correlation and partonic channels



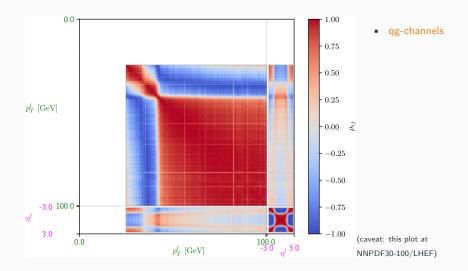
$p_T^{\prime} - \eta_I$ correlation

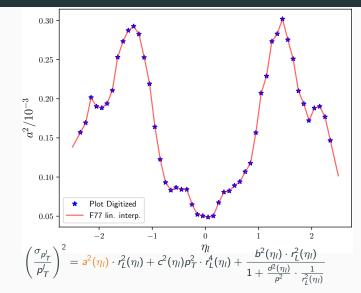


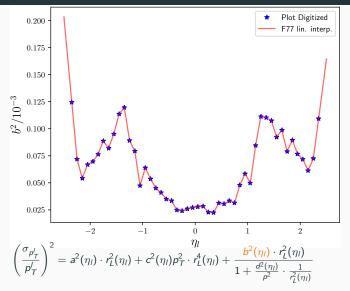
$p_T^{\prime} - \eta_I$ correlation

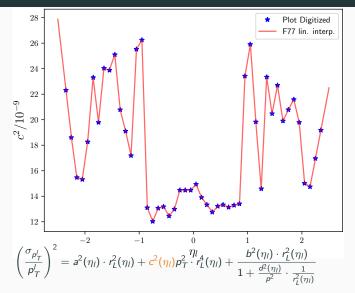


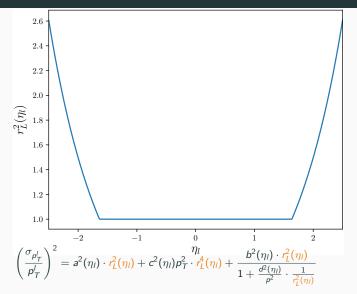
$p_T^{\prime} - \eta_I$ correlation

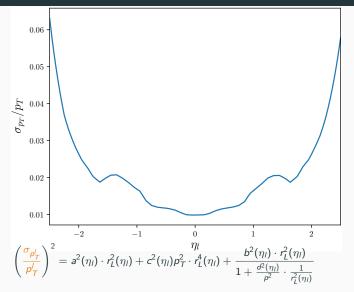




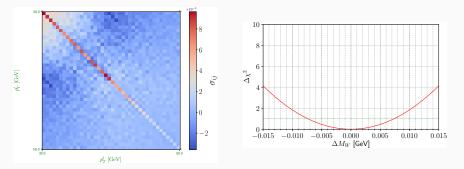








Covariance-enabled fit



- Shape fit in $p'_{\perp} \in [30, 50]$ GeV.
- PDF covariance $+ 300 \text{fb}^{-1}$ stat. + smearing included.