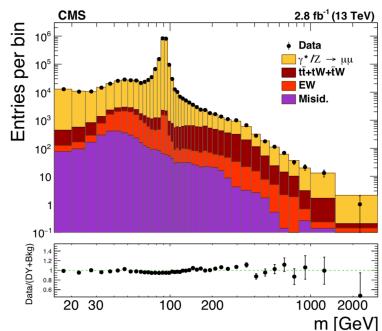

High mass Drell-Yan measurements


Ultimate Precision at Hadron Colliders December, 2019

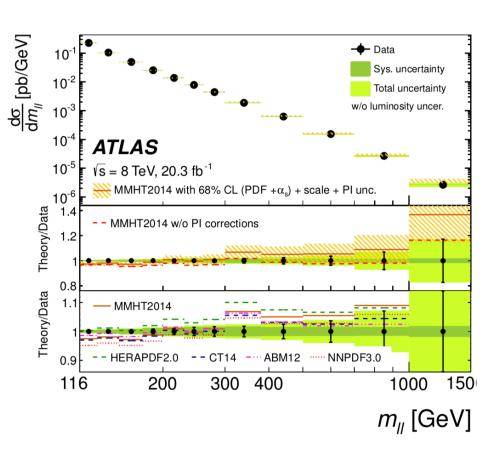
Aram Apyan

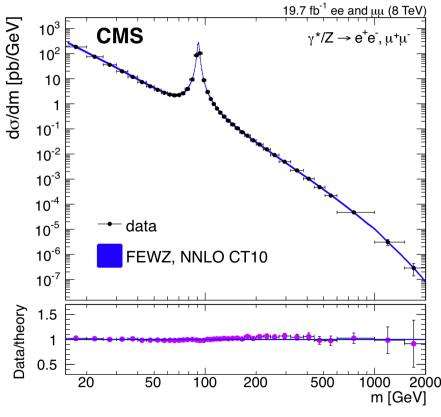
Introduction

- Measurement of the Drell-Yan production at high invariant masses (mll>116 GeV)
 - Sensitivity to PDFs at large x (current constraints are poor)
 - Some sensitivity to photon induced production (γγ->ll)
 - Constraints on BSM physics
 - Resonant or broad modifications of the spectrum

arXiv:1812.10529

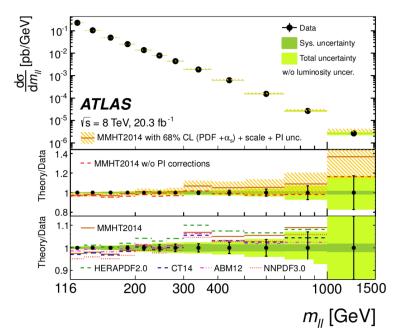
02/12/19

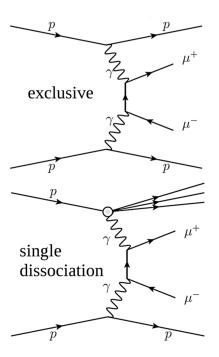

JHEP 08 (2016) 009


LHC measurements

- High-mass neutral current Drell-Yan measurements at LHC
 - Clean experimental signature (electron and muon final states)
- ATLAS measurement at 8 TeV (integrated luminosity of 20.3 fb⁻¹)
 - JHEP 08 (2016) 009
 - $d\sigma/dM$, $d^2\sigma/dMd|Y|$, $d^2\sigma/dMd\eta ll$
 - 116 < Mll < 1500 GeV
- CMS measurement at 8 TeV (integrated luminosity of 19.7 fb-1)
 - Eur. Phys. J. C 75 (2015) 147
 - $d\sigma/dM$, $d^2\sigma/dMd|Y|$
- CMS measurement at 13 TeV
 - arXiv:1812.10529, dσ/dM
 - Making use of 2015 dataset at 13 TeV (up to 2.8 fb⁻¹)
 - Mll<3000 GeV

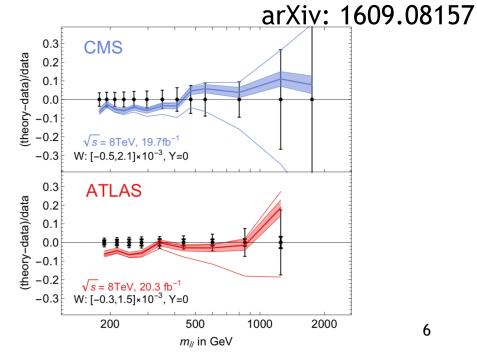
ATLAS/CMS measurements at 8 TeV


- High-mass neutral current Drell-Yan measurements at LHC
 - Measurements compared to NNLO pQCD predictions with FEWZ 3.1



Treatment of photon-induced contribution

- CMS subtracted photon-induced contribution
- ATLAS designed the analysis to be sensitive to photon-induced (PI)
 - Constraints on photon PDF derived (sensitivity far superseded by LUXQED)
 - Contribution reaches as much as ~15-20% in the high mass region
- Recent discussion within the LHC EW precision group on the treatment of the PI contribution in the future measurement
 - https://indico.cern.ch/event/864105/



Systematic uncertainties

- Data statistical uncertainties are dominant in Run-1 for very high masses
- Experimental systematic uncertainties are up to ~5%
 - Would be interesting to understand the differences in quoted systematic uncertainties between ATLAS and CMS for the future Run-2
 - Multijet and W+jet background systematic uncertainties dominate in electron channel
- Statistical component in some of the systematic uncertainties

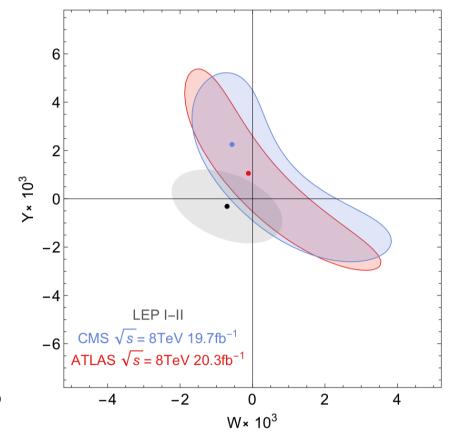
Sources	$\mathrm{e^{+}e^{-}}$		$\mu^+\mu^-$	
Efficiency	2.9, 0.5,		1.0, 0.4	, 1.8
Detector resolution	1.2, 5.4,	1.8	0.6, 1.8	, 1.6
Background estimation	2.2, 0.1,	13.8	1.0, 0.1	, 4.6
Electron energy scale	0.2, 2.4	2.0	_	
Muon momentum scale	_		0.2, 1.7	, 1.6
FSR simulation	0.4, 0.3		0.4, 0.2	, 0.5
Total experimental	3.7, 2.5,	14.0	1.6, 2.5	, 5.4
Theoretical uncertainty	4.2, 1.6	5.3	4.1, 1.6	, 5.3
Luminosity	2.6, 2.6,	2.6	2.6, 2.6	, 2.6
Total	6.3, 6.7,	15.3	5.1, 3.9	, 8.0

Eur. Phys. J. C 75 (2015) 147

High energy probes of EW sector

- High mass Drell-Yan measurements can indirectly probe heavy new physics
- Modification of the SM in self energies of vector bosons
 - Focus on oblique corrections: S, T, W, and Y
- W and Y modify the propagators off the pole
- W and Y modify the cross section by a factor that grows with energy as q²/mV (can be generated by dim-6 EFT operators)
 - Is the energy enhancement at hadron colliders sufficient to beat the precision at lepton colliders?
 - Look at the "tails" of charged and neutral Drell-Yan lepton pairs

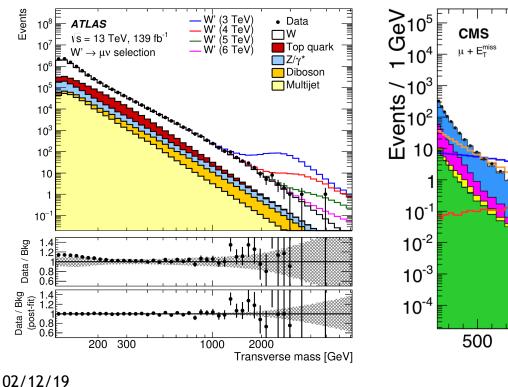
	universal form factor (\mathcal{L})	contact operator (\mathcal{L}')
W	$-rac{\mathrm{W}}{4m_W^2}(D_ ho W_{\mu u}^a)^2$	$-rac{g_2^2 { m W}}{2 m_W^2} J_L{}_\mu^a J_L{}_a^\mu$
Y	$-rac{\mathrm{Y}}{4m_W^2}(\partial_ ho B_{\mu u})^2$	$-rac{g_1^2 Y}{2m_W^2} J_{Y\mu} J_{Y}{}^{\mu}$

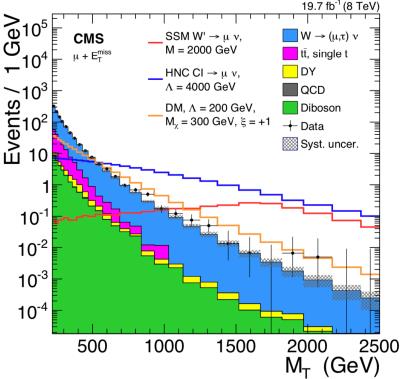

$$P_{N} = \begin{bmatrix} \frac{1}{q^{2}} - \frac{t^{2}W + Y}{m_{Z}^{2}} & \frac{t((Y + \hat{T})c^{2} + s^{2}W - \hat{S})}{(c^{2} - s^{2})(q^{2} - m_{Z}^{2})} + \frac{t(Y - W)}{m_{Z}^{2}} \\ \star & \frac{1 + \hat{T} - W - t^{2}Y}{q^{2} - m_{Z}^{2}} - \frac{t^{2}Y + W}{m_{Z}^{2}} \end{bmatrix}$$

$$P_C = \frac{1 + ((\hat{T} - W - t^2 Y) - 2t^2 (\hat{S} - W - Y))/(1 - t^2)}{(q^2 - m_W^2)} - \frac{W}{m_W^2},$$

arXiv: 1609.08157

Run-1 constraints

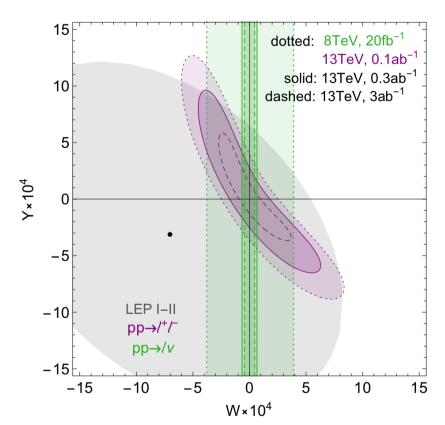

- Limits on W and Y from Run-1 neutral Drell-Yan measurements
- 95% exclusion contours obtained with ATLAS and CMS data in the W-Y plane
 - Already competitive with LEP constraints (gray region)



arXiv: 1609.08157

Charged current DY

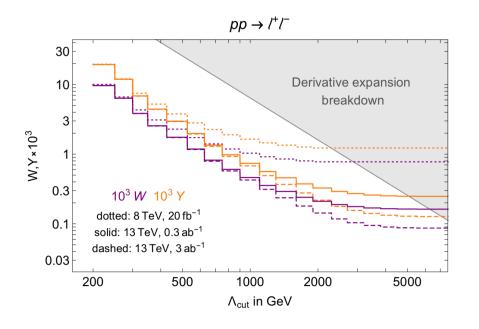
- Measurements of high transverse mass W production can be used
 - Cross section measurements are not currently provided by ATLAS and CMS performed
 - The uncertainties can be estimated from W' searches (where it appears as a background process)

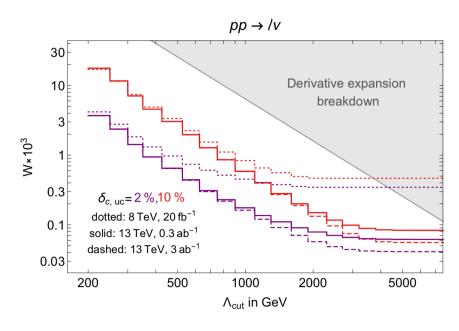


arXiv: 1606.03977

arXiv: 1408.2745

13 TeV projections (HL-LHC)

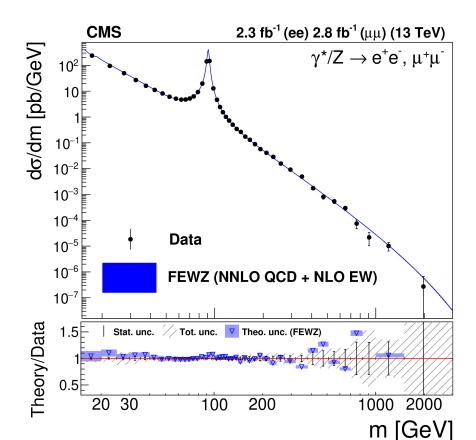

- Projected limits on W and Y from 13 TeV Drell-Yan measurements
- For neutral DY: 2% correlated and 2% uncorrelated uncertainties assumed
- For charged DY: 5% correlated and 5% uncorrelated uncertainties assumed
 - 8 TeV "projection" is also shown (dotted)

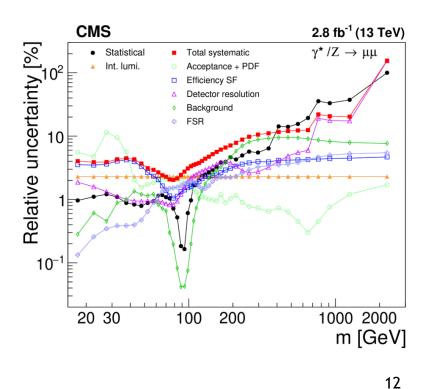


arXiv: 1609.08157

13 TeV projections

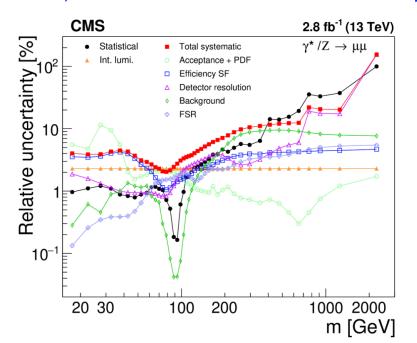
- Which mass bins give us the sensitivity to Y and W
 - Mass bins below 1 TeV for √s=8 TeV and below 2 TeV for √s=13 teV
 - Can we achieve ~1-2% experimental uncertainties at HL-LHC?

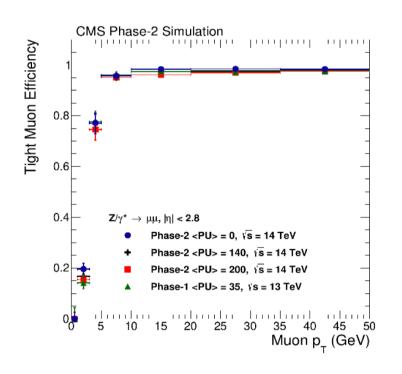


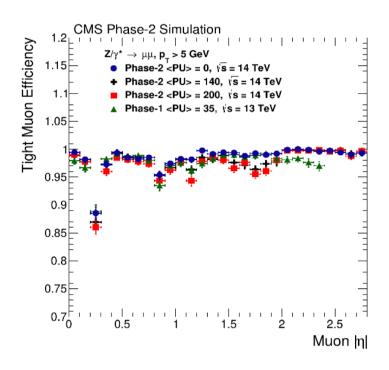


02/12/19 arXiv: 1609.08157

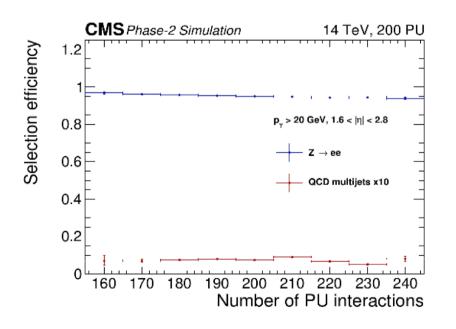
CMS 13 TeV measurement

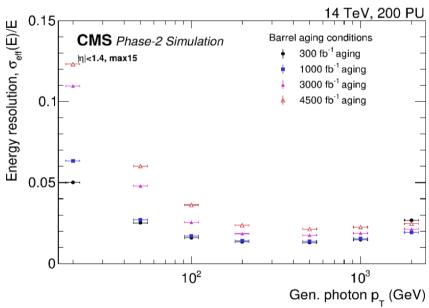

- Measurement of the differential Drell-Yan cross section at 13 TeV
 - arXiv:1812.10529, dσ/dM
 - Dilepton invariant mass in the range 15 to 3000 GeV (leading lepton pT>22 (30) GeV and sub; eading lepton pT > 10 GeV)




HL-LHC systematic uncertainties

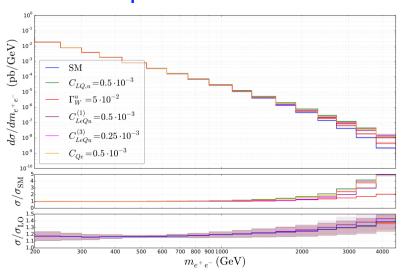
- Statistical uncertainties of ~1% up to 2 TeV possible with naive extrapolation
- Upgraded detectors should maintain similar muon and electron performance (efficiency, momentum/energy scale)
- Integrated luminosity uncertainty at HL-LHC. What can be achieved?
 - Ideas of using Z counting and low pileup datasets (for absolute luminosity scale calibration) to achieve ~1-2% uncertainty:
 - arXiv:1806.02184

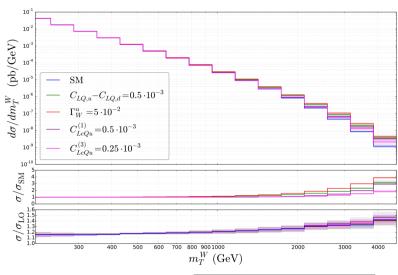

HL-LHC CMS muon performance



• Upgraded muon detectors maintain good performance at high pileup and extend coverage to $|\eta|=2.8$ for CMS e.g. (albeit with challenging situation for hardware trigger beyond 2.4)

HL-LHC CMS electron performance

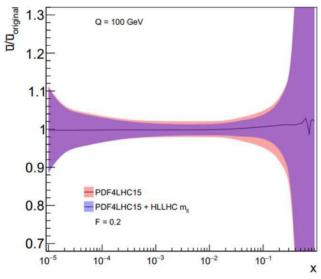



- ullet Electron reconstruction/efficiency should be \sim ok at high pileup
- Some radiation and pileup related challenges for energy resolution

SM-EFT contributions

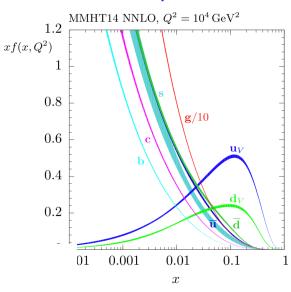
- SM-EFT contributions to charged and neutral DY
 - Consider all dim-6 operators contributing at leading order
- NLO QCD corrections included (implemented in Powheg BOX V2)
 - Around ~30-40% in the highest bins
- Set bounds on effective operators using ATLAS and CMS searches
 - Angular distributions can be used to differentiate between different dim-6 operators

arXiv:1804.07407



 $m_T^W = \sqrt{2|p_T^\ell||p_T^\nu|(1-\cos\Delta\phi_{\ell
u})}$.

PDF constraints at HL-LHC


- Sensitivity to PDFs at large x (currently constraints are poor)
 - Poorly known large-x sea quarks
 - Projected neutral DY data

up anti-quark PDF with projected high-mass DY data

arXiv:1810.0363

$$x_{1,2} = \frac{m_{ll}}{\sqrt{s}} e^{\pm y_{ll}}$$

LHL et al., Eur. Phys. J. C75 (2015) no.5 204

Perform a consistent SM+EFT/BSM fit with PDFs (talk by Shayan Iranipour last week)

Summary

- High mass DY measurements as high energy probe of BSM physics
- Electroweak precision tests in high energy DY processes
 - Surpassing the LEP sensitivity to universal parameters W and Y
- Ultimate goal: Measurements of DY cross sections at dilepton masses of up to 2 TeV with O(1)% uncertainty at HL-LHC
- Detailed measurements of high mT distributions of charged DY should be performed as well
- Full Run-2 ATLAS and CMS high mass neutral DY measurements still to come
 - Stay tuned...