
Overview of Reactor Neutrinos 

Bryce Littlejohn 
Illinois Institute of Technology 

blittlej@iit.edu 

November 8, 2019



• Important tasks/questions with big implications:

• Unique+precise oscillation measurements

• Do we understand reactor neutrino fluxes?

• Sterile neutrinos?

• Do we understand reactor neutrino energies?

• Bad nuclear data; implications for nuclear applications?

• Mass hierarchy measurements at reactors?

Reactor Neutrinos: An Active Field

.



Yangjiang 2 Commercial Core: First Fuel Loading in 2015

What Do Nuclear Reactors Do?



What Do Nuclear Reactors Do?
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• Heavy isotopes fission, making lighter isotopes, energy, 
neutrons, neutrinos, betas, and gammas.

• Different fission isotopes yield different products

fission isotopes

fission products

Table of the Isotopes

4Mass Number



What Do Nuclear Reactors Do?
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• Heavy isotopes fission, making lighter isotopes, energy, 
neutrons, neutrinos, betas, and gammas.

• Different fission isotopes yield different products

fission isotopes

fission products

νe-producing 
 beta decays

Table of the Isotopes
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• Heavy isotopes fission, making lighter isotopes, energy, 
neutrons, neutrinos, betas, and gammas.

• Different fission isotopes yield different products

Antineutrino Energy (MeV)
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νe-producing 
 beta decays

Table of the Isotopes
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~1021/s from a  
commercial core!

nuebar beta nuebar beta

What Do Nuclear Reactors Do?



• Reactor νe: produced in decay of product beta branches

• To predict flux and spectrum:
• Measure beta energies from all  

fission products at once

• Fit result with individual ‘made-up’  
beta spectra

• Covert to individual antineutrino spectra  
using E-conservation + small corrections

• Sum to get total antineutrino energy

Reactor Antineutrino Production
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Reactor Antineutrino Detection

• Detect inverse beta decay with liquid or solid scintillator, PMTs

• IBD e+ is direct proxy for antineutrino energy
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‘Flux Model Independent’  
Oscillation Measurements

9
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Reactor Neutrino Oscillation Basics

My core
My near detector My far detector

“How many  
neutrinos are there?”

“Scaling for 1/r2, are all the  
near detector neutrinos 

still there?  Are they missing 
at specific energies?”

My relevant neutrino 
oscillation formula

My νe My oscillated νe

• Don’t need to know νe energy or flux precisely

• Magnitude of missing νe at far detector tells me θ

• Energies where νe are missing tells me mass difference Δm2



Example: Daya Bay Experiment
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• RENO and Double Chooz use similar near/far geometry



Relative Flux Deficit: Daya Bay θ13

• By measuring far detector rate deficit, Daya Bay has exquisite 
sensitivity to θ13

• Measure ~5% deficit 
with 0.2% uncertainty

• Translates to ~3.5% 
uncertainty on sin2θ13

• Uncertainty still  
statistics-dominated
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Daya Bay, Neutrino 2018



Energy-Dependent Deficit: Daya Bay Δm2

• By measuring deficit at different energies, we can also make  
measurements of Δmee2
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Daya Bay, PRL 121 (2019)

RENO, Neutrino 2018



Reactor Osc in a Broader Context

• Get new power combining 
reactor and accelerator data

• Precision osc studies: 

• Compare osc parameters from  
different channels: for example:  
DUNE θ13 = DYB θ13?

• Stringently test flavor models
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T2K, 1910.03887

‘Realistic TBM Mixing Model’



Comparing Prediction and Data:
Reactor Antineutrino Flux
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• Three isotopes’ νe flux predictions re-formulated in 2011

• Note: ’flux’ often cited as IBD per fission, or ‘IBD yield’: flux * cross-section

Reactor Flux Predictions
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• Three isotopes’ νe flux predictions re-formulated in 2011

• To predict one experiment’s yield: multiply each isotope’s IBD 
yield by its fission fraction, correct, sum, and you’re done.

Reactor IBD Yield Measurements
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x0.054

x0.299

%-level  
corrections

Daya Bay

Predicted IBD Yield

Low-enriched 
uranium reactor



• Bad news: these flux predictions don’t match the data.

• New precise measurements also do not match predictions: 
Daya Bay (1.5%), RENO (2%), Double Chooz (~1%?)

• WHY the deficit??

Reactor Antineutrino Flux Anomaly

RENO, Neutrino 2018

Daya Bay, CPC 41 (2016)



Sterile Neutrino Oscillations

• Hypothesis 1: Some νe oscillated to unobservable types

• This hypothesis indicates a deficit that is baseline-dependent

• To fit data, need osc maximum at small baselines: large (~eV) mass splitting

• Only measuring average flux deficit here… not L/E behavior…
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Testing Steriles: Short-Baseline Experiments

• PROSPECT, Soliδ, STEREO, etc:  Compare spectra between 
‘sub-detectors’ at different baselines inside a single detector
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STEREO Experimental Layout STEREO Toy Prompt Spectra From RAA Best-Fit Osc

STEREO, Neutrino 2018



Testing Steriles: PROSPECT

• PROSPECT at HFIR highly 235U enriched (HEU) reactor
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PROSPECT Assembly: note detector segmentation!

PROSPECT Installation: Rx on other side of the wall!

HFIR reactor core:  
Burns only 235U!



Testing Steriles: PROSPECT and STEREO

• PROSPECT and STEREO: Results are here already!

• No evidence for steriles so far

• More statistics will bring sensitivity  
improvements in the coming year
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STEREO, Moriond 2019

PROSPECT, PRL 121 (2018)

PROSPECT, PRL 121 (2018)



Testing Steriles: LEU Experiment Hints?

• Hints for steriles from commercial core (LEU) spectrum ratios?

• Global fit of DANSS+NEOS ratios: ~5% osc amplitude best-fit at ~1.5 eV2

• Note: Individual experiments don’t claim a statistically significant observation
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DANSS, PLB 787 (2018)DANSS, PLB 787 (2018)

Giunti and Lasserre, Ann. Rev. Nucl.  Part. Sci 69 (2019)



Testing Steriles: LEU Experiment Update

• Hints for steriles from commercial core (LEU) spectrum ratios?

• New DANSS results with improved stats, systematics handling

• No-oscillation is only disfavored with respect to best-fit at 1.8σ

• Even less disfavored compared 
to ‘old best fit’

• Primary sterile hint from  
reactor spectra appears  
to have faded.

• Looking forward to a full  
publication and  
systematics details

• New data from NEOS soon?
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DANSS, Lepton-Photon 2019

https://indico.cern.ch/event/688643/contributions/3429530/attachments/1890364/3117350/danss_lp2019_shitov_4.pdf


Bad Flux Predictions

• Hypothesis 2: Something is wrong with the flux predictions

• Theorists have come up with lots of reasons predictions could be bad 

• Could be just one isotope; or could be all isotopes.
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Bad Flux Predictions

• Hypothesis 2: Something is wrong with the flux predictions

• This hypothesis indicates a deficit that *could be* fuel-content-dependent

• So compare flux measurements between different reactor types?

26

Giunti, et al, JHEP 10:143 (2017) 

Giunti, Ji, Leveder, Li, Littlejohn, JHEP 10:143 (2017)



Bad Flux Predictions

• Hypothesis 2: Something is wrong with the flux predictions

• This hypothesis indicates a deficit that *could be* fuel-content-dependent

• OR: compare between different time periods in one experiment

27

Giunti, et al, JHEP 10:143 (2017) 

Daya Bay’s
observed range

over time

Giunti, Ji, Leveder, Li, Littlejohn, JHEP 10:143 (2017)



Testing Fluxes: Daya Bay Evolution

• Measure flux during periods with differing fuel content

• Flux anomaly’s size depends on how much 235U is burning

• Can’t be explained by steriles

• CAN be caused by bad 235U flux  
predictions (among other things)

• New flux measurements at 235U  
HEU cores would also be nice

28

Daya Bay, PRL 118 (2017)

From T. Langford (Yale)

Daya Bay, PRL 118 (2017)
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Comparing Prediction and Data:
Reactor Antineutrino Spectrum



Reactor Spectrum Anomaly
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Double Chooz, Neutrino 2018 RENO, Neutrino 2018Daya Bay, CPC 41 (2017)

• Bad news: spectrum predictions don’t match the LEU data.

• Eye is first drawn to the ‘bump’ in the 4-6 MeV range.

• Zooming out: kinda just looks bad generally across the entire spectrum…

• HOW is spectrum incorrectly predicted???

• Like with flux: is one particular isotope to blame (like 235U)?  Or all?

• Looks like short-baseline 235U measurements can also give new info here!
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• Measure spectrum when burning only 235U

• PROSPECT has done this!

Isotopic Origins: PROSPECT

PROSPECT, PRL 122 (2019)
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• Measure spectrum when burning only 235U

• PROSPECT has done this!

• Is PROSPECT consistent  
with Huber’s 235U model?

• X2/ndf = 52.1/31; 
p-value = 0.01

• Huber broadly agrees with  
PROSPECT, but not a great fit

• Worst offender: high energy  
fit is OK otherwise.

• Bkg issue? Unlucky statistics?  
Need more stats to know for sure.

Isotopic Origins: PROSPECT

PROSPECT, PRL 122 (2019)
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• Measure spectrum when burning only 235U

• PROSPECT has done this!

• How does PROSPECT  
compare to ‘bump’ in  
θ13 experiments?

• PROSPECT relative bump size  
WRT to Daya Bay: 69% ± 53%

• ~consistent with ‘no bump’ (0%)  
and ‘DYB-sized bump’ (100%)

• Need more stats to differentiate

• ‘Big bump’ (178%) if 235U is 
the sole bump contributor

• Disfavored at 2.1σ

Isotopic Origins: PROSPECT

PROSPECT, PRL 122 (2019)



Daya Bay Spectrum Evolution

• Measure Daya Bay spectrum variation with fuel content.

• Should be able to ‘extract’ spectra of 239Pu, 235U νe

• ‘Best option’: both isotopes  
have ‘bumps’ WRT prediction

• However, only 0.8σ better than  
‘235U only’ case; need more stats

• Result is consistent with  
PROSPECT’s conclusion

• Actively pursuing joint  
HEU-LEU analyses.
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Daya Bay, PRL 123 (2019)



Thanks!

• Things I didn’t even get to mention (quiz me later!)
• RENO Spectrum Evolution

• Reactor IBD-CEνNS complementarity 

• New studies questioning ILL beta spectrum calibration accuracy

• More theory studies probing inaccuracies in conversion / ab initio methods

35



Summary

• Well-understood reactor antineutrino fluxes and spectra are 
vital for addressing major issues in neutrino physics today.

• New recent measurements have helped improve our 
understanding of the reactor flux anomaly

• Daya Bay evolution: bad flux predictions!

• Short-baseline measurements: no steriles so far.

• Same for reactor spectrum anomaly

• New isotopic flux measurements at PROSPECT and Daya Bay!

• Understanding will improve in the coming year as SBL,  
θ13 experiments continue to accrue statistics

• New data = new handles to improve nuclear physics interpretations;  
Theorists and experimentalists can work together here

36



Backups

37



Reactor Spectrum Predictions

• Reminder: Convert beta spectra into antineutrino spectra

• Except 238U: there, we just use nuclear databases.

• In theory, this is simple, but in practice, spectrum depends on:

• Fermi function, which depends on nuclear charge

• Forbidden-ness of the beta transition

• Smaller-order corrections (nuclear size, etc.)

• Since we’re fitting ‘fake’ beta branches,  
have to parameterize all these things.

• Usually parameterize vs. Ebeta: ‘What is the average  
nuclear charge for branches with this Q-value?’

• Errors arise from parameterization, which can be  
hard to quantify (see A. Hayes’s Neutrino2018 talk)

• One idea to get more info: is prediction  
bad for all isotopes? Or a specific isotope?
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Example: Fit virtual beta branches

Schreckenbach, et al,  
Phys Lett B160 (1985)

http://doi.org/10.5281/zenodo.1286841


Bad Flux Prediction Possibilities

• A litany of hypotheses HOW the fluxes could be incorrect:

• Maybe it’s specifically related to beta-decays:

• Maybe forbidden decays aren’t treated properly.  Hayes, et al, PRL 112 (2014), Hayen, et al PRC 99 (2019)

• Maybe fission isotope beta spectrum measurements  
are wrong.  Letourneau and Onillon @ AAP 2018

• Maybe it’s specifically related to fission yields:

• Fission yield databases are  
incorrect! Sonzogni, et al PRL 116 (2016)

• Fission yield dependence on neutron energy not  
considered correctly?  Littlejohn, et al PRD 97 (2018)

• Maybe there’s an issue with  
*ONLY* U238?  
Hayes, et al PRD 92 (2016); Gebre, et al PRD 97 (2018)

• Etc…

• GOOD Recent Convo @ IAEA: 
https://www-nds.iaea.org/index-meeting-crp/Antineutrinos/ 

39

fission isotopes

fission products

νe-producing 
 beta decays

Table of the Isotopes

https://neutrinos.llnl.gov/content/assets/docs/workshops/2018/AAP2018-ILL-spectra-normalization-Onillon.pdf
https://www-nds.iaea.org/index-meeting-crp/Antineutrinos/


Testing Fluxes: RENO+DYB Evolution

• RENO sees similar behavior — flux evolution badly predicted

• No-osc fits indicate 235U  
prediction is too high.

40

Giunti, Li, Surukuchi, BRL, hep-ph[1901.01807]



Global Flux Fits

• What if we fit ALL global flux data: HEU, LEU, flux evolution?
• No-Osc fits indicate 235U and 238U flux predictions are off!

• ‘Hybrid’ models with both oscillations and incorrect fluxes also fit well

• Q: Is older HEU data really reliable (STEREO@Moriond — A: Seems so!)

• Need more osc constraint, more fluxes to totally resolve this!

41Gebre, BRL, Surukuchi, PRD 97 (2018) Giunti, et al, JHEP 10:143 (2017) 

Best-Fit Parameter Space: OSC+239 Best-Fit Parameter Space: 235+238+239

http://moriond.in2p3.fr/2019/EW/slides/3_Tuesday/2_afternoon/1_LauraBernard.pdf
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• New Daya Bay U235 and Pu239 measurement!

• Forget ‘where the bump comes from’ — let’s just measure the full spectra

• However, staying with the bump paradigm for a moment:

• ‘Equal contribution’ 0.4sigma 
away from best-fit

• ‘No U235 bump’ is 4.0sigma 
away from best-fit

• ‘No Pu239 bump’ (i.e. ‘mostly 235’)  
is 1.2sigma away from best-fit 

Timeline 7: 2019



• Daya Bay approach: does bump size change with fuel content?

• Would indicate if a single isotope is preferentially responsible for it

Isotopic Origins: Daya Bay

Daya Bay, CPC 41 (2017)

43Daya Bay, PRL 118 (2017)



• Daya Bay approach: does bump size change with fuel content?

• Nothing uniquely odd happening in 4-6 MeV region…

• Not enough statistics to draw a 
valuable conclusion, though

Isotopic Origins: Daya Bay

44

Daya Bay, PRL 118 (2017)

Daya Bay, PRL 118 (2017)



Experimental Recap

• Experimental studies trying to understand the nature of the 
spectrum data-prediction disagreement have formulated their 
research question as: ‘Which isotopes produce the bump?’

• Studies weighing in so far (note - I’m oversimplifying, obs…)

• All datasets are ~compatible with a bump of some kind existing in HM

• No single hypothesis is compatible with all claims; ‘Equal’ would be a good 
hypothesis, if not for RENO’s (questionable?) result

45

Study ~Only 235 
(~No 239 bump) Equal No 235 bump 

(~Pu only)
Huber  

(w/ NEOS+DYB) OK OK NO

DYB OK OK NO

RENO OK NO NO

PROSPECT NO ~OK ~OK



New STEREO Results at Moriond19

• Wow!  Nice!

• Interested to see closer 
comparisons to PROSPECT,  
global fluxes, θ13 experiments

46
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• Another ill-defined aspect of spectrum: fine structure

• Arises from endpoints of individual beta branches in aggregate spectrum

• Do fine structure wiggles obscure wiggle frequency from oscillations, and thus 
mass hierarchy measurements at reactors?

Fine Structure: A Problem For JUNO?

Sonzogni et al, PRC 98 (2018)
Danielson et al, arXiv:1808:03276 (2018)

Ab initio LWR spectrum

Ab initio LWR spectrum, oscillated
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• Nuclear theorists: fine structure features are too small to affect 
the mass hierarchy measurement.

• Demonstrated using a Fourier 
decomposition approach

• Some discussion appears  
to continue in community?

• ‘Fourier decomposition not  
used by JUNO…’

• ‘One specific energy range  
matters for hierarchy; what’s 
fine structure like there?’

• Some discussion of dedicated fine structure measurements

• Need a high-resolution detector (better than JUNO)

• Need a high-statistics measurement (ideally much more than JUNO)

• DYB and PROSPECT could provide some info on fine structure; optimized, 
dedicated detector would more precisely nail down fine structure

Fine Structure: A Problem For JUNO?

Danielson et al, arXiv:1808:03276 (2018)

Fourier Cosine Transform of Oscillated LWR Spectrum
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• Similar analysis at RENO: does bump change with fuel content?

• Claim ~2.9σ indication of increasing bump size with increased 235U burning

Isotopic Origins: RENO

RENO,  arxiv[1806.00574].v1 (2018)

https://arxiv.org/pdf/1806.00574v1.pdf
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• Similar analysis at RENO: does bump change with fuel content?

• Claim ~2.9σ indication of increasing bump size with increased 235U burning

• Ask a meddling experimentalist competitor:

• Why does RENO have statistical capabilities to say something meaningful, while DYB doesn’t?

• Similar metrics don’t show similar indications (total 4-7 MeV contribution, for example)

• What about behavior in other energy regions?  Is 4-7 MeV region an outlier?

Isotopic Origins: RENO

RENO,  arxiv[1806.00574].v1 (2018)

http://RENO,%20%20arxiv%5B1806.00574%5D.v1%20(2018)


Reactor Neutrino Monitoring Advances

• Last few decades have brought major advances in realized tech: 
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1950s: First Detection; ~1000 counts in 1 month;
5 background counts per 1 antineutrino count (S:B 1:5)

1980s: Bugey: ~1000 counts per day, S:B 10:1, but only 
underground. flammable/corrosive solvent detector liquids

Reactor Neutrino History

• Reactor νe: a history of discovery 
Many experiments, differing baselines

4

1950s: First  
neutrino  

observation

2000s: νe disappearance, 

1970s-80s-90s:  
Reactor flux,  

Cross-section measurements

νe oscillation measurements

Bugey
KamLAND

2010s:  
θ13, precision  

oscillation  
measurements

2000s: SONGS: ~230 counts per day, 25:1 S:B, but  
must be underground. ‘semi-safe’ detector liquid

NOW: PROSPECT detector: ~750/day from only 80MW  
reactor, S:B 1:1 on surface, ‘safe’ plug-n-play detector



Spectrum Measurement Applications

• Note:  An experimental demonstration of reactor monitoring
• Theory-based case-studies of Iranian, North Korean nuclear reactors: arXiv[1403.7065],  arXiv[1312.1959]

• Unambiguous monitoring of reactor’s 239Pu content utilizing a reactor’s antineutrino spectrum

52



Flux Measurement Applications

• Can perform ex-situ reactor power monitoring with  
compact inverse beta decay detectors

• May be helpful for specialized reactors (sodium-cooled,  
high-pressure gas-cooled), etc.

• We now have tech for doing this on-surface (PROSPECT)

53



Testing Steriles: NEOS

• 2016: Compare spectra between two experiments at different 
baselines: NEOS (25m) and Daya Bay (~500m)

• NEOS: compact detector underground in commercial reactor’s tendon gallery

• Everyone knows DYB…

• No strong evidence for steriles
• Limited by uncorrelated DYB-RENO systematics

• Limited by larger core size and distance

54

NEOS, PRL 121 (2016)



DANSS

• 2018: Compare spectra between the same detector deployed 
at two different baselines (10.7m and 12.7m)

• Commercial 3m-length reactor — 5000 events per day!  Awesome!

• Have presented relative spectra between locations

55

Reactor up here

DANSS, PLB 787 (2018)



DANSS

• 2018: Compare spectra between the same detector deployed 
at two different baselines (10.7m and 12.7m)

• Published results (Phys Left B): no steriles yet

• Neutrino 2018: showed 3σ allowed region; not sure what to make of this

• Statements about some systematics still needing to be investigated

56

DANSS, PLB 787 (2018)

DANSS, Neutrino 2018



DANSS: Systematics

• DANSS systematics

• E-scale at high energy seems 
well-calibrated — great!

• What about low (<4 MeV) E?

• What about relative low-E  
calibrations between positions?

• Temperature fluctuations 
between different positions?

57

Blue: PROSPECT Full Energy Model
Open: PROSPECT Linear Energy Model

Red: DANSS, PLB 787 (2018)

nGd peak



Neutrino-4

58

Best-fit x



Neutrino-4

59

Neutrino-4 Data



Flux Results

• Letourneau and Onillon: "Investigation of the ILL spectra 
normalization,” presented at AAP 2018 in Livermore, CA

• Neutron flux calibrated out through relative measurement 
with respect to well-known neutron cross-sections

• Looks like some of the ‘well-known’ cross-sections may have been wrong

• This adds a 5% shift between 235 and 239 - solves DYB flux evolution? 60
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• Do non-thermal neutrons cause the bump?

• ILL neutrons are thermal; LEU are NOT — different fission yields!

• This difference has only minor impact on  
antineutrino fluxes and spectra.

Incorrect Spectrum: Theory Studies

No bumps!

No major flux offsets!

Littlejohn et al, PRD 97 (2018)
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• Could incorrect effective nuclear charge cause the bump?

• ‘How bad would effective charge have to be to make it cause a bump?’

• A: really bad, beyond 
what could be  
reasonably expected 
in nuclear physics…

• So this is not the cause.

Incorrect Spectrum: Theory Studies

Sonzogni, McCutchan, Hayes, PRL 119 (2017)
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• Could incorrect forbidden shapes cause the bump?

• A: It seems possible; multiple theory groups seem to agree on this.

Incorrect Spectrum: Theory Studies

Sonzogni, McCutchan, Hayes, PRL 119 (2017)

L. Hayen, et al, arXiv[1805.12259] (2018)



IBD-CEvNS Complementarity

• CEvNS is predicted by standard model with high precision

• Precision absolute measurements of CEvNS = ability to probe BSM physics!

• Ultimate limitation for CEvNS BSM-testing with reactors:  
the antineutrino flux

• As we know, we cannot trust reactor flux and spectrum predictions

• Solution: relative measurements WRT IBD measurements

• SM likely also predicts CEvNS-IBD ratio with high precision

• So for sake of 
CEvNS, let’s 
squeeze every 
last improvement  
out of absolute 
IBD yield and 
spectrum  
measurements!!

64



• Why is there more decay heat than predicted 3-3000s after a 
reactor is turned off???

• Means we need higher 
cooling safety factors  
during reactor-off periods:  
This costs $$$!!!

• Hypothesis: maybe we  
measured branching 
fractions of some rare 
isotopes incorrectly…

Reactor Spectroscopy: Application

65



Reactor Spectroscopy: Example

• TAGS:  
Total absorption 
gamma 
spectroscopy

• Measure total  
gamma energy,  
not individual  
gamma energies

• Allows ID of  
levels, BRs 
much easier

• If branching ratios are known better, decay released in those 
decays will be modelled better

• Better model = smaller safety factor = $$$ saved.
66

A. Sonsogni (BNL), (2010)



Reactor Spectroscopy: Implications

• 5 MeV ‘bump’ region  
produced by many isotopes 
of great concern to this 
decay heat measurement!

• Two anomalies from the same 
source?

• Reactor spectroscopy 
measurements can provide:

• Direct check on existing 
TAGS measurements

• TOTALLY different systematics!

• NEW data if TAGS has not 
been done!

• Isotopes: Rb-92, Sr-97, Cs-142

67

A. Sonsogni (BNL), (2010)



Beta Decay Recap

• W-mediated weak interaction

• Use Fermi’s Golden rule to calculate:

• Other corrections:

• Finite size: C, L0

• Electron screening: S

• Radiative corrections: C

• Weak magnetism: dwm

68

QED correction: semi-classicaly,
positive nucleus attracts 

product beta; lowers its energy  

From nuclear matrix element:  
Extra factors of p pop 
in here for beta decays

Cu-64 β-Cu-64 β+

Lower E!Higher E!

Huber, Phys. Rev. C84 (2011)

RD Evans,  The Atomic Nucleus (1955)


