Overview of Reactor Neutrinos

November 8, 2019

Bryce Littlejohn
Illinois Institute of Technology
blittlej@iit.edu

Reactor Neutrinos: An Active Field

- Important tasks/questions with big implications:
 - Unique+precise oscillation measurements
 - Do we understand reactor neutrino <u>fluxes</u>?
 - Sterile neutrinos?
 - Do we understand reactor neutrino energies?
 - Bad nuclear data; implications for nuclear applications?
 - Mass hierarchy measurements at reactors?

Yangjiang 2 Commercial Core: First Fuel Loading in 2015

- Heavy isotopes fission, making lighter isotopes, energy, neutrons, neutrinos, betas, and gammas.
 - Different fission isotopes yield different products

- Heavy isotopes fission, making lighter isotopes, energy, neutrons, neutrinos, betas, and gammas.
 - Different fission isotopes yield different products

- Heavy isotopes fission, making lighter isotopes, energy, neutrons, neutrinos, betas, and gammas.
 - Different fission isotopes yield different products

Reactor Antineutrino Production

(Pu, U) Nucleus

stable isotope

- Reactor \overline{V}_e : produced in decay of product beta branches
- To predict flux and spectrum:
 - Measure <u>beta energies</u> from all fission products at once
 - Fit result with individual 'made-up' beta spectra
 - Covert to individual antineutrino spectra using E-conservation + small corrections
 - Sum to get total <u>antineutrino energy</u>

fission product

fission product

Reactor Antineutrino Detection

Detect inverse beta decay with liquid or solid scintillator, PMTs

IBD e+ is direct proxy for antineutrino energy

Daya Bay Monte Carlo Data

'Flux Model Independent' Oscillation Measurements

Reactor Neutrino Oscillation Basics

My relevant neutrino oscillation formula

$$sin^2(2\theta)sin^2(1.27\Delta m^2 \frac{L}{E_{\nu}})$$

"How many neutrinos are there?"

"Scaling for I/r², are all the near detector neutrinos still there? Are they missing at specific energies?"

- Don't need to know \overline{V}_e energy or flux precisely
- Magnitude of missing \overline{V}_e at far detector tells me θ
- Energies where \overline{V}_e are missing tells me mass difference Δm^2

Example: Daya Bay Experiment

RENO and Double Chooz use similar near/far geometry

Relative Flux Deficit: Daya Bay θ_{13}

- By measuring far detector rate deficit, Daya Bay has exquisite sensitivity to θ_{13}
 - Measure ~5% deficit
 with 0.2% uncertainty
 - Translates to ~3.5% uncertainty on sin²θ₁₃
 - Uncertainty <u>still</u> statistics-dominated

Energy-Dependent Deficit: Daya Bay Δm²

• By measuring deficit at different energies, we can also make measurements of Δm_{ee}^2

Reactor Osc in a Broader Context

- Get new power combining reactor and accelerator data
- Precision osc studies:
 - Compare osc parameters from different channels: for example: DUNE θ_{13} = DYB θ_{13} ?
 - Stringently test flavor models

'Realistic TBM Mixing Model'

$$\frac{\sin^{2}\theta_{12} = \frac{\cos^{2}\theta}{\cos^{2}\theta + 2}}{\sin^{2}\theta_{13} = \frac{\sin^{2}\theta}{3}}, \qquad \sin^{2}\theta_{23} = \frac{1}{2} + \frac{\sqrt{6}\sin 2\theta \sin \sigma}{2\cos^{2}\theta + 4}$$

$$\tan \delta_{CP} = \frac{(\cos^{2}\theta + 2)\cot \sigma}{5\cos^{2}\theta - 2},$$
PHYSICAL REVIEW D **98**, 055019 (2018)

Comparing Prediction and Data: Reactor Antineutrino Flux

Reactor Flux Predictions

- Three isotopes' \overline{V}_e flux predictions re-formulated in 2011
 - Note: 'flux' often cited as IBD per fission, or 'IBD yield': flux * cross-section

Mueller, et al, Phys. Rev. C83 (2011) Mention, et al, Phys. Rev. D83 (2011) Huber, Phys. Rev. C84 (2011)

Reactor IBD Yield Measurements

- Three isotopes' \overline{V}_e flux predictions re-formulated in 2011
- To predict one experiment's yield: multiply each isotope's IBD yield by its fission fraction, correct, sum, and you're done.

Reactor Antineutrino Flux Anomaly

- Bad news: these flux predictions don't match the data.
- New precise measurements also do not match predictions: Daya Bay (1.5%), RENO (2%), Double Chooz (~1%?)

Sterile Neutrino Oscillations

- Hypothesis I: Some \overline{V}_e oscillated to unobservable types
 - This hypothesis indicates a deficit that is <u>baseline-dependent</u>
 - To fit data, need osc maximum at small baselines: large (~eV) mass splitting
 - Only measuring average flux deficit here... not L/E behavior...

$$sin^2(2\theta)sin^2(1.27\Delta m^2 \frac{L}{E_{\nu}})$$

Testing Steriles: Short-Baseline Experiments

 PROSPECT, Soliδ, STEREO, etc: Compare spectra between 'sub-detectors' at different baselines inside a single detector

STEREO Experimental Layout

STEREO Toy Prompt Spectra From RAA Best-Fit Osc

Testing Steriles: PROSPECT

PROSPECT at HFIR highly ²³⁵U enriched (HEU) reactor

Testing Steriles: PROSPECT and STEREO

- PROSPECT and STEREO: Results are here already!
- No evidence for steriles so far
 - More statistics will bring sensitivity improvements in the coming year

PROSPECT Sensitivity, 95% CL

SBL + Gallium Anomaly (RAA), 95% CL

 10^{-1}

Testing Steriles: LEU Experiment Hints?

- Hints for steriles from commercial core (LEU) spectrum ratios?
 - Global fit of DANSS+NEOS ratios: ~5% osc amplitude best-fit at ~1.5 eV²
 - Note: Individual experiments don't claim a statistically significant observation

Testing Steriles: LEU Experiment Update

- Hints for steriles from commercial core (LEU) spectrum ratios?
- New DANSS results with improved stats, systematics handling
 - No-oscillation is only disfavored with respect to best-fit at 1.8σ
 - Even less disfavored compared to 'old best fit'
- Primary sterile hint from reactor spectra appears to have faded.
 - Looking forward to a full publication and systematics details
 - New data from NEOS soon?

Bad Flux Predictions

- Hypothesis 2: Something is wrong with the flux predictions
 - Theorists have come up with lots of reasons predictions could be bad
 - Could be just <u>one</u> isotope; or could be <u>all</u> isotopes.

Bad Flux Predictions

- Hypothesis 2: Something is wrong with the flux predictions
 - This hypothesis indicates a deficit that *could be* fuel-content-dependent
 - So compare flux measurements between different reactor types?

Bad Flux Predictions

- Hypothesis 2: Something is wrong with the flux predictions
 - This hypothesis indicates a deficit that *could be* fuel-content-dependent
 - OR: compare between different time periods in one experiment

Testing Fluxes: Daya Bay Evolution

Daya Bay, PRL 118 (2017)

- Measure flux during periods with differing fuel content
- Flux anomaly's size depends on how much ²³⁵U is burning
- Can't be explained by steriles
 - CAN be caused by bad ²³⁵U flux predictions (among other things)
 - New flux measurements at ²³⁵U HEU cores would also be nice

Model (Rescaled)

0.32

0.34

Daya Bay

0.30

 F_{239}

6.05

6.00

5.95

5.90

5.85

5.80

Best fit

Average

0.28

0.26

5.75

⁵ 5.70

0.24

Comparing Prediction and Data: Reactor Antineutrino Spectrum

Reactor Spectrum Anomaly

- Bad news: spectrum predictions don't match the LEU data.
 - Eye is first drawn to the 'bump' in the 4-6 MeV range.
 - Zooming out: kinda just looks bad generally across the entire spectrum...
- HOW is spectrum incorrectly predicted???
 - Like with flux: is <u>one</u> particular isotope to blame (like ²³⁵U)? Or <u>all</u>?
 - Looks like short-baseline ²³⁵U measurements can also give new info here!

Isotopic Origins: PROSPECT

- Measure spectrum when burning only ²³⁵U
- PROSPECT has done this!

Isotopic Origins: PROSPECT

- Measure spectrum when burning only ²³⁵U
- PROSPECT has done this!
- Is PROSPECT consistent with Huber's ²³⁵U model?
 - X²/ndf = 52.1/31;
 p-value = 0.01
 - Huber broadly agrees with PROSPECT, but not a great fit
 - Worst offender: high energy fit is OK otherwise.
 - Bkg issue? Unlucky statistics?
 Need more stats to know for sure.

Isotopic Origins: PROSPECT

- Measure spectrum when burning only ²³⁵U
- PROSPECT has done this!
- How does PROSPECT compare to 'bump' in θ₁₃ experiments?
 - PROSPECT relative bump size WRT to Daya Bay: 69% ± 53%
 - ~consistent with 'no bump' (0%) and 'DYB-sized bump' (100%)
 - Need more stats to differentiate
 - 'Big bump' (178%) if ²³⁵U is the sole bump contributor
 - Disfavored at 2.1σ

Daya Bay Spectrum Evolution

- Measure Daya Bay <u>spectrum</u> variation with fuel content.
- Should be able to 'extract' spectra of 239 Pu, 235 U $\overline{\nu}_{e}$
 - Best option': <u>both isotopes</u> have 'bumps' WRT prediction
 - However, only 0.8σ better than '235U only' case; need more stats
 - Result is consistent with PROSPECT's conclusion
- Actively pursuing joint HEU-LEU analyses.

Thanks!

- Things I didn't even get to mention (quiz me later!)
 - RENO Spectrum Evolution
 - Reactor IBD-CEVNS complementarity
 - New studies questioning ILL beta spectrum calibration accuracy
 - More theory studies probing inaccuracies in conversion / ab initio methods

Summary

- Well-understood reactor antineutrino fluxes and spectra are vital for addressing major issues in neutrino physics today.
- New recent measurements have helped improve our understanding of the reactor flux anomaly
 - Daya Bay evolution: bad flux predictions!
 - Short-baseline measurements: no steriles so far.
- Same for reactor spectrum anomaly
 - New isotopic flux measurements at PROSPECT and Daya Bay!
- Understanding will improve in the coming year as SBL, θ_{13} experiments continue to accrue statistics
 - New data = new handles to improve nuclear physics interpretations;
 Theorists and experimentalists can work together here

Backups

Reactor Spectrum Predictions

- Reminder: Convert beta spectra into antineutrino spectra
 - Except ²³⁸U: there, we just use nuclear databases.
- In theory, this is simple, but in practice, spectrum depends on:
 - Fermi function, which depends on nuclear charge
 - Forbidden-ness of the beta transition
 - Smaller-order corrections (nuclear size, etc.)
- Since we're fitting 'fake' beta branches, have to parameterize all these things.
 - Usually parameterize vs. E_{beta}: 'What is the average nuclear charge for branches with this Q-value?'
 - Errors arise from parameterization, which can be hard to quantify (see A. Hayes's Neutrino2018 talk)
- One idea to get more info: is prediction bad for all isotopes? Or a specific isotope?

Bad Flux Prediction Possibilities

A litany of hypotheses HOW the fluxes could be incorrect:

- Maybe it's specifically related to beta-decays:
 - Maybe forbidden decays aren't treated properly. Hayes, et al, PRL 112 (2014), Hayen, et al PRC 99 (2019)
 - Maybe fission isotope beta spectrum measurements are wrong. Letourneau and Onillon @ AAP 2018
- Maybe it's specifically related to fission yields:
 - Fission yield databases are incorrect! Sonzogni, et al PRL 116 (2016)
 - Fission yield dependence on neutron energy not considered correctly? Littlejohn, et al PRD 97 (2018)
- Maybe there's an issue with *ONLY* U238? Hayes, et al **PRD** 92 (2016); Gebre, et al **PRD** 97 (2018)
- Etc...
- GOOD Recent Convo @ IAEA: https://www-nds.iaea.org/index-meeting-crp/Antineutrinos/

Testing Fluxes: RENO+DYB Evolution

RENO sees similar behavior — flux evolution badly predicted

Global Flux Fits

- What if we fit ALL global flux data: HEU, LEU, flux evolution?
 - No-Osc fits indicate ²³⁵U and ²³⁸U flux predictions are off!
 - 'Hybrid' models with both oscillations and incorrect fluxes also fit well
 - Q: Is older HEU data really reliable (<u>STEREO@Moriond</u> A: Seems so!)
- Need more osc constraint, more fluxes to totally resolve this!

Timeline 7: 2019

- New Daya Bay U235 and Pu239 measurement!
 - Forget 'where the bump comes from' let's just measure the full spectra
- However, staying with the bump paradigm for a moment:
 - 'Equal contribution' 0.4sigma away from best-fit
 - 'No U235 bump' is 4.0sigma away from best-fit
 - 'No Pu239 bump' (i.e. 'mostly 235') is 1.2sigma away from best-fit

Isotopic Origins: Daya Bay

- Daya Bay approach: does bump size change with fuel content?
 - Would indicate if a single isotope is preferentially responsible for it

Isotopic Origins: Daya Bay

44

Daya Bay, PRL 118 (2017)

- Daya Bay approach: does bump size change with fuel content?
- Nothing uniquely odd happening in 4-6 MeV region...

Experimental Recap

- Experimental studies trying to understand the nature of the spectrum data-prediction disagreement have formulated their research question as: 'Which isotopes produce the bump?'
- Studies weighing in so far (note I'm oversimplifying, obs...)

Study	~Only 235 (~No 239 bump)	Equal	No 235 bump (~Pu only)
Huber (w/ NEOS+DYB)	OK	OK	NO
DYB	ОК	ОК	NO
RENO	OK	NO	NO
PROSPECT	NO	~OK	~OK

- All datasets are ~compatible with a bump of some kind existing in HM
- No single hypothesis is compatible with all claims; 'Equal' would be a good hypothesis, if not for RENO's (questionable?) result

New STEREO Results at Moriond 19

- Wow! Nice!
- Interested to see closer comparisons to PROSPECT, global fluxes, θ₁₃ experiments

Fine Structure: A Problem For JUNO?

- Another ill-defined aspect of spectrum: fine structure
 - Arises from endpoints of individual beta branches in aggregate spectrum
 - Do fine structure wiggles obscure wiggle frequency from oscillations, and thus mass hierarchy measurements at reactors?

Fine Structure: A Problem For JUNO?

- Nuclear theorists: fine structure features are too small to affect the mass hierarchy measurement.
 - Demonstrated using a Fourier decomposition approach
- Some discussion appears to continue in community?
 - 'Fourier decomposition not used by JUNO...'
 - One specific energy range matters for hierarchy; what's fine structure like there?'

- Some discussion of dedicated fine structure measurements
 - Need a high-resolution detector (better than JUNO)
 - Need a high-statistics measurement (ideally much more than JUNO)
 - DYB and PROSPECT could provide some info on fine structure; optimized, dedicated detector would more precisely nail down fine structure

Isotopic Origins: RENO

- Similar analysis at RENO: does bump change with fuel content?
 - Claim $\sim 2.9\sigma$ indication of increasing bump size with increased ^{235}U burning

Isotopic Origins: RENO

- Similar analysis at RENO: does bump change with fuel content?
 - Claim $\sim 2.9\sigma$ indication of increasing bump size with increased ^{235}U burning
 - Ask a meddling experimentalist competitor:
 - Why does RENO have statistical capabilities to say something meaningful, while DYB doesn't?
 - Similar metrics don't show similar indications (total 4-7 MeV contribution, for example)
 - What about behavior in other energy regions? Is 4-7 MeV region an outlier?

Reactor Neutrino Monitoring Advances

Last few decades have brought major advances in realized tech:

1950s: First Detection; ~1000 counts in I month; 5 background counts per I antineutrino count (S:B 1:5)

1980s: Bugey: ~1000 counts per day, S:B 10:1, but only underground. flammable/corrosive solvent detector liquids

2000s: SONGS: ~230 counts per day, 25:1 S:B, but must be underground. 'semi-safe' detector liquid

NOW: PROSPECT detector: ~750/day from only 80MW reactor, S:B 1:1 on surface, 'safe' plug-n-play detector 51

Spectrum Measurement Applications

Note: An experimental demonstration of reactor monitoring

- Theory-based case-studies of Iranian, North Korean nuclear reactors: arXiv[1403.7065], arXiv[1312.1959]
- Unambiguous monitoring of reactor's ²³⁹Pu content utilizing a reactor's antineutrino spectrum

Flux Measurement Applications

- Can perform ex-situ reactor power monitoring with compact inverse beta decay detectors
- May be helpful for specialized reactors (sodium-cooled, high-pressure gas-cooled), etc.
- We now have tech for doing this on-surface (PROSPECT)

Testing Steriles: NEOS

54

- 2016: Compare spectra between two experiments at different baselines: NEOS (25m) and Daya Bay (~500m)
 - NEOS: compact detector underground in commercial reactor's tendon gallery
 - Everyone knows DYB...
- No strong evidence for steriles
 - Limited by uncorrelated DYB-RENO systematics
 - Limited by larger core size and distance

DANSS

- 2018: Compare spectra between the same detector deployed at two different baselines (10.7m and 12.7m)
 - Commercial 3m-length reactor 5000 events per day! Awesome!
 - Have presented relative spectra between locations

Reactor up here

DANSS, PLB 787 (2018) 0.76 0.72 0.7 0.68 0.66 0.64 Positron energy, MeV

DANSS

- 2018: Compare spectra between the same detector deployed at two different baselines (10.7m and 12.7m)
 - Published results (Phys Left B): no steriles yet
 - Neutrino 2018: showed 3σ allowed region; not sure what to make of this
 - Statements about some systematics still needing to be investigated

DANSS: Systematics

DANSS systematics

- E-scale at high energy seems well-calibrated — great!
- What about low (<4 MeV) E?
- What about relative low-E calibrations between positions?
- Temperature fluctuations between different positions?

Blue: PROSPECT Full Energy Model

Neutrino-4

Feldman-Cousins Approach

- \square Standard (incorrect) method does not handle boundary features such as bounded nature of $sin^2 2\theta$ (0,1) or cases when oscillation frequency approaches energy bin size. Feldman-Cousins method solves those problems
- ☐ Comparing p-values for Feldman-Cousins and standard (incorrect) methods:

P-values	3v-oscillation hypothesis	RAA ster	
Feldman-Cousins	0.58	0.013	[-]
Standard (incorrect) confidence intervals assignment	0.14	0.005	۲m ² , [eV

- ☐ If standard (incorrect) confidence levels used instead of Feldman-Cou
 - We say 3v is less compatible with data than it actually is
- ☐ Illustrates an importance of using Feldman-Cousins

v oscillation

Neutrino-4

Feldman-Cousins Approach

 \Box Standard (incorrect) method does not handle boundary features such as bounded nature of $sin^2 2\theta$

(0,1) or cases when oscillation frequency approaches energy bin size. Feldman-Cousins method solves

Flux Results

 Letourneau and Onillon: "Investigation of the ILL spectra normalization," presented at AAP 2018 in Livermore, CA

Four measurement performed at the ILL in the 80's

- ²³⁵U(1): [1] K. Schreckenbach et al., PLB99 (1981) 251 ⇔ Normalized on: ¹⁹⁷Au(n,e⁻)¹⁹⁸Au
- ²³⁵U(2): [2] K. Schreckenbach et al.", PLB160 (1985) 325
 Normalized on: ²⁰⁷Pb(n,e⁻)²⁰⁸Pb and
 β-decay following ¹¹⁵In(n, γ)^{116m}In
- ²³⁹Pu: [3] F. Feilitzch et al.", PLB118 (1982) 162
 Normalized on: ¹⁹⁷Au(n,e⁻)¹⁹⁸Au and ¹¹⁵In(n,γ)¹¹⁶In
- ²⁴¹Pu: [4] A.A Hahn et al., PLB218 (1989) 365
 Normalized on: ²⁰⁷Pb(n,e⁻)²⁰⁸Pb and ¹¹⁵In(n,e⁻)^{116m}I

Ratio of the two measured electron-energy spectra for ²³⁵U from [1] (36 h) and [2] (12 h).

- Neutron flux calibrated out through <u>relative measurement</u> with respect to well-known neutron cross-sections
 - Looks like some of the 'well-known' cross-sections may have been wrong
 - This adds a 5% shift between 235 and 239 solves DYB flux evolution?

Incorrect Spectrum: Theory Studies

- Do non-thermal neutrons cause the bump?
 - ILL neutrons are thermal; LEU are NOT different fission yields!
 - This difference has only minor impact on antineutrino fluxes and spectra.

Incorrect Spectrum: Theory Studies

- Could incorrect effective nuclear charge cause the bump?
 - 'How bad would effective charge have to be to make it cause a bump?'
 - A: <u>really bad</u>, beyond what could be reasonably expected in nuclear physics...
 - So this is not the cause.

Incorrect Spectrum: Theory Studies

- Could incorrect forbidden shapes cause the bump?
 - A: It seems possible; multiple theory groups seem to agree on this.

IBD-CEvNS Complementarity

- CEvNS is predicted by standard model with high precision
 - Precision <u>absolute</u> measurements of CEvNS = ability to probe BSM physics!
- Ultimate limitation for CEvNS BSM-testing with reactors: the antineutrino flux
 - As we know, we cannot trust reactor flux and spectrum predictions
 - Solution: relative measurements WRT IBD measurements
 - SM likely also predicts CEvNS-IBD ratio with high precision
- So for sake of CEvNS, let's squeeze every last improvement out of absolute IBD yield and spectrum measurements!!

Reactor Spectroscopy: Application

- Why is there more decay heat than predicted 3-3000s after a reactor is turned off???
- Means we need higher cooling safety factors during reactor-off periods: This costs \$\$\$!!!
- Hypothesis: maybe we measured branching fractions of some rare isotopes incorrectly...

Figure 3. Electromagnetic decay heat following thermal fission burst of ²³⁹Pu – data from JENDL, JEF-2.2, JEFF-3.1 and ENDF/B-VI are shown together with experimental data from Yayoi, Lowell and Oak Ridge National Laboratory

ASSESSMENT OF FISSION PRODUCT
DECAY DATA FOR DECAY HEAT CALCULATIONS

Reactor Spectroscopy: Example

- TAGS:
 Total absorption gamma
 spectroscopy
- Measure total gamma energy, not individual gamma energies
- Allows ID of levels, BRs much easier

One small nucleus, one big effect

- If branching ratios are known better, decay released in those decays will be modelled better
- Better model = smaller safety factor = \$\$\$ saved.

Reactor Spectroscopy: Implications

- 5 MeV 'bump' region produced by many isotopes of great concern to this decay heat measurement!
- Two anomalies from the same source?
- Reactor spectroscopy measurements can provide:
 - Direct check on existing TAGS measurements
 - TOTALLY different systematics!
 - NEW data if TAGS has not been done!
 - Isotopes: Rb-92, Sr-97, Cs-142

One small nucleus, one big effect

Beta Decay Recap

- W-mediated weak interaction
- Use Fermi's Golden rule to calculate:

$$N_{eta}(W) = K_{\ p}^2(W-W_0)^2$$
 $F(Z,W)$. From nuclear matrix element: phase space Space QED correction: positive nuclein product beta; low

Other corrections:

- Finite size: C, L₀
- Electron screening: S
- Radiative corrections: C
- Weak magnetism: d_{wm}

u d u