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At  the  Faculty  of  Mathematics  and  Natural  Sciences,  Department  of  Physics,  is  a  joint

appointment  with  the  German  Electron  Synchrotron  (DESY)  a

W3-S-Chair  of  "Theoretical  Particle  ─  development  of  theories  beyond  the

Standard  Model"

to  be  filled  as  soon  as  possible.

DESY  is  one  of  the  leading  centers  for  Astroparticle  and  Particle  Physics.  The  research

program  of  particle  physics  includes  a  strong  involvement  in  the  LHC  experiments  and

basic  research  in  the  field  of  theoretical  particle  in  the  Standard  Model  and  possible

extensions.  The  Institute  of  Physics,  Humboldt  University  is  also  involved  with  two

professorships  at  the  LHC  experiment  ATLAS.  The  research  interests  of  the  working  groups

in  the  field  of  theoretical  particle  physics  ranging  from  mathematical  physics  on  the

phenomenology  of  particle  physics  to  lattice  gauge  theory.

Candidates  /  students  should  be  expelled  through  excellence  with  international  recognition

in  the  field  of  theoretical  particle  physics  with  a  focus  on  the  development  of  models

beyond  the  Standard  Model.  Is  expected  to  close  cooperation  with  the  resident  at  the

Humboldt  University  workgroups.  In  addition  to  the  development  of  possible  standard

model  extensions  and  phenomenological  studies  of  experimental  verification  to  be  carried

out.  Place  special  emphasis  send  the  Higgs  physics.  It  is  expected  that  he  /  she  maintains

the  scientific  contacts  between  DESY  and  the  HU  and  active  in  the  DFG  Research  Training

Group  GK1504  "Mass,  Spectrum,  Symmetry:  Particle  Physics  in  the  Era  of  the  Large

Hadron  Collider"  cooperates.  He  /  she  should  be  at  all  levels  of  teaching  in  physics  at  the

HU  participate  (2  LVS)  and  will  have  the  opportunity  to  acquire  outside  of  a  creative

research  program.

Applicants  /  inside  must  meet  the  requirements  for  appointment  as  a  professor  /  to

professor  in  accordance  with  §  100  of  the  Berlin  Higher  Education  Act.

DESY  and  HU  aim  to  increase  the  proportion  of  women  in  research  and  teaching  and  calling

for  qualified  scientists  urgently  to  apply.  Severely  disabled  applicants  /  will  be  given
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The Higgs self-coupling plays important roles
   1) linked to naturalness/hierarchy problem 
   2) controls the stability of the EW vacuum (… like many other BSM parameters) 
   3) dictates the dynamics of EW phase transition and potentially conditions the generation 
            of (1)  matter-antimatter imbalance via EW baryogenesis & (2) a stochastic GW background

The importance of being cubic…
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The Higgs self-coupling plays important roles
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   2) controls the stability of the EW vacuum (… like many other BSM parameters) 
   3) dictates the dynamics of EW phase transition and potentially conditions the generation 
            of (1)  matter-antimatter imbalance via EW baryogenesis & (2) a stochastic GW background

The importance of being cubic…

Does it need to be measured with high accuracy?

Production and decay of Higgs through couplings:

What sort of precision should we aim for?
•  95% confidence it exists: Around 50% accuracy
•  5σ discovery:  Around 20 % accuracy.
•  Quantum structure:  Around 5% accuracy.
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Only a few new physics scenarios (but they exist) that will be revealed in the measurements of h3

But this measurement is the only way to understand the dynamics of EWSB (Cooper pair or elementary scalar?)
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Window to early universe: GW - Colliders
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even hZZ measurements alone are a powerful test of PT!
(hZZ and hhh is better)

Huang,	AL,	&	Wang	(1608.06619)	
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electroweak baryogenesis requires 1st order EWPT

• Huang, Long, Wang, Phys. Rev. D 94, no. 7, 075008 (2016)  
• see also: Kotwal, Ramsey-Musolf, No, Winslow, Phys. Rev. D 94, no. 3, 035022 (2016)

ElectroWeak Phase Transition (EWPT)
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giving rise to GW stochastic background

Huang, Long, Wang ’16
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http://inspirehep.net/record/1482923
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Which Higgs couplings?
Within the SM, all the Higgs couplings are uniquely fixed by known quantities

(GF, mW, mZ, mquark, mlepton)

This is a curse (nothing more to learn) and a blessing (can asses the inconsistency of the SM)
M. Mangano
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Two approaches to go BSM
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specific models

Try to introduce 
continuous deformations of the SM 
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M. Mangano

Two approaches to go BSM

Study 
specific models

Try to introduce 
continuous deformations of the SM 

Potentially new BSM-effects in h physics 
could have been already tested in the vacuum

SM Scalar is the excitation around the EWSB vacuum: 

! = v+h

H
†
DµHf̄�

µ
f

=
1

2v
⇥

Modifications in h→Zff  related to Z→ff      

vacuum

e.g.

At LHC: EW/VV precision strong enough not 
to interfere with Higgs measurements
(at least if Higgs part of EW doublet)

Not necessarily true at future colliders
Need a more global strategy

Higgs & the rest of the world
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(f=t,b,!)

htt, hbb, h!!

GGh coupling

hγγ coupling

hVV*

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|
2Bµ⌫B

µ⌫ , OGG = g2
s
|H|

2GA

µ⌫
GAµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a

µ⌫
, OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O3W =
1

3!
g✏abcW

a ⌫

µ
W b

⌫⇢
W c ⇢µ , O3G =

1

3!
gsfABCG

A ⌫

µ
GB

⌫⇢
GC ⇢µ , (8)

and the CP-odd operators

O
B eB = g02|H|

2Bµ⌫
eBµ⌫ , O

G eG = g2
s
|H|

2GA

µ⌫
eGAµ⌫ , (9)

O
HfW = ig(DµH)†�a(D⌫H)fW a

µ⌫
, O

H eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O3fW =
1

3!
g✏abcfW a ⌫

µ
W b

⌫⇢
W c ⇢µ , O3 eG =

1

3!
gsfABC

eGA ⌫

µ
GB

⌫⇢
GC ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a

µ⌫
Bµ⌫ and OWW = g2|H|

2W a

µ⌫
W µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O3W and O3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c3W ⇠ g2/g2⇤ and c3G ⇠ g2
s
/g2⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu
= yu|H|

2Q̄L
eHuR ,

O
u

R
= (iH†

$
DµH)(ūR�

µuR) ,

O
q

L
= (iH†

$
DµH)(Q̄L�

µQL) ,

O
(3) q
L

= (iH†�a
$
DµH)(Q̄L�

µ�aQL) , (14)

where eH = i�2H⇤, and in operators / Q̄LuR we include a Yukawa coupling yu (mu = yuv/
p
2)

as an order parameter of the chirality-flip. We also understand, here and in the following,

that when needed the Hermitian conjugate of a given operator is included in the analysis. In

the first class we have, in addition, the four-fermion operators:

O
q

LL
= (Q̄L�

µQL)(Q̄L�
µQL) , O

(8) q
LL

= (Q̄L�
µTAQL)(Q̄L�

µTAQL) ,

O
u

LR
= (Q̄L�

µQL)(ūR�
µuR) , O

(8)u
LR

= (Q̄L�
µTAQL)(ūR�

µTAuR) ,

O
u

RR
= (ūR�

µuR)(ūR�
µuR) , (15)

5For CP-odd operators the identities are 4O
H eB + O

B eB + O
W eB = 0 and 4O

HfW + O
WfW + O

W eB = 0.

5

In the third class of operators, Oi3 , we have the CP-even operators

OBB = g02|H|
2Bµ⌫B

µ⌫ , OGG = g2
s
|H|

2GA

µ⌫
GAµ⌫ , (6)

OHW = ig(DµH)†�a(D⌫H)W a

µ⌫
, OHB = ig0(DµH)†(D⌫H)Bµ⌫ , (7)

O3W =
1

3!
g✏abcW

a ⌫

µ
W b

⌫⇢
W c ⇢µ , O3G =

1

3!
gsfABCG

A ⌫

µ
GB

⌫⇢
GC ⇢µ , (8)

and the CP-odd operators

O
B eB = g02|H|

2Bµ⌫
eBµ⌫ , O

G eG = g2
s
|H|

2GA

µ⌫
eGAµ⌫ , (9)

O
HfW = ig(DµH)†�a(D⌫H)fW a

µ⌫
, O

H eB = ig0(DµH)†(D⌫H) eBµ⌫ , (10)

O3fW =
1

3!
g✏abcfW a ⌫

µ
W b

⌫⇢
W c ⇢µ , O3 eG =

1

3!
gsfABC

eGA ⌫

µ
GB

⌫⇢
GC ⇢µ , (11)

where eF µ⌫ = ✏µ⌫⇢�F⇢�/2. There are two more CP-even operators involving two Higgs fields and

gauge bosons, OWB = g0gH†�aHW a

µ⌫
Bµ⌫ and OWW = g2|H|

2W a

µ⌫
W µ⌫ a (and the equivalent

CP-odd ones), but these can be eliminated using the identities 5

OB = OHB +
1

4
OBB +

1

4
OWB , (12)

OW = OHW +
1

4
OWW +

1

4
OWB . (13)

The operators O3W and O3G (and the corresponding CP-odd ones) have three field-strengths

and then their corresponding coe�cients should scale as c3W ⇠ g2/g2⇤ and c3G ⇠ g2
s
/g2⇤ respec-

tively.

Let us now examine d = 6 operators involving SM fermions, considering a single family to

begin with. Operators of the first class involving the up-type quark are

Oyu
= yu|H|

2Q̄L
eHuR ,

O
u

R
= (iH†

$
DµH)(ūR�
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µTAuR) ,

O
u

RR
= (ūR�
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Synergy Higgs and diboson

diboson (1%) are a priori more constraining than Higgs (10%)

Is there any value in doing a global fit?

In EFT(dim-6)

8 deformations affecting Higgs physics alone

 2 deformations affecting Higgs and diboson data
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Strong correlations between 2 data sets

Better to do a (8+2) parameter fit!

6

Synergy Higgs and diboson

2

We derive constraints on the aTGCs from the com-
bined LHC Higgs data and LEP-2 WW data sets. In
our analysis, all D=6 operators a↵ecting Higgs couplings
to matter and gauge boson self-couplings are allowed to
be simultaneously present with arbitrary coe�cients, as-
suming minimal flavor violation (MFV) [12]. In the Higgs
basis [13] these parameters are [14]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (2)

Note that the dependence of the EFT cuto↵ ⇤ is in-
cluded in the operator coe�cients. The relation of these
parameters to the interaction terms in the e↵ective La-
grangian, as well as the relation to the aTGCs, can be
found in Ref. [13]. Furthermore, we only take into ac-
count linear corrections in the Wilson coe�cients, thus
working consistently at the O(⇤�2) in the EFT expan-
sion. Note that, since di↵erent bases of D = 6 operators
in the literature di↵er by O(⇤�4) terms corresponding
to D > 6 operators, only results obtained consistently at
O(⇤�2) are basis-independent [15]. For the WW data, we
use the measured total and di↵erential e+e� ! W

+
W

�

cross sections di↵erent center-of-mass energies listed in
Ref. [5]. These cross sections depend on a number of
EFT parameters in addition to the aTGCs, in particular
on the ones inducing corrections to Z and W propagators
and couplings to electrons. However, given the model-
independent electroweak precision constraints [16], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that corre-
spond to the aTGCs [7]. We use this dependence to con-
struct the 3D likelihood function �

2

WW
(�g1,z, �� , �z).

For the LHC Higgs data, we use the signal strength ob-
servables, that is, the ratio between the measured Higgs
yield and its SM prediction µ ⌘ (� ⇥ BR)/(� ⇥ BR)SM,
listed in Table I, separated according to the final state
and the production mode. The e↵ect of D=6 opera-
tors on µ was calculated for each channel and produc-
tion mode in Ref. [14] and independently cross-checked
here. After imposing electroweak precision constraints,
9 linear combinations of D=6 operators can a↵ect µ in
an observable way [3, 17]. The crucial point is that 2 of
these combinations correspond to the aTGCs �g1,z, �� .
Therefore, the likelihood function constructed from LHC
Higgs data, �

2

h
(�g1,z, �� , . . . ), may lead to additional

constraints on aTGCs. Indeed, combining the likelihoods
�
2

comb.
= �

2

h
+ �

2

WW
we obtain strong constraints on the

aTGCs at the level of O(0.1). Namely, we obtain the
likelihood for the three variables only: �g1,z, �� and �z,
after minimizing at each point the combined likelihood
with respect to the remaining seven Wilson coe�cients.
We find the following central values, 1 � errors, and the

LEP-2 (WW)
Higgs
LEP-2 + Higgs
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-0.5
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1.0
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FIG. 1. Allowed 68% and 95% CL region in the �g1,z-��

plane after considering LEP-2 WW production data (TGC),
Higgs data, and the combination of both datasets.

correlation matrix for the aTGCs:
0

@
�g1,z
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�z

1

A =

0

@
0.043± 0.031
0.142± 0.085
�0.162± 0.073

1

A ,
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0

@
1 0.74 �0.85

0.74 1 �0.88
�0.85 �0.88 1

1

A .

(3)

These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.
Let us discuss here qualitatively the most important

elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [18]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (3).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino (e+e� ! WW

⇤
! We⌫) [5], as in Ref. [7]. That

process probes mostly �� but it also a↵ects limits on

(TGC+Higgs)>(TGC)∪(Higgs)

Falkowski et al ’15
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�� plane are shown separately [18]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (3).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino (e+e� ! WW

⇤
! We⌫) [5], as in Ref. [7]. That

process probes mostly �� but it also a↵ects limits on
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Christophe Grojean Global determination Inst. Pascal, Dec. 3, 2019

Strong correlations between 2 data sets

Better to do a (8+2) parameter fit!

7

Importance of WW run

2

We derive constraints on the aTGCs from the com-
bined LHC Higgs data and LEP-2 WW data sets. In
our analysis, all D=6 operators a↵ecting Higgs couplings
to matter and gauge boson self-couplings are allowed to
be simultaneously present with arbitrary coe�cients, as-
suming minimal flavor violation (MFV) [12]. In the Higgs
basis [13] these parameters are [14]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (2)

Note that the dependence of the EFT cuto↵ ⇤ is in-
cluded in the operator coe�cients. The relation of these
parameters to the interaction terms in the e↵ective La-
grangian, as well as the relation to the aTGCs, can be
found in Ref. [13]. Furthermore, we only take into ac-
count linear corrections in the Wilson coe�cients, thus
working consistently at the O(⇤�2) in the EFT expan-
sion. Note that, since di↵erent bases of D = 6 operators
in the literature di↵er by O(⇤�4) terms corresponding
to D > 6 operators, only results obtained consistently at
O(⇤�2) are basis-independent [15]. For the WW data, we
use the measured total and di↵erential e+e� ! W

+
W

�

cross sections di↵erent center-of-mass energies listed in
Ref. [5]. These cross sections depend on a number of
EFT parameters in addition to the aTGCs, in particular
on the ones inducing corrections to Z and W propagators
and couplings to electrons. However, given the model-
independent electroweak precision constraints [16], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that corre-
spond to the aTGCs [7]. We use this dependence to con-
struct the 3D likelihood function �

2

WW
(�g1,z, �� , �z).

For the LHC Higgs data, we use the signal strength ob-
servables, that is, the ratio between the measured Higgs
yield and its SM prediction µ ⌘ (� ⇥ BR)/(� ⇥ BR)SM,
listed in Table I, separated according to the final state
and the production mode. The e↵ect of D=6 opera-
tors on µ was calculated for each channel and produc-
tion mode in Ref. [14] and independently cross-checked
here. After imposing electroweak precision constraints,
9 linear combinations of D=6 operators can a↵ect µ in
an observable way [3, 17]. The crucial point is that 2 of
these combinations correspond to the aTGCs �g1,z, �� .
Therefore, the likelihood function constructed from LHC
Higgs data, �

2

h
(�g1,z, �� , . . . ), may lead to additional

constraints on aTGCs. Indeed, combining the likelihoods
�
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comb.
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+ �

2

WW
we obtain strong constraints on the

aTGCs at the level of O(0.1). Namely, we obtain the
likelihood for the three variables only: �g1,z, �� and �z,
after minimizing at each point the combined likelihood
with respect to the remaining seven Wilson coe�cients.
We find the following central values, 1 � errors, and the
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These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.
Let us discuss here qualitatively the most important

elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [18]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (3).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino (e+e� ! WW

⇤
! We⌫) [5], as in Ref. [7]. That

process probes mostly �� but it also a↵ects limits on
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Figure 12: Top: One-sigma constraints on aTGCs parameters for di�erent assumptions
about the systematic uncertainties a�ecting the e+e≠

æ WW measurements at the
CEPC. Each of the five angular distributions is divided into 20 bins (or 10 bins for the
angles characterizing W decays in indistinguishable quark–antiquark pairs). We assume
a fixed relative uncertainty each bin, and no correlation among them. A benchmark value
of 1% is used elsewhere in this paper, for CEPC and FCC-ee measurements. Bottom:
One-sigma reach of the 240 GeV CEPC run for di�erent systematic uncertainties in the
di�erential measurements of diboson production.
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di�erential measurements of diboson production.
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We derive constraints on the aTGCs from the com-
bined LHC Higgs data and LEP-2 WW data sets. In
our analysis, all D=6 operators a↵ecting Higgs couplings
to matter and gauge boson self-couplings are allowed to
be simultaneously present with arbitrary coe�cients, as-
suming minimal flavor violation (MFV) [12]. In the Higgs
basis [13] these parameters are [14]:

�cz, czz, cz⇤, c�� , cz� , cgg, �yu, �yd, �ye, �z. (2)

Note that the dependence of the EFT cuto↵ ⇤ is in-
cluded in the operator coe�cients. The relation of these
parameters to the interaction terms in the e↵ective La-
grangian, as well as the relation to the aTGCs, can be
found in Ref. [13]. Furthermore, we only take into ac-
count linear corrections in the Wilson coe�cients, thus
working consistently at the O(⇤�2) in the EFT expan-
sion. Note that, since di↵erent bases of D = 6 operators
in the literature di↵er by O(⇤�4) terms corresponding
to D > 6 operators, only results obtained consistently at
O(⇤�2) are basis-independent [15]. For the WW data, we
use the measured total and di↵erential e+e� ! W
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cross sections di↵erent center-of-mass energies listed in
Ref. [5]. These cross sections depend on a number of
EFT parameters in addition to the aTGCs, in particular
on the ones inducing corrections to Z and W propagators
and couplings to electrons. However, given the model-
independent electroweak precision constraints [16], these
measurements can e↵ectively constrain 3 linear combina-
tions of Wilson coe�cients of D=6 operators that corre-
spond to the aTGCs [7]. We use this dependence to con-
struct the 3D likelihood function �
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(�g1,z, �� , �z).

For the LHC Higgs data, we use the signal strength ob-
servables, that is, the ratio between the measured Higgs
yield and its SM prediction µ ⌘ (� ⇥ BR)/(� ⇥ BR)SM,
listed in Table I, separated according to the final state
and the production mode. The e↵ect of D=6 opera-
tors on µ was calculated for each channel and produc-
tion mode in Ref. [14] and independently cross-checked
here. After imposing electroweak precision constraints,
9 linear combinations of D=6 operators can a↵ect µ in
an observable way [3, 17]. The crucial point is that 2 of
these combinations correspond to the aTGCs �g1,z, �� .
Therefore, the likelihood function constructed from LHC
Higgs data, �
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(�g1,z, �� , . . . ), may lead to additional

constraints on aTGCs. Indeed, combining the likelihoods
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aTGCs at the level of O(0.1). Namely, we obtain the
likelihood for the three variables only: �g1,z, �� and �z,
after minimizing at each point the combined likelihood
with respect to the remaining seven Wilson coe�cients.
We find the following central values, 1 � errors, and the
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These constraints hold in any new physics scenario pre-
dicting approximately flavor blind coe�cients of D=6
operators and in which D > 6 operators are sublead-
ing. Appendix A contains a technical description of our
fit and the constraints for all the 10 combinations of Wil-
son coe�cients entering the analysis. They are given in
di↵erent bases for reader’s convenience.
Let us discuss here qualitatively the most important

elements of our fit. Higgs data are sensitive to �g1,z and
�� primarily via their contribution to electroweak Higgs
production channels. However, only 1 combination of
these 2 aTGCs is strongly constrained, while the bound
on the direction �� ⇡ 3.8�g1,z is very weak. Analo-
gously, as already discussed, also LEP-2 bounds present
an approximate blind direction. This is illustrated in
Fig. 1, where the WW and Higgs constraints in the �g1,z–
�� plane are shown separately [18]. Since the flat direc-
tions are nearly orthogonal, combining LHC Higgs and
LEP-2 WW data leads to the non-trivial constraints on
aTGCs displayed in Eq. (3).

One could further strengthen the constraints on aT-
GCs by considering the process of single on-shell W bo-
son production in association with an electron and a neu-
trino (e+e� ! WW

⇤
! We⌫) [5], as in Ref. [7]. That

process probes mostly �� but it also a↵ects limits on
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Figure 12: Top: One-sigma constraints on aTGCs parameters for di�erent assumptions
about the systematic uncertainties a�ecting the e+e≠

æ WW measurements at the
CEPC. Each of the five angular distributions is divided into 20 bins (or 10 bins for the
angles characterizing W decays in indistinguishable quark–antiquark pairs). We assume
a fixed relative uncertainty each bin, and no correlation among them. A benchmark value
of 1% is used elsewhere in this paper, for CEPC and FCC-ee measurements. Bottom:
One-sigma reach of the 240 GeV CEPC run for di�erent systematic uncertainties in the
di�erential measurements of diboson production.
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Introduction Refined TGC analysis EW corrections Conclusion

Impact on the Higgs fit

δcZ cZZ cZ□ cγγ cZγ cgg
eff δyt δyc δyb δyτ δyμ λZ
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LHC 300/3000 fb-1 Higgs + LEP e+e-→WW
CEPC 240GeV (5.6 ab-1), without/with HL-LHC
CEPC 240GeV (optimal observables in WW)

! δg1,Z , δκγ → cZZ , cZ" , cγγ , cZγ

! How well can we actually do? Need an experimental analysis!

! Note: other EW parameters can also enter e+e− → WW !

Jiayin Gu (顾嘉荫) JGU Mainz

Towards v2.0 of the CEPC EFT fit

Introduction Refined TGC analysis EW corrections Conclusion

A refined TGC analysis using Optimal Observables

! TGCs are sensitive to the differential distributions!
! Current method: fit to binned distributions of all

angles.
! Correlations among angles are ignored.

! What are optimal observables?
(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

! For a given sample, there is an upper limit on the
precision reach of the parameters.

! In the limit of large statistics (everything is Gaussian)
and small parameters (leading order dominates), this
“upper limit” can be derived analytically!

! dσ
dΩ = dσ

dΩ |aJ +
∑

i

S(Ω)i gi. The optimal observables

are simply the S(Ω)i.

! Very idealized! How well can we actually do?
! Assume ∆bvb ≈ ∆bi�i ?
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Figure 5.16: Definition of the angles in an e
+
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− → W

+
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− event.

electron beam and �W is the flight direction of the parent W -boson. The decay angles
can be classified corresponding to the decay type (hadronic or leptonic). The angles
describing the hadronic (leptonic) decay are called cos θ

∗
h

(cos θ
∗
l
) and φ

∗
h

(φ∗
l
).

The hadronic decay angles suffer from a two-fold ambiguity, due to the unknown charge
of the quarks. The two quarks are back-to-back in the rest frame of the W -boson and
the resulting ambiguity is:

(cos θ
∗
h
,φ

∗
h
)↔ (− cos θ

∗
h
,φ

∗
h

+ π), (5.16)

which is folded in the following way:

φ
∗
h

> 0→ (cos θ
∗
h
,φ

∗
h
)

φ
∗
h

< 0→ (− cos θ
∗
h
,φ

∗
h

+ π). (5.17)

However, for the present study only the angles describing the leptonic decay are used.
Their distributions are shown in Fig. 5.17, with the respective resolutions. Fig. 5.18
compares the cos θW distribution with no anomalous TGCs with a scenario in which
an anomalous value was assigned to the g

Z

1 coupling in order to exemplify the impact
of the TGCs on the angular observables.

5.4.4 Simultaneous Fit

The distributions used in the combined fit are multi-dimensional distributions of the
angular observables. With all four decay angles, in addition to the cos θW observable,
one would need five-dimensional distributions. Filling a five-dimensional distribution
leads to poor statistics for the single bins and does not appear to be a convenient
choice. It was therefore decided to move to three-dimensional distributions, using only
the angles which describe the leptonic decay cos θ

∗
l

and φ
∗
l
, together with cos θW . This
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Jiayin Gu (顾嘉荫) JGU Mainz

Towards v2.0 of the CEPC EFT fit J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

Diboson analysis can still be improved, e.g., using optimised observables
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Notoriously difficult in particular because of strong interference

15Double Higgs production in the SM

-

Negative interference  decreases cross section:

Small production cross section:

Two diagram have very dependant energy dependence. In the high       limit

Best Significance for double Higgs production not necessarily the best to constrain
the trilinear

15Double Higgs production in the SM
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Negative interference  decreases cross section:

Small production cross section:

Two diagram have very dependant energy dependence. In the high       limit

Best Significance for double Higgs production not necessarily the best to constrain
the trilinear

15Double Higgs production in the SM

-

Negative interference  decreases cross section:

Small production cross section:

Two diagram have very dependant energy dependence. In the high       limit

Best Significance for double Higgs production not necessarily the best to constrain
the trilinear

Note 2: also: 2% uncertainty on tth → 5% uncertainty on h3 . Good control of parametric uncertainties is needed

Note 1: The two diagrams have different energy behaviour: look at differential distributions
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h3 from HH
ee colliders pp colliders 

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

Figure 10. Double Higgs production at hadron (left) [54] and lepton (right) [55] colliders as a function of the modified Higgs
cubic self-coupling. See Table 17 for the SM rates. At lepton colliders, the production cross sections do depend on the
polarisation but this dependence drops out in the ratios to the SM rates (beam spectrum and QED ISR effects have been
included).

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [56–58] and even the
electroweak precision observables [59–61]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [62, 63] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [64]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)
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another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [62, 63] and it calls for detailed studies of kinematical
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h3 from HH: issue with second minimum

Sensitivity to Higgs self-coupling
The two channels provide complementary information
✦          gives stronger constraints on 
✦      gives stronger constraints on
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Fig. 11: Left: Cross section of the main di-Higgs production modes in a lepton collider as a function
of the centre-of-mass energy. Right: Dependence of the signal strengths on the trilinear coupling of the
Higgs for different centre-of-mass energies. The horizontal bands show expected sensitivities.

channels depends on the trilinear Higgs self coupling. The result is presented as a function of

�� = � � 1 = ĉ6 �
3

2
ĉH (10)

which denotes the correction to the Higgs self coupling normalized to its SM value, here given in terms
of the dimension-6 operator of Table 2.

The right panel of Figure 11 shows an interesting complementarity between the two Higgs pair
production channels. Due to a positive interference, the Zhh cross section grows for �� > 0, so
that it can more easily constrain positive deviations in the trilinear Higgs self coupling, but is mostly
insensitive to negative deviations. On the contrary, ⌫⌫̄hh production is more sensitive to negative shifts
of the trilinear coupling that increase the cross section. Notice moreover that the vector-boson-fusion
cross section reproduces the SM one also for �� ⇠ 1, therefore such large positive deviations can not be
tested with the ⌫⌫̄hh inclusive rate. So, although the Zhh sensitivity is weaker than the ⌫⌫̄hh one, the
former can still be useful to probe values �� ⇠ 1. We stress that the above considerations are valid in
the case in which the true value of the Higgs trilinear self coupling is close to the SM one (i.e. �� ' 0).
In the presence of sizeable deviations the sensitivity can become significantly different.

We find that, after combining both vector boson fusion and double Higgsstrahlung channels, CLIC
stages 2 and 3 are sufficient to exclude the second fit minimum at �� ⇠ 1 at 95%C.L. . Another
possibility to lift the degenerate minima is to consider the information on the invariant mass spectrum
of the two Higgs bosons, mhh, since it offers an excellent discrimination power thanks to the large
sensitivity to modifications of the Higgs trilinear coupling [32]. Large positive values of �� lead to
a spectrum with a sharp peak close to threshold followed by a steep fall off. A simple cut-and-count
analysis with a few bins is thus sufficient to distinguish this distribution from the SM one [33]. Here we
present a simplified version of the analysis in Section 2.2.2, where the mhh distribution is splitted in 5
bins.

As can be seen from the results in Table 7, differential information in vector boson fusion di-Higgs
production at

p
s = 3 TeV allows one to constrain �� to the range [�0.11, 0.13] at the ��2 = 1 level.

This result should be compared with the [�0.13, 0.16] [ [1.13, 1.42] constraint that is achievable with
inclusive cross section measurements only.
Low-energy and global fit
Let us now consider the impact of the low-energy CLIC Stage 1 run. Such a run leads to very small
double-Higgs-production rates, making these channels irrelevant for determining the Higgs trilinear self
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of cross section or decay width, the linear dependence on �3 originates from
the interference of the Born amplitude M

0 and the virtual EW amplitude
M

1, besides the wave-function-renormalisation constant. The amplitude
M

1 involves one-loop diagrams when the process at LO is described by tree-
level diagrams, like, e.g., vector-boson-fusion production, while it involves
two-loop diagrams when the LO contribution is given by one-loop diagrams,
like, e.g., gluon-gluon-fusion production. The �3-linearly-dependent contri-
butions in M

1, which we denote as M
1

�3
, can be obtained for any process

by evaluating in the SM the diagrams that contain one trilinear Higgs cou-
pling (M1

�
SM
3

) and then rescaling them by a factor �. In order to correctly

identify M
1

�
SM
3

(the contributions related to the H
3 interaction) in the M

1

amplitude in the SM, it is convenient to choose a specific gauge, namely
the unitary gauge. In a renormalisable R⇠ gauge, �SM

3
-dependent diagrams

are due not only to the interaction among three physical Higgs fields but
also to the interaction among one physical Higgs and two unphysical scalars,
making the identification less straightforward.

Once all the contributions from M
1

�3
and ZH are taken into account,

denoting as ⌃ a generic cross section for single-Higgs production or a Higgs
decay width, the corrections induced by an anomalous trilinear coupling
modify the LO prediction (⌃LO) according to

⌃NLO = ZH ⌃LO (1 + �C1) , (4)

where the coe�cient C1, which originates from M
1

�
SM
3

, depends on the pro-

cess and the kinematical observable considered, while ZH is universal, see
Eq. (2). Here and in the following the LO contribution is understood as
including QCD corrections so that the labels LO and NLO refer to EW
corrections. We remind that among all terms contributing to the complete
EW corrections we consider only the part relevant for our discussion, i.e.,
the one related to the Higgs trilinear interaction. The ⌃NLO in the SM can
be obtained from Eq. (4) setting � = 1 and expanding the ZH factor, or

⌃SM

NLO = ⌃LO (1 + C1 + �ZH) . (5)

Thus, the relative corrections induced by an anomalous trilinear Higgs self-
coupling can be expressed as

�⌃�3 ⌘
⌃NLO � ⌃SM

NLO

⌃LO

= ZH � (1 + �ZH) + (ZH� � 1)C1 , (6)

which, neglecting O(3
�
↵
2) terms in the r.h.s, can be compactly written as

�⌃�3 = (� � 1)C1 + (2
�
� 1)C2 , (7)
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Calculation framework

We assume that New Physics induces only a modification in the Higgs potential, 
rescaling the trilinear coupling by a factor   

1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the
Large Hadron Collider (LHC) [1,2] opened a new era in high-energy particle
physics. The study of the properties of this particle provides strong evidence
that it is the Higgs boson of the Standard Model (SM), i.e., a scalar CP-even
state whose couplings to the other known particles have a SM-like structure
and strengths proportional to their masses. In particular, ATLAS and CMS
performed both independent [3, 4] and combined [5] studies on the Higgs
couplings in the so-called -framework [6,7], where the predicted SM Higgs
strengths ci are rescaled by overall factors i. In the combined analysis based
on 7 and 8-TeV data sets [5] the couplings with the vector bosons have been
found to be compatible with those expected from the SM, i.e., V = 1
(V = W,Z), within a ⇠ 10% uncertainty, while in the case of the heaviest
SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among
the di↵erent i are often assumed, improving the sensitivity of experimental
analyses on i but leading to a loss of generality. Therefore, the precision of
the current measurements still leaves room for Beyond-the-Standard-Model
(BSM) scenarios involving modifications of the Higgs-boson couplings to the
vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the
second run of the LHC at

p
s = 13 TeV centre-of-mass energy will be the

precise determination of the properties and interactions of the SM particles,
in particular those of the Higgs boson, in order to constrain e↵ects from
New Physics (NP). The increase of the production cross sections together
with a larger integrated luminosity, which is expected to reach 300 fb�1 per
experiment at the end of the Run II and up to 3000 fb�1 in the case of the
following High Luminosity (HL) option, will allow to probe the couplings
of the Higgs boson with the other SM particles with much higher accuracy.
In particular, present estimates [8, 9], suggest that at the end of the Run
II the Higgs-boson couplings to the vector bosons are expected to reach a
⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the heavy
fermions could reach ⇠ 10 � 15% precision. Similar estimates for the end
of the HL option indicate a reduction of these numbers by at least a factor
⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in
the scalar potential

V (H) =
m

2
H

2
H

2 + �3vH
3 + �4H

4

2

is in a completely di↵erent situation. In the SM, the potential is fully de-
termined by only two parameters, e.g., v = (

p
2Gµ)�1/2 and the coe�cient

of the (�†�)2 interaction �, where � is the Higgs doublet field. Thus, the
mass and the self couplings of the Higgs boson depend only on � and v

(m2

H
= 2�v2,�SM

3
= �,�

SM
4

= �/4). On the contrary, in the case of ex-
tended scalar sectors or in presence of new dynamics at higher scales the
trilinear and quartic couplings, �3 and �4, typically depend on additional
parameters and their values can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sec-
tions of the main single-Higgs production processes, i.e., gluon–gluon fusion
(ggF), vector-boson fusion (VBF), W and Z associated production (WH,
ZH) and the production in association with a top-quark pair (tt̄H), depend
on the couplings of the Higgs boson to the other particles of the SM, yet they
are insensitive to �3 and �4. Information on �3 can be directly obtained at
LO only from final states featuring at least two Higgs bosons. However, the
cross sections of these processes are much smaller than those from single-
Higgs production, due to the suppression induced by a heavier final state
and an additional weak coupling. At

p
s = 13 TeV the single-Higgs gluon-

gluon-fusion production cross section in the SM is around 50 pb [12], while
the double-Higgs cross section is around 35 fb in the gluon-gluon-fusion
channel [13–15] and even smaller in other production mechanisms [16,17].

A plethora of perspective studies performed at
p
s = 13 TeV suggest

that it should be possible to detect the production of a Higgs pair via
bb̄�� [16, 18–22], bb̄⌧⌧ [16, 23], bb̄W+

W
� [24] and bb̄bb̄ [25–27] final states,

and also via signatures emerging from tt̄HH [28,29] and HV V [30] produc-
tion channels. However, the ultimate precision that could be achieved on the
determination of �3 is much less clear. Even with an integrated luminosity
of 3000 fb�1, experimental analyses suggest that it will be possible to ex-
clude at the LHC only values in the range �3 < �1.3 �

SM
3

and �3 > 8.7 �
SM
3

via the bb̄�� signatures [31] or �3 < �4 �
SM
3

and �3 > 12 �
SM
3

even includ-
ing also bb̄⌧⌧ signatures [32], i.e., a much more pessimistic perspective than
the results reported in the phenomenological explorations. The current ex-
perimental bounds on non-resonant Higgs pair production cross sections as
obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a
signal up to 70 times larger than the SM one [33,34], which can be roughly
translated to the �3 < �12 �

SM
3

and �3 > 17 �
SM
3

exclusion limits, while
CMS puts a 95% C.L. exclusion limit on �3 < �17.5 �

SM
3

and �3 > 22.5 �
SM
3

assuming changes only in the trilinear Higgs-boson coupling, with all other
parameters fixed to their SM values [35]. Thus, additional strategies in the
determination of the trilinear Higgs self coupling �3 that are alternative and

3

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-

cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3
. Thereby, the H

3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3 = �3 v H
3
⌘ ��

SM

3 v H
3
, �

SM

3 =
Gµ
p
2
m

2

H
, (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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Equivalently, the calculation is valid also for NP scenarios where effects from 
anomalous HVV and Hff interactions are smaller than those induced by       .
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The calculation can also be understood as the sensitivity of the single-Higgs 
production on the parameter        in the kappa framework with 1                     .  
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CMS. The other parameters of interest from the list in the legend are also varied in the minimisation procedure.
The red (green) horizontal line at the �2� ln⇤ value of 1 (4) indicates the value of the profile likelihood ratio
corresponding to a 1� (2�) CL interval for the parameter of interest, assuming the asymptotic �2 distribution of the
test statistic.

6.4. Fermion and vector boson couplings

The last and most constrained parameterisation studied in this section is motivated by the intrinsic di↵er-
ence between the Higgs boson couplings to weak vector bosons, which originate from the breaking of the
EW symmetry, and the Yukawa couplings to the fermions. Similarly to Section 6.2, it is assumed in this
section that there are no new particles in the loops (ggF production process and H ! �� decay mode)
and that there are no BSM decays, i.e. BBSM = 0. Vector and fermion coupling modifiers, V and F , are
defined such that Z = W = V and t = ⌧ = b = F . These definitions can be applied either glob-
ally, yielding two parameters, or separately for each of the five decay channels, yielding ten parameters
 f

V and  f
F (following the notation related to Higgs boson decays used for the signal strength parameterisa-

tion). Two fits are performed: a two-parameter fit as a function of V and F , and a ten-parameter fit as a
function of  f

V and  f
F for each decay channel.

As explained in Section 2.4 and shown explicitly in Table 4, the Higgs boson production cross sections
and partial decay widths are only sensitive to products of coupling modifiers and not to their absolute sign.
Any sensitivity to the relative sign between V and F can only occur through interference terms, either
in the H ! �� decays, through the t–W interference in the �� decay loop, or in ggZH or tH production.
Without any loss of generality, this parameterisation assumes that one of the two coupling modifiers,
namely V (or  f

V ), is positive.

The combined ATLAS and CMS results are shown in Fig. 24 for the individual channels and their com-
bination. The individual decay channels are seen to be compatible with each other only for positive
values of  f

F . The incompatibility between the channels for negative values of  f
F arises mostly from the
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Equivalent study for only ZH production at e+e- collider in McCullough ‘14

Similar studies in EFT approach for only gluon-fusion with decays into photons in  
Gorbahn, Haisch ’16, and for VBF+VH in Bizon, Gorbahn, Haisch, Zanderighi ’16

Calculation framework

We assume that New Physics induces only a modification in the Higgs potential, 
rescaling the trilinear coupling by a factor   

1 Introduction

The discovery of a new scalar resonance with mass around 125 GeV at the
Large Hadron Collider (LHC) [1,2] opened a new era in high-energy particle
physics. The study of the properties of this particle provides strong evidence
that it is the Higgs boson of the Standard Model (SM), i.e., a scalar CP-even
state whose couplings to the other known particles have a SM-like structure
and strengths proportional to their masses. In particular, ATLAS and CMS
performed both independent [3, 4] and combined [5] studies on the Higgs
couplings in the so-called -framework [6,7], where the predicted SM Higgs
strengths ci are rescaled by overall factors i. In the combined analysis based
on 7 and 8-TeV data sets [5] the couplings with the vector bosons have been
found to be compatible with those expected from the SM, i.e., V = 1
(V = W,Z), within a ⇠ 10% uncertainty, while in the case of the heaviest
SM fermions (the top, the bottom quarks and the ⌧ lepton) the uncertainty
is of order ⇠ 15 � 20%. However, at this stage, additional relations among
the di↵erent i are often assumed, improving the sensitivity of experimental
analyses on i but leading to a loss of generality. Therefore, the precision of
the current measurements still leaves room for Beyond-the-Standard-Model
(BSM) scenarios involving modifications of the Higgs-boson couplings to the
vector bosons and fermions.

Besides the direct search of new particles, one of the main tasks of the
second run of the LHC at

p
s = 13 TeV centre-of-mass energy will be the

precise determination of the properties and interactions of the SM particles,
in particular those of the Higgs boson, in order to constrain e↵ects from
New Physics (NP). The increase of the production cross sections together
with a larger integrated luminosity, which is expected to reach 300 fb�1 per
experiment at the end of the Run II and up to 3000 fb�1 in the case of the
following High Luminosity (HL) option, will allow to probe the couplings
of the Higgs boson with the other SM particles with much higher accuracy.
In particular, present estimates [8, 9], suggest that at the end of the Run
II the Higgs-boson couplings to the vector bosons are expected to reach a
⇠ 5% precision with 300 fb�1 luminosity, while the couplings to the heavy
fermions could reach ⇠ 10 � 15% precision. Similar estimates for the end
of the HL option indicate a reduction of these numbers by at least a factor
⇠ 2.

The study of the trilinear (�3) and quartic (�4) Higgs self couplings in
the scalar potential

V (H) =
m

2
H

2
H

2 + �3vH
3 + �4H

4

2

is in a completely di↵erent situation. In the SM, the potential is fully de-
termined by only two parameters, e.g., v = (

p
2Gµ)�1/2 and the coe�cient

of the (�†�)2 interaction �, where � is the Higgs doublet field. Thus, the
mass and the self couplings of the Higgs boson depend only on � and v

(m2

H
= 2�v2,�SM

3
= �,�

SM
4

= �/4). On the contrary, in the case of ex-
tended scalar sectors or in presence of new dynamics at higher scales the
trilinear and quartic couplings, �3 and �4, typically depend on additional
parameters and their values can depart from the SM predictions [10, 11].

At the Leading Order (LO) the Higgs decay widths and the cross sec-
tions of the main single-Higgs production processes, i.e., gluon–gluon fusion
(ggF), vector-boson fusion (VBF), W and Z associated production (WH,
ZH) and the production in association with a top-quark pair (tt̄H), depend
on the couplings of the Higgs boson to the other particles of the SM, yet they
are insensitive to �3 and �4. Information on �3 can be directly obtained at
LO only from final states featuring at least two Higgs bosons. However, the
cross sections of these processes are much smaller than those from single-
Higgs production, due to the suppression induced by a heavier final state
and an additional weak coupling. At

p
s = 13 TeV the single-Higgs gluon-

gluon-fusion production cross section in the SM is around 50 pb [12], while
the double-Higgs cross section is around 35 fb in the gluon-gluon-fusion
channel [13–15] and even smaller in other production mechanisms [16,17].

A plethora of perspective studies performed at
p
s = 13 TeV suggest

that it should be possible to detect the production of a Higgs pair via
bb̄�� [16, 18–22], bb̄⌧⌧ [16, 23], bb̄W+

W
� [24] and bb̄bb̄ [25–27] final states,

and also via signatures emerging from tt̄HH [28,29] and HV V [30] produc-
tion channels. However, the ultimate precision that could be achieved on the
determination of �3 is much less clear. Even with an integrated luminosity
of 3000 fb�1, experimental analyses suggest that it will be possible to ex-
clude at the LHC only values in the range �3 < �1.3 �

SM
3

and �3 > 8.7 �
SM
3

via the bb̄�� signatures [31] or �3 < �4 �
SM
3

and �3 > 12 �
SM
3

even includ-
ing also bb̄⌧⌧ signatures [32], i.e., a much more pessimistic perspective than
the results reported in the phenomenological explorations. The current ex-
perimental bounds on non-resonant Higgs pair production cross sections as
obtained at 8 TeV are rather weak. ATLAS has been able to exclude only a
signal up to 70 times larger than the SM one [33,34], which can be roughly
translated to the �3 < �12 �

SM
3

and �3 > 17 �
SM
3

exclusion limits, while
CMS puts a 95% C.L. exclusion limit on �3 < �17.5 �

SM
3

and �3 > 22.5 �
SM
3

assuming changes only in the trilinear Higgs-boson coupling, with all other
parameters fixed to their SM values [35]. Thus, additional strategies in the
determination of the trilinear Higgs self coupling �3 that are alternative and

3

framework and discuss the �3-dependent part of the NLO EW corrections
to the single-Higgs processes. In the following section we present the calcu-
lation of such contributions to the various observables. Section 4 is devoted
to study the impact of the �3-dependent contribution in the single-Higgs
production and decay modes at the LHC, while in the following section we
discuss the constraints on �3 that can be obtained from the current data
and also from future measurements. In the last section we summarise and
draw our conclusions.

2 �3-dependent contributions in single-Higgs pro-

cesses

As basic assumption, we consider a BSM scenario where the only (or domi-
nant) modification of the SM Lagrangian at low energy appears in the scalar
potential. In other words, we assume that the only relevant e↵ect induced
at the weak scale by unknown NP at a high scale is a modification of the
self couplings of the 125 GeV boson. In particular, we concentrate on the
trilinear self-coupling of the Higgs boson, making the assumption that mod-
ifications of �4 and of possible other self-couplings in the potential lead to
much smaller e↵ects and that the strength of tree-level interactions of the
Higgs field with the vector bosons and with the fermions is not (or very
weakly) modified w.r.t. the SM case. We therefore simply parametrise the
e↵ect of NP at the weak scale via a single parameter �, i.e., the rescal-
ing of the SM trilinear coupling, �SM

3
. Thereby, the H

3 interaction in the
potential, where H is the physical Higgs field, is given by

VH3 = �3 v H
3
⌘ ��

SM

3 v H
3
, �

SM

3 =
Gµ
p
2
m

2

H
, (1)

with the vacuum expectation value, v, related to the Fermi constant at the
tree-level by v = (

p
2Gµ)�1/2.

As we will discuss and quantify in more detail in the following, the
“deformation” of the Higgs trilinear coupling induces modifications of the
Higgs couplings to fermions and to vector bosons at one loop. However,
since �3-dependent contributions are energy- and observable-dependent, the
resulting loop-induced modifications include also contributions that cannot
be parameterised via a rescaling of the tree-level couplings of the single-
Higgs production and decay processes considered. Thus, it is important
to keep in mind that the e↵ects discussed in this work cannot be correctly
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Equivalently, the calculation is valid also for NP scenarios where effects from 
anomalous HVV and Hff interactions are smaller than those induced by       .
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The calculation can also be understood as the sensitivity of the single-Higgs 
production on the parameter        in the kappa framework with 1                     .  
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Figure 21: Observed (solid line) and expected (dashed line) negative log-likelihood scan of the �du parameter,
probing the ratios of coupling modifiers for up-type versus down-type fermions for the combination of ATLAS and
CMS. The other parameters of interest from the list in the legend are also varied in the minimisation procedure.
The red (green) horizontal line at the �2� ln⇤ value of 1 (4) indicates the value of the profile likelihood ratio
corresponding to a 1� (2�) CL interval for the parameter of interest, assuming the asymptotic �2 distribution of the
test statistic.

6.4. Fermion and vector boson couplings

The last and most constrained parameterisation studied in this section is motivated by the intrinsic di↵er-
ence between the Higgs boson couplings to weak vector bosons, which originate from the breaking of the
EW symmetry, and the Yukawa couplings to the fermions. Similarly to Section 6.2, it is assumed in this
section that there are no new particles in the loops (ggF production process and H ! �� decay mode)
and that there are no BSM decays, i.e. BBSM = 0. Vector and fermion coupling modifiers, V and F , are
defined such that Z = W = V and t = ⌧ = b = F . These definitions can be applied either glob-
ally, yielding two parameters, or separately for each of the five decay channels, yielding ten parameters
 f

V and  f
F (following the notation related to Higgs boson decays used for the signal strength parameterisa-

tion). Two fits are performed: a two-parameter fit as a function of V and F , and a ten-parameter fit as a
function of  f

V and  f
F for each decay channel.

As explained in Section 2.4 and shown explicitly in Table 4, the Higgs boson production cross sections
and partial decay widths are only sensitive to products of coupling modifiers and not to their absolute sign.
Any sensitivity to the relative sign between V and F can only occur through interference terms, either
in the H ! �� decays, through the t–W interference in the �� decay loop, or in ggZH or tH production.
Without any loss of generality, this parameterisation assumes that one of the two coupling modifiers,
namely V (or  f

V ), is positive.

The combined ATLAS and CMS results are shown in Fig. 24 for the individual channels and their com-
bination. The individual decay channels are seen to be compatible with each other only for positive
values of  f

F . The incompatibility between the channels for negative values of  f
F arises mostly from the
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Standard Answer: you need to produce at least two Higgs!

Frederix++  ’14

mhh distribution needed to separate 
the two degenerate points

(larger h3, mhh more picked close to threshold) 

hence into an increased precision. For instance at ILC500, the sensitivity around the SM value is 27% but it would reach 18%
around k3 = 1.5.

Hadron collider Lepton collider
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Figure 9. Representative Feynman diagrams for the leading contribution to double Higgs production at hadron (left) and
lepton (right) colliders. Extracting the value of the Higgs self-coupling, in red, requires a knowledge of the other Higgs
couplings that also contribute to the same process. See Table 17 for the SM rates. At lepton colliders, double Higgs production
can also occur via vector boson fusion with neutral currents but the rate is about ten times smaller. The contribution
proportional to the cubic Higgs self-coupling involves an extra Higgs propagator that dies off at high energy. Therefore, the
kinematic region close to threshold is more sensitive to the Higgs self-coupling.

Figure 10. Double Higgs production at hadron (left) [54] and lepton (right) [55] colliders as a function of the modified Higgs
cubic self-coupling. See Table 17 for the SM rates. At lepton colliders, the production cross sections do depend on the
polarisation but this dependence drops out in the ratios to the SM rates (beam spectrum and QED ISR effects have been
included).

Modified Higgs self-interactions can also affect, at higher orders, the single Higgs processes [56–58] and even the
electroweak precision observables [59–61]. Since the experimental sensitivities for these observables are better than for double
Higgs production, one can devise alternative ways to assess the value of the Higgs self-interactions. To be viable, these
alternative methods need to be able to disentangle a variation due to a modified Higgs self-interaction from variations due to
another deformation of the SM. This is important in particular in a global analysis, when all EFT parameters are left free to float.
This cannot always be done relying only on inclusive measurements [62, 63] and it calls for detailed studies of kinematical
distributions with an accurate estimate of the relevant uncertainties [64]. For a 240 GeV lepton collider, the change of the ZH
production cross section at NLO induced by a deviation of the Higgs cubic coupling amounts to

sNLO
ZH ⇡ sNLO,SM

ZH (1+0.014dk3). (26)
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 CMS

 Expected limit on σ0HH): 12.8ASM
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parameter could be measuremed with a precision of 10 to 20%, as illustrated in Figure 75. It should also2735

be noted that the second minimum of the likelihood would be unambiguously excluded at the HE-LHC.2736

It should be emphasized that these results rely on assumptions of experimental performance in very2737

high pile up environment O(800-100) that would require further validation with more detailed studies,2738

and that no systematic uncertainties are considered at this point. On the other hand these studies do not2739

include the additional decay channels that have already been studied for HL-LHC, and of others that2740

could become relevant at the HE-LHC. Exclusive production modes are also very interesting to take into2741

consideration for this measurement. The potential improvements from these have not yet been assessed2742

yet.2743
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Fig. 75: Expected sensitivity for the measurement of the Higgs trilinear coupling through the measure-
ment of direct HH production at HE-LHC. The black line corresponds to the combination of ATLAS
and CMS measurements with HL-LHC data presented in Section 3.2.3, with systematic uncertainties
considered. The red band corresponds to an estimate of the sensitivity using a combination of the bb̄��
and bb̄⌧⌧ channels, without systematic uncertainties considered.

3.5 Indirect probes2744

In this section we discuss the possibility of indirectly extract information on the trilinear self interaction2745

of the Higgs boson via precise measurements of single-Higgs production [329–337] at the HL-LHC and2746

HE-LHC. This strategy is complementary to the direct measurement via double-Higgs production, which2747

already at leading order, i.e. at one loop in the case of gg ! HH , depends on the trilinear Higgs self2748

interaction. In the case of single-Higgs production, on the contrary, the Higgs self interactions enter only2749

via one-loop corrections, i.e., at the two-loop level for the gluon-fusion (ggF ) production mode. The2750

effects of modified Higgs self interactions are therefore generically much smaller, but for single-Higgs2751

production processes the precision of the experimental measurements is and will be much better than for2752

double-Higgs production. This, and the fact that for single-Higgs production many different final states2753

and both inclusive as well as differential measurements are possible will lead to competitive indirect2754

determinations of the trilinear Higgs self coupling. In [338, 339] also electroweak precision observables2755

have been considered to this purpose.2756

118

[Higgs Physics at the HL-LHC and HE-LHC 
report, to appear]

DRAFTλk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
∆

-2

0

2

4

6

8

10

12

ATLAS
CMS
Combination

68%

95%

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

(a)

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
∆

-2

0

1

2

3

4

5
bbbb ττbb

)νlνVV(lbb γγbb
ZZ*(4l)bb

ATLAS CMS

68%

95%

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

(b)

Fig. 62: (a) Minimum negative-log-likelihood as a function of �, calculated by performing a condi-
tional signal+backgrond fit to the background and SM signal. (a) The black line corresponds to the
combined ATLAS and CMS results, while the blue and red lines correspond to the ATLAS and CMS
standlone results respectively. (b) The different colours correspond to the different channels, the plain
lines correspond to the CMS results while the dashed lines correspond to the ATLAS results.

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
Δ

-2

0

2

4

6

8

10

12

Combination

γγbb

ττbb

bbbb

ZZ*(4l)bb

)νlνVV(lbb
68% CL

95% CL

99.4% CL

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

σsignificance: 4
SM HH signal

 < 1.5 [68% CL]λ0.5 < k
 < 2.3 [95% CL]λ0.1 < k

           HL-LHC prospects 3 ab-1 (14 TeV)ATLAS and CMS

SM HH significance: 4σ

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
Δ

-2

0

2

4

6

8

10

12

Combination

γγbb

ττbb

bbbb

ZZ*(4l)bb

)νlνVV(lbb
68% CL

95% CL

99.4% CL

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

σsignificance: 4
SM HH signal

 < 1.5 [68% CL]λ0.5 < k
 < 2.3 [95% CL]λ0.1 < k

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
Δ

-2

0

2

4

6

8

10

12

bbbb

ττbb

)νlνVV(lbb

γγbb

ZZ*(4l)bb

Combination

68%

95%

99.4%

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

σsignificance: 4
SM HH signal

 < 1.5 [68% CL]λ0.5 < k
 < 2.3 [95% CL]λ0.1 < k

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
Δ

-2

0

2

4

6

8

10

12

Combination

γγbb

ττbb

bbbb

ZZ*(4l)bb

)νlνVV(lbb
68% CL

95% CL

99.4% CL

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

σsignificance: 4
SM HH signal

 < 1.5 [68% CL]λ0.5 < k
 < 2.3 [95% CL]λ0.1 < k

λk
2− 1− 0 1 2 3 4 5 6 7 8

ln
(L

)
Δ

-2

0

2

4

6

8

10

12

Combination

γγbb

ττbb

bbbb

ZZ*(4l)bb

)νlνVV(lbb
68% CL

95% CL

99.4% CL

 (14 TeV)-13000 fbCMS and ATLAS
HL-LHC prospects

σsignificance: 4
SM HH signal

 < 1.5 [68% CL]λ0.5 < k
 < 2.3 [95% CL]λ0.1 < k

0.1 < !" < 2.3 [95% CL]  
0.5 < !" < 1.5 [68% CL]

!"
(a) (b)
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✦ HL-LHC can test the Higgs trilinear with O(50%) precision
0.57  ��  1.5 68%at C.L.

✦ HE-LHC could test the Higgs trilinear with O(15-30%) precision  
(projections vary significantly between different analyses)

HL/HE-LHC Higgs WG report

0.57  �  1.5

https://cds.cern.ch/record/2650162/
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O6 corrections to VVh vertex
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads

�µ⌫

V
(q1, q2) = 2

⇣p
2GF

⌘1/2
m2

V

h
gµ⌫

�
1 + F1(q

2
1, q

2
2)
�

+ q⌫1qµ2 F2(q
2
1, q

2
2)
i
, (3.1)

where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
i

with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
, i.e. an on-shell Higgs boson. Notice that �µ⌫

V
(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ

i
(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
Passarino-Veltman (PV) scalar integrals
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and the tensor coefficients of the two tensor integrals
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Figure 2. Feynman diagrams with an insertion of the effective operator O6 that lead to Higgs-
boson decays into fermion (left), gluon (middle) and photon (right) pairs.
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where N q
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c = 1 and all quark masses mq are understood as MS masses renormalised
at the scale mh, while m` denotes the pole mass of the corresponding lepton. The O(�)

correction to the partial decay width �(h ! ff̄) stem from the graph displayed on the
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and analogue definitions for the tensor coefficients C1 and C2. Notice that the flavour-
dependent contributions are suppressed by light-fermion masses compared to the flavour-
independent contribution proportional to B0

0 that arises from the wave function renormal-
isation of the Higgs boson. The corrections �f are hence to very good approximation
universal.

The shifts in the partial width for a Higgs boson decaying into a pair of EW gauge
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and include the contributions from both the production of one real and one virtual EW
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All production & decays channels receive two types 
of contributions: i) a process dependent one, which 
is linear in c6; ii) a universal one associated to Higgs 
wave function renormalization, which contains a 
piece quadratic in c6 
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads

�µ⌫

V
(q1, q2) = 2

⇣p
2GF

⌘1/2
m2

V

h
gµ⌫

�
1 + F1(q

2
1, q

2
2)
�

+ q⌫1qµ2 F2(q
2
1, q

2
2)
i
, (3.1)

where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
i

with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
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function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
i

with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
, i.e. an on-shell Higgs boson. Notice that �µ⌫

V
(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ

i
(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
Passarino-Veltman (PV) scalar integrals
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In the case of the decays of the Higgs to light fermion pairs f = q, `, we write
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where N q
c = 3, N `

c = 1 and all quark masses mq are understood as MS masses renormalised
at the scale mh, while m` denotes the pole mass of the corresponding lepton. The O(�)

correction to the partial decay width �(h ! ff̄) stem from the graph displayed on the
left-hand side in Figure 2. We obtain
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and analogue definitions for the tensor coefficients C1 and C2. Notice that the flavour-
dependent contributions are suppressed by light-fermion masses compared to the flavour-
independent contribution proportional to B0

0 that arises from the wave function renormal-
isation of the Higgs boson. The corrections �f are hence to very good approximation
universal.

The shifts in the partial width for a Higgs boson decaying into a pair of EW gauge
bosons can be cast into the form [39]
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and include the contributions from both the production of one real and one virtual EW
gauge boson h ! V V ⇤ or two virtual states h ! V ⇤V ⇤. In (4.4) the total decay width of
the relevant gauge boson is denoted by �V and the integrand can be written as
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
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2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
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with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
, i.e. an on-shell Higgs boson. Notice that �µ⌫

V
(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ

i
(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
Passarino-Veltman (PV) scalar integrals
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function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
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2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
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with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2
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, i.e. an on-shell Higgs boson. Notice that �µ⌫
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(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ
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(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.
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What if ECM < 2 mh + mZ?
•  Lepton colliders are precision 

machines.  Actually measure LO tree-
level and NLO, NNLO, etc:

•  Can probe new physics in loops as well!
– New physics = new state, modified coupling

Self-Coupling at NLO

•  At NLO modified coupling enters in the 
following loops:


•  And also:                         
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•  Lepton colliders are precision 

machines.  Actually measure LO tree-
level and NLO, NNLO, etc:

•  Can probe new physics in loops as well!
– New physics = new state, modified coupling

What if ECM < 2 mh + mZ?
•  At 240 GeV:


•  But what if we have:

•  We would never know?
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Conclusions
•  In fact, the following two scenarios

                               or

are distinguishable due to NLO effects.

•  Indirect constraint has ambiguity

•  Measurements at multiple energies can 
lead to ellipse-plot constraints.
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Figure 10. Histograms for “CMS-II” (300 fb�1). The distributions represented are, from left to
right and from top to bottom: 1) best values, 2) 1� region lower limit, 3) 1� region upper limit, 4)
2� region lower limit, 5) 2� region upper limit, 6) p > 0.05 region lower limit, 7) p > 0.05 region
upper limit, 8) 1� region width, 9) 2� region width, 10) p > 0.05 region width.
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Figure 11. As Fig. 10 for “CMS-HL-II” (3000 fb�1).
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example, we find that for the scenario P4


1�

�
= [0.86, 1.14] , 

2�

�
= [0.74, 1.28] , 

p>0.05

�
= [0.28, 1.80] . (5.8)

Considering as before n = 10000 pseudo-measurements, the histograms analogous to those
in Fig. 10 and 11 are shown in Fig. 13. Again, we find the indication that, most-likely, in
this optimistic scenario stronger bounds than those reported in Eq. (5.8) could be set.

20

This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
i

with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
, i.e. an on-shell Higgs boson. Notice that �µ⌫

V
(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ
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(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
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Figure 2. Feynman diagrams with an insertion of the effective operator O6 that lead to Higgs-
boson decays into fermion (left), gluon (middle) and photon (right) pairs.

In the case of the decays of the Higgs to light fermion pairs f = q, `, we write

��(h ! ff̄) =
Nf

c GF mhm2
f

4
p

2⇡

 
1 �

4m2
f

m2
h

!3/2

�f , (4.1)

where N q
c = 3, N `

c = 1 and all quark masses mq are understood as MS masses renormalised
at the scale mh, while m` denotes the pole mass of the corresponding lepton. The O(�)

correction to the partial decay width �(h ! ff̄) stem from the graph displayed on the
left-hand side in Figure 2. We obtain
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and analogue definitions for the tensor coefficients C1 and C2. Notice that the flavour-
dependent contributions are suppressed by light-fermion masses compared to the flavour-
independent contribution proportional to B0

0 that arises from the wave function renormal-
isation of the Higgs boson. The corrections �f are hence to very good approximation
universal.

The shifts in the partial width for a Higgs boson decaying into a pair of EW gauge
bosons can be cast into the form [39]
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and include the contributions from both the production of one real and one virtual EW
gauge boson h ! V V ⇤ or two virtual states h ! V ⇤V ⇤. In (4.4) the total decay width of
the relevant gauge boson is denoted by �V and the integrand can be written as
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is linear in c6; ii) a universal one associated to Higgs 
wave function renormalization, which contains a 
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Figure 1. The three 1-loop diagrams with an insertion of the effective operator O6 that contribute
to the V V h vertex at O(�). Here � denotes the relevant would-be Goldstone field that needs to be
included if the calculation is performed in a R⇠ gauge.

function renormalisation. We determine the relevant contributions using FeynArts [37] and
FormCalc [38]. Including the SM tree-level contribution, our final result for the renormalised
V V h vertex reads
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where GF = 1/(
p

2v2) is the Fermi constant, gµ⌫ is the metric tensor, while mV and qµ
i

with i = 1, 2 denote the mass and the 4-momenta of the external gauge bosons. The
indices and momenta are assigned to the vertex as V µ(q1) + V ⌫(q2) ! h(q1 + q2) with
(q1 + q2)2 = m2

h
, i.e. an on-shell Higgs boson. Notice that �µ⌫

V
(q1, q2) contains only Lorentz

structures that gives rise to a non-vanishing contribution when the vertex is contracted
with massless fermion lines, which is equivalent to including only transversal gauge-boson
polarisations "µ

i
(qi) in an on-shell calculation by requiring "i(qi) · qi = 0.

The form factors entering (3.1) can be expressed in terms of the following 1-loop
Passarino-Veltman (PV) scalar integrals
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What if ECM < 2 mh + mZ?
•  Lepton colliders are precision 

machines.  Actually measure LO tree-
level and NLO, NNLO, etc:

•  Can probe new physics in loops as well!
– New physics = new state, modified coupling

Self-Coupling at NLO

•  At NLO modified coupling enters in the 
following loops:


•  And also:                         

+ )
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h3  from h@NLO@HL-LHCWhat if ECM < 2 mh + mZ?
•  Lepton colliders are precision 

machines.  Actually measure LO tree-
level and NLO, NNLO, etc:

•  Can probe new physics in loops as well!
– New physics = new state, modified coupling

What if ECM < 2 mh + mZ?
•  At 240 GeV:


•  But what if we have:

•  We would never know?

h

Ze

e

2

�Zh =

L = LSM � 1

3!
�hASMh3

+ (

Conclusions
•  In fact, the following two scenarios

                               or

are distinguishable due to NLO effects.

•  Indirect constraint has ambiguity

•  Measurements at multiple energies can 
lead to ellipse-plot constraints.



L = LSM

�240� = 100 (2�Z + 0.014�h)%

L = LSM � 1

3!
�hASMh3
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Figure 10. Histograms for “CMS-II” (300 fb�1). The distributions represented are, from left to
right and from top to bottom: 1) best values, 2) 1� region lower limit, 3) 1� region upper limit, 4)
2� region lower limit, 5) 2� region upper limit, 6) p > 0.05 region lower limit, 7) p > 0.05 region
upper limit, 8) 1� region width, 9) 2� region width, 10) p > 0.05 region width.
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Figure 11. As Fig. 10 for “CMS-HL-II” (3000 fb�1).
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Figure 12. In the left and right plots, respectively �
2(�) and p-value(�) for the P1,2,3,4 scenarios

with relative uncertainties set at 0.01.

example, we find that for the scenario P4


1�

�
= [0.86, 1.14] , 

2�

�
= [0.74, 1.28] , 

p>0.05

�
= [0.28, 1.80] . (5.8)

Considering as before n = 10000 pseudo-measurements, the histograms analogous to those
in Fig. 10 and 11 are shown in Fig. 13. Again, we find the indication that, most-likely, in
this optimistic scenario stronger bounds than those reported in Eq. (5.8) could be set.

20

This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa
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Make h3 great again: Higgs portal models

It is important to stress that, in the presence of large corrections to Higgs self-

interactions, the EFT expansion in Higgs field insertions may break down. In this case

the expansion in derivatives can still be valid, since it is controlled by the expansion pa-

rameter E/⇤, but we can not neglect operators with arbitrary powers of the Higgs field.

The e↵ective parametrization can still be used in such situation provided that we interpret

the e↵ective operators as a “resummation” of the e↵ects coming from operators with ar-

bitrary Higgs insertions. This is equivalent to a “non-linear” e↵ective parametrization in

which the Higgs is not assumed to be part of an SU(2)L doublet, but is instead treated

as a full singlet (see ref. [3] for a brief account on non-linear EFT and for a list of further

references). The only caveat with this parametrization is the fact that interactions with

multiple Higgs fields are not connected any more to the single-Higgs couplings. In this case

a di↵erent global fit should be performed, in which c
(2)

gg and �y
(2)

f
are treated as independent

parameters. Notice also that the hVf f and h @Vf f operators should a priori be included in

the analysis, as we discussed in sec. 2.2 and EW precision data and Higgs data cannot be

analyzed separately any longer.

To clarify the issues discussed above, we now analyze an explicit class of models, the

Higgs portal scenarios. As a concrete example, we assume that a new scalar singlet ',

neutral under the SM gauge group, is described by the Lagrangian6

L � ✓g⇤m⇤H
†
H'�

m
4
⇤

g2⇤
V (g⇤'/m⇤) , (2.11)

where the dimensionless parameter ✓ measures the mixing between the Higgs sector and

the neutral sector, and V is a generic potential. In the EFT description obtained after

integrating out ' the derivative expansion is valid if E/m⇤ ⌧ 1, while the expansion in

Higgs-field insertions is valid when

" ⌘
✓g

2
⇤v

2

m2
⇤

⌧ 1 . (2.12)

Note that ✓ and " are truly dimensionless quantities in mass and coupling dimensions. The

corrections to the Higgs couplings with gauge fields come indirectly from operators of the

type @µ(H†
H)@µ(H†

H) and can be estimated as

�cz ⇠ ✓
2
g
2

⇤
v
2

m2
⇤
. (2.13)

The corrections to the Higgs trilinear coupling are instead given by

�� ⇠ ✓
3
g
4

⇤
1

�
SM

3

v
2

m2
⇤
. (2.14)

6The power counting we derive in the following applies also to more general Higgs portal models. In

particular it is valid for scenarios characterized by a single coupling g⇤ and a single mass scale m⇤ in which

the Higgs is coupled to the new dynamics through interactions of the type ✓H
†
HO, where O is a generic

new-physics operator. Note that a di↵erent power counting can arise for portal scenarios in which the

new-physics sector is charged under the SM (see ref. [24] for a classification of possible scenarios).
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This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa

– 11 –

' ⇠ ✓ g⇤|H|2

m⇤

✓2g2⇤
m2

⇤

m4
⇤

g2⇤

g3⇤
m3

⇤

✓
✓g⇤
m⇤

◆3

➾

➾



Christophe Grojean Global determination Inst. Pascal, Dec. 3, 2019

Make h3 great again: Higgs portal models

It is important to stress that, in the presence of large corrections to Higgs self-
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bitrary Higgs insertions. This is equivalent to a “non-linear” e↵ective parametrization in

which the Higgs is not assumed to be part of an SU(2)L doublet, but is instead treated

as a full singlet (see ref. [3] for a brief account on non-linear EFT and for a list of further

references). The only caveat with this parametrization is the fact that interactions with

multiple Higgs fields are not connected any more to the single-Higgs couplings. In this case

a di↵erent global fit should be performed, in which c
(2)

gg and �y
(2)

f
are treated as independent

parameters. Notice also that the hVf f and h @Vf f operators should a priori be included in

the analysis, as we discussed in sec. 2.2 and EW precision data and Higgs data cannot be

analyzed separately any longer.

To clarify the issues discussed above, we now analyze an explicit class of models, the
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6The power counting we derive in the following applies also to more general Higgs portal models. In

particular it is valid for scenarios characterized by a single coupling g⇤ and a single mass scale m⇤ in which

the Higgs is coupled to the new dynamics through interactions of the type ✓H
†
HO, where O is a generic

new-physics operator. Note that a di↵erent power counting can arise for portal scenarios in which the

new-physics sector is charged under the SM (see ref. [24] for a classification of possible scenarios).
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competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa
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Make h3 great again: Higgs portal models

It is important to stress that, in the presence of large corrections to Higgs self-

interactions, the EFT expansion in Higgs field insertions may break down. In this case

the expansion in derivatives can still be valid, since it is controlled by the expansion pa-

rameter E/⇤, but we can not neglect operators with arbitrary powers of the Higgs field.

The e↵ective parametrization can still be used in such situation provided that we interpret

the e↵ective operators as a “resummation” of the e↵ects coming from operators with ar-

bitrary Higgs insertions. This is equivalent to a “non-linear” e↵ective parametrization in

which the Higgs is not assumed to be part of an SU(2)L doublet, but is instead treated

as a full singlet (see ref. [3] for a brief account on non-linear EFT and for a list of further

references). The only caveat with this parametrization is the fact that interactions with

multiple Higgs fields are not connected any more to the single-Higgs couplings. In this case

a di↵erent global fit should be performed, in which c
(2)

gg and �y
(2)

f
are treated as independent

parameters. Notice also that the hVf f and h @Vf f operators should a priori be included in

the analysis, as we discussed in sec. 2.2 and EW precision data and Higgs data cannot be

analyzed separately any longer.

To clarify the issues discussed above, we now analyze an explicit class of models, the

Higgs portal scenarios. As a concrete example, we assume that a new scalar singlet ',

neutral under the SM gauge group, is described by the Lagrangian6

L � ✓g⇤m⇤H
†
H'�

m
4
⇤

g2⇤
V (g⇤'/m⇤) , (2.11)

where the dimensionless parameter ✓ measures the mixing between the Higgs sector and

the neutral sector, and V is a generic potential. In the EFT description obtained after

integrating out ' the derivative expansion is valid if E/m⇤ ⌧ 1, while the expansion in

Higgs-field insertions is valid when

" ⌘
✓g

2
⇤v

2

m2
⇤

⌧ 1 . (2.12)

Note that ✓ and " are truly dimensionless quantities in mass and coupling dimensions. The

corrections to the Higgs couplings with gauge fields come indirectly from operators of the

type @µ(H†
H)@µ(H†

H) and can be estimated as

�cz ⇠ ✓
2
g
2

⇤
v
2

m2
⇤
. (2.13)

The corrections to the Higgs trilinear coupling are instead given by

�� ⇠ ✓
3
g
4

⇤
1

�
SM

3

v
2

m2
⇤
. (2.14)

6The power counting we derive in the following applies also to more general Higgs portal models. In

particular it is valid for scenarios characterized by a single coupling g⇤ and a single mass scale m⇤ in which

the Higgs is coupled to the new dynamics through interactions of the type ✓H
†
HO, where O is a generic

new-physics operator. Note that a di↵erent power counting can arise for portal scenarios in which the

new-physics sector is charged under the SM (see ref. [24] for a classification of possible scenarios).
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This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].
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First of all, we can notice that �� ⇠ ✓g
2
⇤/�

SM

3
�cz, thus a large hierarchy between the

corrections to linear Higgs couplings and the deviation in the self-interactions requires

sizable values of the Higgs portal coupling ✓ (and/or large values of the new-sector coupling

g⇤).

When the corrections to the Higgs potential become large, some amount of tuning is

typically needed to fix the correct properties of the Higgs potential. Notice that Higgs-

portal scenarios do not typically provide a solution to the hierarchy problem. Thus they

will in general su↵er from some amount of tuning in the Higgs mass term, exactly as generic

extensions of the SM. On top of this some additional tuning in the Higgs quartic coupling

can also be present. In the following we will refer only to this additional tuning, which we

denote by �. We can estimate � by noticing that the quartic coupling needs to be fixed

with a precision of the order of �SM

3
. By comparing the new-physics corrections to the

quartic coupling with the SM value we get

� ⇠
✓
2
g
2
⇤

�
SM

3

. (2.15)

We can easily relate �� given in eq. (2.14) to the amount of tuning � as

�� ⇠ "�. (2.16)

This relation has an interesting consequence. If we require the expansion in Higgs insertions

to be valid (" . 1) and the model not to su↵er additional tuning (� . 1), we get that the

corrections to the Higgs trilinear coupling can be at most of order one (�� . 1). Larger

corrections can however be obtained if at least one of the two conditions " . 1 and � . 1

is violated.

As we already mentioned, if the expansion in Higgs insertions is not valid (" > 1),

large deviations in the Higgs couplings are possible. In particular single- and multiple-

Higgs couplings are not related any more and a non-linear e↵ective parametrization must

be used. In this scenario, however, large corrections to the linear Higgs couplings to the SM

fields are expected, so that significant tuning is required to pass the precision constraints

from single-Higgs processes.

A second scenario, in which " . 1 while some tuning is present in the Higgs potential

(� > 1), can instead naturally lead to small deviations in the linear Higgs couplings. For

instance by taking ✓ ' 1, g⇤ ' 3 and m⇤ ' 2.5 TeV we get

" ' 0.1 , 1/� ' 1.5% , �cz ' 0.1 , �� ' 6 . (2.17)

Since we are going to consider sizable deviations in the trilinear Higgs coupling, it is

important to understand whether such corrections are compatible with a high-enough cut-

o↵ of the e↵ective description. If large corrections are present in the Higgs self-interactions,

scattering processes involving longitudinally polarized vector bosons and Higgses, in par-

ticular VLVL ! VLVLh
n, lose perturbative unitarity at relatively low energy scales. The

upper bound for the cut-o↵ of the EFT description can be estimated as [25]

⇤ . 4⇡vp
|� � 1|

r
32⇡

15

v

mh

. (2.18)
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where ε controls validity of h expansion
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the Higgs is coupled to the new dynamics through interactions of the type ✓H
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This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa
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First of all, we can notice that �� ⇠ ✓g
2
⇤/�

SM

3
�cz, thus a large hierarchy between the

corrections to linear Higgs couplings and the deviation in the self-interactions requires

sizable values of the Higgs portal coupling ✓ (and/or large values of the new-sector coupling

g⇤).

When the corrections to the Higgs potential become large, some amount of tuning is

typically needed to fix the correct properties of the Higgs potential. Notice that Higgs-

portal scenarios do not typically provide a solution to the hierarchy problem. Thus they

will in general su↵er from some amount of tuning in the Higgs mass term, exactly as generic

extensions of the SM. On top of this some additional tuning in the Higgs quartic coupling

can also be present. In the following we will refer only to this additional tuning, which we

denote by �. We can estimate � by noticing that the quartic coupling needs to be fixed

with a precision of the order of �SM

3
. By comparing the new-physics corrections to the

quartic coupling with the SM value we get

� ⇠
✓
2
g
2
⇤

�
SM

3

. (2.15)

We can easily relate �� given in eq. (2.14) to the amount of tuning � as

�� ⇠ "�. (2.16)

This relation has an interesting consequence. If we require the expansion in Higgs insertions

to be valid (" . 1) and the model not to su↵er additional tuning (� . 1), we get that the

corrections to the Higgs trilinear coupling can be at most of order one (�� . 1). Larger

corrections can however be obtained if at least one of the two conditions " . 1 and � . 1

is violated.

As we already mentioned, if the expansion in Higgs insertions is not valid (" > 1),

large deviations in the Higgs couplings are possible. In particular single- and multiple-

Higgs couplings are not related any more and a non-linear e↵ective parametrization must

be used. In this scenario, however, large corrections to the linear Higgs couplings to the SM

fields are expected, so that significant tuning is required to pass the precision constraints

from single-Higgs processes.

A second scenario, in which " . 1 while some tuning is present in the Higgs potential

(� > 1), can instead naturally lead to small deviations in the linear Higgs couplings. For

instance by taking ✓ ' 1, g⇤ ' 3 and m⇤ ' 2.5 TeV we get

" ' 0.1 , 1/� ' 1.5% , �cz ' 0.1 , �� ' 6 . (2.17)

Since we are going to consider sizable deviations in the trilinear Higgs coupling, it is

important to understand whether such corrections are compatible with a high-enough cut-

o↵ of the e↵ective description. If large corrections are present in the Higgs self-interactions,

scattering processes involving longitudinally polarized vector bosons and Higgses, in par-

ticular VLVL ! VLVLh
n, lose perturbative unitarity at relatively low energy scales. The

upper bound for the cut-o↵ of the EFT description can be estimated as [25]

⇤ . 4⇡vp
|� � 1|

r
32⇡

15

v

mh

. (2.18)
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where ε controls validity of h expansion
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the analysis, as we discussed in sec. 2.2 and EW precision data and Higgs data cannot be

analyzed separately any longer.
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6The power counting we derive in the following applies also to more general Higgs portal models. In

particular it is valid for scenarios characterized by a single coupling g⇤ and a single mass scale m⇤ in which

the Higgs is coupled to the new dynamics through interactions of the type ✓H
†
HO, where O is a generic

new-physics operator. Note that a di↵erent power counting can arise for portal scenarios in which the

new-physics sector is charged under the SM (see ref. [24] for a classification of possible scenarios).
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Make h3 great again: Higgs portal models

It is important to stress that, in the presence of large corrections to Higgs self-

interactions, the EFT expansion in Higgs field insertions may break down. In this case

the expansion in derivatives can still be valid, since it is controlled by the expansion pa-

rameter E/⇤, but we can not neglect operators with arbitrary powers of the Higgs field.

The e↵ective parametrization can still be used in such situation provided that we interpret

the e↵ective operators as a “resummation” of the e↵ects coming from operators with ar-

bitrary Higgs insertions. This is equivalent to a “non-linear” e↵ective parametrization in

which the Higgs is not assumed to be part of an SU(2)L doublet, but is instead treated

as a full singlet (see ref. [3] for a brief account on non-linear EFT and for a list of further

references). The only caveat with this parametrization is the fact that interactions with

multiple Higgs fields are not connected any more to the single-Higgs couplings. In this case

a di↵erent global fit should be performed, in which c
(2)

gg and �y
(2)

f
are treated as independent

parameters. Notice also that the hVf f and h @Vf f operators should a priori be included in

the analysis, as we discussed in sec. 2.2 and EW precision data and Higgs data cannot be

analyzed separately any longer.
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where the dimensionless parameter ✓ measures the mixing between the Higgs sector and

the neutral sector, and V is a generic potential. In the EFT description obtained after

integrating out ' the derivative expansion is valid if E/m⇤ ⌧ 1, while the expansion in

Higgs-field insertions is valid when
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Note that ✓ and " are truly dimensionless quantities in mass and coupling dimensions. The
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This bound is not very stringent: for |�| . 10 one gets ⇤ . 5 TeV. For values of �
within the expected high-luminosity LHC bounds, perturbativity loss is thus well above

the energy range directly testable at the LHC.

As a last point, we comment on the issue of the stability of the Higgs vacuum. As

pointed out in ref. [6], if the only deformation of the Higgs potential is due to the (H†
H)3

operator, the usual vacuum is not a global minimum for � & 3. In this case the vacuum

becomes metastable, although it could still have a long enough lifetime. Additional de-

formations from higher-dimensional operators can remove the metastability bound, even

for large values of �. A lower bound � > 1 can also be extracted if we naively require

the Higgs potential to be bounded from below for arbitrary values of the Higgs VEV hhi,

i.e. if we require the coe�cient of the (H†
H)3 operator to be positive. This constraint,

however, is typically too restrictive. Our estimate of the e↵ective potential, in fact, is only

valid for relatively small values of the Higgs VEV, which satisfy " = ✓g
2
⇤hhi

2
/m

2
⇤ . 1.

For large values of hhi the expansion in the Higgs field breaks down and the estimate of

the potential obtained by including only dimension-6 operators is not reliable any more

and the whole tower of higher-dimensional operators should be considered. In this case

large negative corrections to the Higgs trilinear coupling could be compatible with a stable

vacuum. Examples of such scenarios are the composite Higgs models in which the Higgs

field is identified with a Goldstone boson. In these models the Higgs potential is periodic

and a negative coe�cient for the e↵ective (H†
H)3 operator does not generate a runaway

behavior of the potential.

3 Fit from inclusive single-Higgs measurements

As we mentioned in the introduction, single-Higgs production measurements can be sen-

sitive to large variations of the Higgs trilinear self-coupling. These e↵ects arise at loop

level and can be used to extract some constraints on the � parameter. Under the as-

sumption that only the trilinear Higgs coupling is modified, � can be constrained to the

range � 2 [�0.7, 4.2] at the 1� level and � 2 [�2.0, 6.8] at 2� [6] at the end of the high

luminosity phase of the LHC. This result was obtained by assuming that the experimental

uncertainties are given by the ‘Scenario 2’ estimates of CMS [26, 27], in which the the-

ory uncertainties are halved with respect to the 8TeV LHC run and the other systematic

uncertainties are scaled as the statistical errors. The actual precision achievable in the

high-luminosity LHC phase could be worse than this estimate, leading to a slightly smaller

sensitivity on �. Nevertheless the result shows that single Higgs production could be

competitive with other measurements, for instance double-Higgs production, in the deter-

mination of the Higgs self coupling.

A similar analysis, focusing only on the gluon fusion cross section and on the H ! ��

branching ratio, was presented in ref. [5]. With this procedure a bound � 2 [�7.0, 6.1] at

the 2� level was derived, whose overall size is in rough agreement with the result of ref. [6].

In section 2.3 we saw that large corrections to the Higgs self-couplings are seldom

generated alone and are typically accompanied by deviations in the other Higgs interactions.

In scenarios that predict O(1) corrections to �, single Higgs couplings, such as Yukawa
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⇤
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⇤

g2⇤

g3⇤
m3

⇤

✓
✓g⇤
m⇤

◆3

➾

➾

First of all, we can notice that �� ⇠ ✓g
2
⇤/�

SM

3
�cz, thus a large hierarchy between the

corrections to linear Higgs couplings and the deviation in the self-interactions requires

sizable values of the Higgs portal coupling ✓ (and/or large values of the new-sector coupling

g⇤).

When the corrections to the Higgs potential become large, some amount of tuning is

typically needed to fix the correct properties of the Higgs potential. Notice that Higgs-

portal scenarios do not typically provide a solution to the hierarchy problem. Thus they

will in general su↵er from some amount of tuning in the Higgs mass term, exactly as generic

extensions of the SM. On top of this some additional tuning in the Higgs quartic coupling

can also be present. In the following we will refer only to this additional tuning, which we

denote by �. We can estimate � by noticing that the quartic coupling needs to be fixed

with a precision of the order of �SM

3
. By comparing the new-physics corrections to the

quartic coupling with the SM value we get

� ⇠
✓
2
g
2
⇤

�
SM

3

. (2.15)

We can easily relate �� given in eq. (2.14) to the amount of tuning � as

�� ⇠ "�. (2.16)

This relation has an interesting consequence. If we require the expansion in Higgs insertions

to be valid (" . 1) and the model not to su↵er additional tuning (� . 1), we get that the

corrections to the Higgs trilinear coupling can be at most of order one (�� . 1). Larger

corrections can however be obtained if at least one of the two conditions " . 1 and � . 1

is violated.

As we already mentioned, if the expansion in Higgs insertions is not valid (" > 1),

large deviations in the Higgs couplings are possible. In particular single- and multiple-

Higgs couplings are not related any more and a non-linear e↵ective parametrization must

be used. In this scenario, however, large corrections to the linear Higgs couplings to the SM

fields are expected, so that significant tuning is required to pass the precision constraints

from single-Higgs processes.

A second scenario, in which " . 1 while some tuning is present in the Higgs potential

(� > 1), can instead naturally lead to small deviations in the linear Higgs couplings. For

instance by taking ✓ ' 1, g⇤ ' 3 and m⇤ ' 2.5 TeV we get

" ' 0.1 , 1/� ' 1.5% , �cz ' 0.1 , �� ' 6 . (2.17)

Since we are going to consider sizable deviations in the trilinear Higgs coupling, it is

important to understand whether such corrections are compatible with a high-enough cut-

o↵ of the e↵ective description. If large corrections are present in the Higgs self-interactions,

scattering processes involving longitudinally polarized vector bosons and Higgses, in par-

ticular VLVL ! VLVLh
n, lose perturbative unitarity at relatively low energy scales. The

upper bound for the cut-o↵ of the EFT description can be estimated as [25]

⇤ . 4⇡vp
|� � 1|

r
32⇡

15

v

mh

. (2.18)
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where ε controls validity of h expansion
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where the dimensionless parameter ✓ measures the mixing between the Higgs sector and

the neutral sector, and V is a generic potential. In the EFT description obtained after
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6The power counting we derive in the following applies also to more general Higgs portal models. In

particular it is valid for scenarios characterized by a single coupling g⇤ and a single mass scale m⇤ in which

the Higgs is coupled to the new dynamics through interactions of the type ✓H
†
HO, where O is a generic

new-physics operator. Note that a di↵erent power counting can arise for portal scenarios in which the

new-physics sector is charged under the SM (see ref. [24] for a classification of possible scenarios).
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This relation has an interesting consequence. If we require the expansion in Higgs insertions
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corrections to the Higgs trilinear coupling can be at most of order one (�� . 1). Larger

corrections can however be obtained if at least one of the two conditions " . 1 and � . 1

is violated.

As we already mentioned, if the expansion in Higgs insertions is not valid (" > 1),

large deviations in the Higgs couplings are possible. In particular single- and multiple-

Higgs couplings are not related any more and a non-linear e↵ective parametrization must

be used. In this scenario, however, large corrections to the linear Higgs couplings to the SM

fields are expected, so that significant tuning is required to pass the precision constraints

from single-Higgs processes.

A second scenario, in which " . 1 while some tuning is present in the Higgs potential

(� > 1), can instead naturally lead to small deviations in the linear Higgs couplings. For

instance by taking ✓ ' 1, g⇤ ' 3 and m⇤ ' 2.5 TeV we get
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Since we are going to consider sizable deviations in the trilinear Higgs coupling, it is

important to understand whether such corrections are compatible with a high-enough cut-

o↵ of the e↵ective description. If large corrections are present in the Higgs self-interactions,

scattering processes involving longitudinally polarized vector bosons and Higgses, in par-

ticular VLVL ! VLVLh
n, lose perturbative unitarity at relatively low energy scales. The

upper bound for the cut-o↵ of the EFT description can be estimated as [25]
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a possible benchmark of large h3
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• Explore	the	“matrix”	production-decays
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• Combinations	ATLAS	CMS	to	improve	precision
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The fabulous 52 channels

5 main production modes: ggF, VBF,  WH, ZH, ttH
5 main decay modes: ZZ, WW, γγ, ττ, bb

15

Process Combination Theory Experimental

H ! ��

ggF 0.07 0.05 0.05

VBF 0.22 0.16 0.15

ttH 0.17 0.12 0.12

WH 0.19 0.08 0.17

ZH 0.28 0.07 0.27

H ! ZZ

ggF 0.06 0.05 0.04

VBF 0.17 0.10 0.14

ttH 0.20 0.12 0.16

WH 0.16 0.06 0.15

ZH 0.21 0.08 0.20

H ! WW
ggF 0.07 0.05 0.05

VBF 0.15 0.12 0.09

H ! Z� incl. 0.30 0.13 0.27

H ! bb̄
WH 0.37 0.09 0.36

ZH 0.14 0.05 0.13

H ! ⌧
+
⌧
� VBF 0.19 0.12 0.15

Table 1. Estimated relative uncertainties on the determination of single-Higgs production channels
at the high-luminosity LHC (14 TeV center of mass energy, 3/ab integrated luminosity and pile-
up 140 events/bunch-crossing). The theory, experimental (systematic plus statistic) and combined
uncertainties are listed in the ‘Theory’, ‘Experimental’ and ‘Combination’ columns respectively. All
the estimates are derived from refs. [10–12] and [3, 28].

The numbers listed in parentheses correspond to the 1� uncertainties obtained by consid-

ering only one parameter at a time, i.e. by setting to zero the coe�cients of all the other

e↵ective operators.

The comparison between the global fit and the fit to individual operators shows that

some bounds can significantly vary with the two procedures. The most striking case, as

noticed already in ref. [13], involves the czz and cz⇤ coe�cients, whose fit shows a high

degree of correlation. As a consequence, the constraints obtained in the global fit are more

than one order of magnitude weaker than the individual fit ones. This high degeneracy can

be lifted by including in the fit constraints coming from EW observables. Indeed, as we will

discuss later on, a combination of the czz and cz⇤ operators also modifies the triple gauge

couplings, generating an interesting interplay between Higgs physics and vector boson pair

production.

Another element of particular interest in the correlation matrix is the ĉgg – �yt entry.

The cleanest observable constraining these couplings is the gluon fusion cross section, which

however can only test a combination of the two parameters. In order to disentangle them

one needs to consider the ttH production mode. This process, however, has a limited

precision at the LHC, explaining the large correlation between ĉgg and �yt and the weaker

bounds in the global fit. Other ways to gain information about the top Yukawa coupling
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interactions or couplings with the gauge bosons, usually receive corrections of the order of

5�10%. Since these corrections modify single-Higgs processes at tree level, their e↵ects are

comparable with the ones induced at loop level by a modification of the Higgs self-coupling.

In these scenarios, a reliable determination of � thus requires a global fit, in which also

the single-Higgs coupling distortions are properly included.

In this section we will perform such a fit, taking into account deformations of the SM

encoded by the 10 e↵ective operators introduced in section 2 (see eq. (2.5)). As we will

see, when all the e↵ective operators are turned on simultaneously, some cancellations are

possible, resulting in an unconstrained combination of the e↵ective operators. This flat

direction can not be resolved by taking into account only inclusive single-Higgs production

measurements. Additional observables are thus needed to disentangle deviations in the

Higgs self-coupling from distortions of single-Higgs interactions. We will discuss various

possibilities along this line in sections 4 and 5.

Before performing the actual fit, it is also important to mention that large deviations

in � could in principle also have an impact on the determination of single-Higgs couplings.

We will discuss this point in section 3.3.

3.1 Single-Higgs rates and single-Higgs couplings

As a preliminary step in our analysis, we focus on single Higgs couplings neglecting the

e↵ects of � and we perform a global fit exploiting single-Higgs processes.

Measurements of the production and decay rates of the Higgs boson are usually re-

ported in terms of signal strengths, i.e. the ratio of the measured rates with respect to the

SM predictions. The total signal strength, µf

i
, for a given production mode i and decay

channel h ! f , is thus given by

µ
f

i
= µi ⇥ µ

f =
�i

(�i)SM
⇥

BR[f ]

(BR[f ])SM
. (3.1)

Obviously the production and decay signal strengths can not be separately measured and

only their products are directly accessible.

Single Higgs production can be extracted with good accuracy at the LHC in five main

modes: gluon fusion (ggF), vector boson fusion (VBF), associated production with a W

or a Z (WH, ZH), and associated production with a top quark pair (ttH). Moreover the

main Higgs decay channels are into ZZ, WW , ��, ⌧+⌧� and bb̄.7 A large subset of all the

combinations of these production and decay modes can be extracted at the high-luminosity

LHC with a precision better than 10�20%. It is thus possible to linearly expand the signal

strengths as

µ
f

i
' 1 + �µi + �µ

f
, (3.2)

since quadratic terms are negligible.

As can be seen from eq. (3.2), a rescaling of the production rates µi ! µi+� can be ex-

actly compensated by a rescaling of the branching ratios µf
! µ

f
��. For this reason, out of

7For simplicity we neglect the µ
+
µ
� and cc̄ decay modes and assume that no invisible decay channels

are present.
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Figure 2. �
2 as a function of the Higgs trilinear coupling � obtained by performing a global

fit including the constraints coming from TGC’s measurements and the bound on the h ! Z�

decay rate. The results are obtained by assuming an integrated luminosity of 3/ab at 14 TeV.
The dotted curve corresponds to the result obtained by setting to zero all the other the Higgs-
coupling parameters, while the solid curve is obtained by profiling and is multiplied by a factor
20 to improve its visibility. To compare with previous literature (ref. [6]), we also display the
exclusive fit performed assuming the uncertainty projections from the more optimistic ‘Scenario 2’
of CMS [26] (dashed curve).

3.3 Impact of the trilinear coupling on single-Higgs couplings

The presence of a flat direction can also have an impact on the fit of the single-Higgs

couplings. If we perform a global fit and we allow � to take arbitrary values we also

lose predictivity on the single-Higgs EFT parameters. The e↵ect is more pronounced on

the couplings that show larger variations along the flat direction, namely ĉgg and �yt. A

milder impact is found for the �cz, �yb, �y⌧ and ĉ�� , whereas czz, cz⇤ and ĉz� are almost

una↵ected, unless extremely large values of � are allowed.

In fig. 3 we compare the fit in the (�yt, ĉgg) and (�yb, ĉ��) planes obtained by setting

the Higgs trilinear to the SM value (�� = 0), with the results obtained by allowing ��

to vary in the ranges |��|  10 and |��|  20.

In the (�yt, ĉgg) case (left panel of fig. 3), there is a strong (anti-)correlation between

the two parameters as we explained in section 3.1. When the Higgs self-coupling is included

in the fit the strong correlation is still present. The constraint along the correlated direction

becomes significantly weaker, even if we restrict �� to the range |��|  10. The constraint

in the orthogonal direction is instead only marginally a↵ected.

In the case of the (�yb, ĉ��) observables, we find that the 1� uncertainty on the deter-

mination of the two parameters is roughly doubled if the Higgs trilinear coupling is allowed

to take values up to |��| ⇠ 20.

This above discussion makes clear that a global fit on the single-Higgs observables

can not be properly done without including some assumption on the allowed values of the

trilinear self-coupling of the Higgs (see section 2.3). If � can sizably deviate from the SM

value (�� & 5) including it into the fit is mandatory in order to obtain accurate predictions
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Figure 1. Variation of the Higgs basis parameters along the flat direction as a function of the Higgs
trilinear coupling �. The gray bands correspond to the 1� error bands at the high-luminosity LHC
(see eq. (3.4)).

It must be stressed that the exact flat direction could in principle be lifted if we

include in the signal strengths computation also terms quadratic in the EFT parameters.

The additional terms, however, become relevant only for very large values of �, so that

for all practical purposes we can treat the flat direction as exact. Notice moreover that,

when the quadratic terms become important, one must a priori also worry about possible

corrections from higher-dimensional operators, which could become comparable to the

square of dimension-6 operators.

As we discussed in the previous section, additional observables can provide independent

bounds on the Higgs couplings. In particular some of the strongest constraints come from

the measurements of TGC’s and of the h ! Z� branching ratio. In the fit of the single-

Higgs couplings these constraints were enough to get rid of the large correlation between

czz and cz⇤ and to improve the bound on ĉz� . The impact on the global fit including the

Higgs trilinear coupling is instead limited. The reason is the fact that the combination

of parameters tested in TGC’s (see appendix B) and in h ! Z� are ‘aligned’ with the

flat direction, i.e. they involve couplings whose values along the flat direction change very

slowly (see fig. 1). Although the flat direction is no more exact, even assuming that the

TGC’s and cz� can be tested with arbitrary precision, very large deviations in the Higgs

self-coupling would still be allowed.

production and decay signal strengths are approximately equal to the SM ones, namely |�µi| < 0.005,

|�µ
f
| < 0.005 for |�| < 20.
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Higgs couplings these constraints were enough to get rid of the large correlation between

czz and cz⇤ and to improve the bound on ĉz� . The impact on the global fit including the

Higgs trilinear coupling is instead limited. The reason is the fact that the combination

of parameters tested in TGC’s (see appendix B) and in h ! Z� are ‘aligned’ with the

flat direction, i.e. they involve couplings whose values along the flat direction change very

slowly (see fig. 1). Although the flat direction is no more exact, even assuming that the
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Figure 3. Constraints in the planes (�yt, ĉgg) (left panel) and (�yb, ĉ��) (right panel) obtained
from a global fit on the single-Higgs processes. The darker regions are obtained by fixing the Higgs
trilinear to the SM value � = 1, while the lighter ones are obtained through profiling by restricting
�� in the ranges |��|  10 and |��|  20 respectively. The regions correspond to 68% confidence
level (defined in the Gaussian limit corresponding to ��

2 = 2.3).

for the single-Higgs couplings. On the other hand, if we have some theoretical bias that

constrains the Higgs self-coupling modifications to be small (�� . few), a restricted fit in

which only the corrections to single-Higgs couplings are included is reliable.

We will see in the following that the situation can drastically change if we include in

the fit additional measurements that can lift the flat direction. In particular we will focus

on the measurement of double Higgs production in the next section and of di↵erential single

Higgs distributions in section 5.

4 Double Higgs production

A natural way to extract information about the Higgs self-coupling is to consider Higgs

pair production channels. Among this class of processes, the production mode with the

largest cross section [51], which we can hope to test with better accuracy at the LHC,

is gluon fusion.16 Several analyses are available in the literature, focusing on the various

Higgs decay modes. The channel believed to be measurable with the highest precision is

hh ! bb�� [20, 55–61]. In spite of the small branching ratio (BR ' 0.264%), its clean

final state allows for high reconstruction e�ciency and low levels of backgrounds. In the

following we will thus focus on this channel for our analysis.

Additional final states have also been considered in the literature, in particular hh !

bbbb [62–65], hh ! bbWW
⇤ [58, 63, 66] and hh ! bb⌧

+
⌧
� [58, 62, 63, 67, 68]. All these

channels are plagued by much larger backgrounds. In order to extract the signal, one

16It has been pointed out in ref. [52] that the WHH and ZHH production modes could provide a good

sensitivity to positive deviations in the Higgs self-coupling. As we will see in the following, the gluon fusion

channel is instead more sensitive to negative deviations. The associated double Higgs production channels

could therefore provide useful complementary information for the determination of �. For simplicity we

only focus on the gluon fusion channels in the present analysis. We leave the study of the V HH channels,

as well as of the double Higgs production mode in VBF (see refs. [53, 54]), for future work.
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Does h3 modify the fit to other couplings? 

16

In models with parametrically large h3, fit with κλ @ NLO can differ from LO fit by a factor 2.

But this concerns only particular BSM models, in most models κλ ~κi  and NLO effects are negligible.
Furthermore, HL-LHC will already measure h3 at 50%, 

so even in the extreme case, the NLO effects are limited to 20-30%
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What about (low energy) e+e- colliders?

No flat direction is expected!

1 main production mode (ZH) & 1 subdominant production (VBF)
+ access to full angular distributions (4) and/or beam polarizations (2)
7 (+2) accessible decay modes: ZZ, WW, γγ, Zγ, ττ, bb, gg, (cc, μμ)
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Figure 9.11: Relative enhancement of the e+e° ! Z H cross section and the h ! W +W ° partial
width, in %, for ∑∏ = 1, due to the 1-loop diagrams shown in Fig. 9.1. One Z or W leg is off-shell at
the invariant Q2 while the other Z or W and the Higgs boson are kept on-shell. The vertical lines
show the uncertainties expected from proposed e+e° colliders from single measurements of the
relevant quantities, green/solid for FCC-ee, red/dashed for ILC. For Q > 200 GeV, these are 1 æ error
bars for measurements of æ(e+e° ! Z H). For Q ª 40 GeV, these are 1 æ errors on °(h ! W W §)
from the SMEFT fits to the full collider programs for FCC-ee and ILC reported in [563].

lighted by McCullough and discussed in Sec. 9.3 has a special feature that aids this process. This
radiative correction arises from the Feynman diagrams shown in Fig. 9.1. It is useful to consider
these diagrams as being evaluated with the Higgs boson and one Z or W boson on mass shell while

the other vector boson is off-shell at a variable momentum invariant Q =
q

Q2. The value of the
sum of diagrams has a characteristic dependence on Q that cannot be reproduced as a sum of ef-
fects of pointlike dimension-6 SMWFT operators. This is shown in Fig. 9.11. The diagrams give
an enhancement that is not monotonic as a function of Q but rather has a sharp cusp at the Z H
threshold (Q = mH +mZ ). Measurements at e+e° Higgs factories will measure this function at sev-
eral different values of Q: at values of Q equal to the CM energies at the various collider stages in the
cross section æ(e+e° ! Z H), at Q ª 40 GeV in the partial width °(H !W W §), at Q ª 30 GeV in the
partial width °(H ! Z Z§), and at Q2 . 0 in the vector boson fusion cross section æ(e+e° ! ∫∫̄H).
Fig. 9.11 shows the expected accuracy of the three most important of these measurements in the
FCC-ee and ILC programs and indicates how the set of three measurements can provide indepen-
dent values for the SMEFT parameters c6, cH , and cW W .

Some caution should be used in interpreting this plot directly. The errors shown for °(H !
W W §) are those from the SMEFT fits done in [563] using the expected results from the full FCC-ee
and ILC programs. Thus, they use the values of the indicated cross section plus other data. A full
SMEFT analysis would include many other measurements than the three indicated here, including
other measurements that put powerful constraints on cW W . On the other hand, such an analysis
would be based on 17 SMEFT parameters, not just the few indicated in Eq. (9.5).

The analysis that we have described does not include possible loop corrections to the other
Higgs couplings, for example, the influence of the loop corrections to the Hbb vertex or the H t t

��ZH/�ZH or ��/�(h ! WW ⇤)

Virtuality  
of V in hVV
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Threshold
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W W §) are those from the SMEFT fits done in [563] using the expected results from the full FCC-ee
and ILC programs. Thus, they use the values of the indicated cross section plus other data. A full
SMEFT analysis would include many other measurements than the three indicated here, including
other measurements that put powerful constraints on cW W . On the other hand, such an analysis
would be based on 17 SMEFT parameters, not just the few indicated in Eq. (9.5).

The analysis that we have described does not include possible loop corrections to the other
Higgs couplings, for example, the influence of the loop corrections to the Hbb vertex or the H t t
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Figure 9.1: Feynman diagrams contributing to the shift of the H Z Z vertex due to the 1-loop effect
of the Higgs self-coupling [128].

9.3 Determination of the Higgs self-coupling from single-Higgs reactions
— CEPC, FCC-ee, CLIC, ILC

We first consider the determination of the trilinear Higgs self-coupling from single-Higgs reactions.
The idea of this analysis is similar to that presented in Sections 7.6 and 8.3. If ∑∏ 6= 1, loop dia-
grams containing the triple-Higgs vertex will produce radiative corrections to Higgs boson produc-
tion cross sections and decay rates that are proportional to ∑∏. These radiative corrections are at
the percent level. Since e+e° colliders are designed to measure Higgs boson cross sections and
branching ratios at or below this level, their measurements can provide interesting constraints on
∑∏. The study of these constraints was initiated by McCullough [128], who pointed out that these
give a radiative correction that, for (∑∏°1) = 1, increases the cross section for e+e° ! Z H by about
1.5% at

p
s ª 240–250 GeV. Some more subtle aspects of McCullough’s analysis will be discussed in

Sec. 9.8.

For e+e° colliders, the most important such loop diagrams are those shown in Fig. 9.1. These
diagrams correct the H Z Z vertex that appears in the production reaction e+e° ! Z H and the decay
H ! Z Z§. The very similar diagrams with external W bosons correct the HW W vertex that appears
in the production reaction e+e° ! ∫∫̄H and the decay H ! W W §. The radiative correction to the
H t t̄ vertex, which contributes to the decay h ! g g in 2 loops, gives a smaller effect and will not be
considered here.

Recently, the ECFA Higgs@Future Colliders working group has performed fits to the expected
set of single-Higgs measurements to assess the sensitivity to deviations of the Higgs self-coupling
from its SM value [563]. These fits use the expected measurement accuracies for the various single
Higgs observables given in the references cited in the previous section. The results are shown in
Table 9.1.

The table lists uncertainties from a 1-parameter fit, corresponding to the model in which the SM
is modified only by a shift of the parameter ∑∏, and a fit to a larger model including the most general
new physics effects parametrized by dimension-6 SMEFT operators. The ECFA Higgs@Future Col-
liders group has reported its results as combined with an expected 50% uncertainty in ∑∏ expected
from the HL-LHC. To clarify the extra information that will come from e+e° measurements, the val-
ues given in the table remove the HL-LHC contribution and quote results from e+e° measurements
alone. In some cases of the multi-parameter fit, the analysis does not close and the e+e° results
alone do not give a competitive constraint. Those cases are indicated in the Table by a “-”.

In all cases, the 1-parameter analysis seems to indicate a substantial sensitivity to the Higgs
self-coupling. Including the possibility of other new physics effects weakens this sensitivity, but, for
some scenarios, the constraint is still a powerful one. We discuss the physics of the multi-parameter
fit in Sec. 9.8.

M. Peskin in HH white paper ’19

But 2 runs at different energies are better.
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What about (low energy) e+e- colliders?

No flat direction is expected!

1 main production mode (ZH) & 1 subdominant production (VBF)
+ access to full angular distributions (4) and/or beam polarizations (2)
7 (+2) accessible decay modes: ZZ, WW, γγ, Zγ, ττ, bb, gg, (cc, μμ)
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Figure 2. �
2 as a function of the Higgs trilinear coupling � obtained by performing a global

fit including the constraints coming from TGC’s measurements and the bound on the h ! Z�

decay rate. The results are obtained by assuming an integrated luminosity of 3/ab at 14 TeV.
The dotted curve corresponds to the result obtained by setting to zero all the other the Higgs-
coupling parameters, while the solid curve is obtained by profiling and is multiplied by a factor
20 to improve its visibility. To compare with previous literature (ref. [6]), we also display the
exclusive fit performed assuming the uncertainty projections from the more optimistic ‘Scenario 2’
of CMS [26] (dashed curve).

3.3 Impact of the trilinear coupling on single-Higgs couplings

The presence of a flat direction can also have an impact on the fit of the single-Higgs

couplings. If we perform a global fit and we allow � to take arbitrary values we also

lose predictivity on the single-Higgs EFT parameters. The e↵ect is more pronounced on

the couplings that show larger variations along the flat direction, namely ĉgg and �yt. A

milder impact is found for the �cz, �yb, �y⌧ and ĉ�� , whereas czz, cz⇤ and ĉz� are almost

una↵ected, unless extremely large values of � are allowed.

In fig. 3 we compare the fit in the (�yt, ĉgg) and (�yb, ĉ��) planes obtained by setting

the Higgs trilinear to the SM value (�� = 0), with the results obtained by allowing ��

to vary in the ranges |��|  10 and |��|  20.

In the (�yt, ĉgg) case (left panel of fig. 3), there is a strong (anti-)correlation between

the two parameters as we explained in section 3.1. When the Higgs self-coupling is included

in the fit the strong correlation is still present. The constraint along the correlated direction

becomes significantly weaker, even if we restrict �� to the range |��|  10. The constraint

in the orthogonal direction is instead only marginally a↵ected.

In the case of the (�yb, ĉ��) observables, we find that the 1� uncertainty on the deter-

mination of the two parameters is roughly doubled if the Higgs trilinear coupling is allowed

to take values up to |��| ⇠ 20.

This above discussion makes clear that a global fit on the single-Higgs observables

can not be properly done without including some assumption on the allowed values of the

trilinear self-coupling of the Higgs (see section 2.3). If � can sizably deviate from the SM

value (�� & 5) including it into the fit is mandatory in order to obtain accurate predictions
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Figure 5: ”Ÿ⁄, numbers in [] are Gaussian uncertainties keeping only linear dependence.
hZ asymmetry not included yet (which has an impact on the 240 GeV alone results ).
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Figure 6: Same as Fig. 5 but also showing the reach assuming 0 aTGCs. The range are
given by assuming 0 aTGCs and assuming 1% systematics in e+e≠ æ WW like we usually
do. The first number in [ , ] corresponds to the Gaussian uncertainty with 1% systematics
in e+e≠ æ WW in e+e≠ æ WW , while the 2nd number corresponds to the Gaussian
uncertainty assuming 0 aTGCs.

5

S. Di Vita,  G. Durieux, C. Grojean,  J. Gu, Z. Liu, G. Panico,  
M. Riembau, T. Vantalon ‘17
See also F. Maltoni, D. Pagani, X. Zhao ‘18

17

What about (low energy) e+e- colliders?

No flat direction is expected!

1 main production mode (ZH) & 1 subdominant production (VBF)
+ access to full angular distributions (4) and/or beam polarizations (2)
7 (+2) accessible decay modes: ZZ, WW, γγ, Zγ, ττ, bb, gg, (cc, μμ)



Christophe Grojean Global determination Inst. Pascal, Dec. 3, 2019

-4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

���

�
�
2

Incl. single Higgs data

�� exclusive fit

�� exclusive CMS II

global fit (Higgs + TGC) ×20

× 20

3 ab-1

Figure 2. �
2 as a function of the Higgs trilinear coupling � obtained by performing a global

fit including the constraints coming from TGC’s measurements and the bound on the h ! Z�

decay rate. The results are obtained by assuming an integrated luminosity of 3/ab at 14 TeV.
The dotted curve corresponds to the result obtained by setting to zero all the other the Higgs-
coupling parameters, while the solid curve is obtained by profiling and is multiplied by a factor
20 to improve its visibility. To compare with previous literature (ref. [6]), we also display the
exclusive fit performed assuming the uncertainty projections from the more optimistic ‘Scenario 2’
of CMS [26] (dashed curve).

3.3 Impact of the trilinear coupling on single-Higgs couplings

The presence of a flat direction can also have an impact on the fit of the single-Higgs

couplings. If we perform a global fit and we allow � to take arbitrary values we also

lose predictivity on the single-Higgs EFT parameters. The e↵ect is more pronounced on

the couplings that show larger variations along the flat direction, namely ĉgg and �yt. A
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What about (low energy) e+e- colliders?

No flat direction is expected!

1 main production mode (ZH) & 1 subdominant production (VBF)
+ access to full angular distributions (4) and/or beam polarizations (2)
7 (+2) accessible decay modes: ZZ, WW, γγ, Zγ, ττ, bb, gg, (cc, μμ)
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milder impact is found for the �cz, �yb, �y⌧ and ĉ�� , whereas czz, cz⇤ and ĉz� are almost

una↵ected, unless extremely large values of � are allowed.
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What about (low energy) e+e- colliders?

No flat direction is expected!

1 main production mode (ZH) & 1 subdominant production (VBF)
+ access to full angular distributions (4) and/or beam polarizations (2)
7 (+2) accessible decay modes: ZZ, WW, γγ, Zγ, ττ, bb, gg, (cc, μμ)
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Future prospects for h3 measurements
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