Future (Long Baseline) Neutrino Near Detectors

Jennifer Raaf (FNAL)

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2019)

November 7-9 2019, Medellín, Colombia

Motivation

- In long-baseline neutrino oscillation experiments, near detectors play an essential role in:
 - Characterizing the intensity and energy spectrum of the neutrino beam, prior to modification by oscillations
 - Precisely measuring the flavor composition of the (anti)neutrino beam
 - Reducing systematic uncertainties by measuring event rates, kinematics, and cross sections
- These detectors also enable a rich physics program beyond long baseline oscillations:
 - Measurement of neutrino interaction cross sections and nuclear effects on multiple target nuclei
 - Sensitivity to Beyond Standard Model (BSM) physics, e.g., non-standard interactions, sterile neutrinos, dark photons, heavy neutral leptons, other exotic particles, and dark matter
 - Physics Opportunities in the Near DUNE Detector hall (PONDD) workshop: https://indico.fnal.gov/event/18430/

Future long-baseline neutrino experiment near detectors

- T2K-II (upgrade of near detector)
- Hyper-Kamiokande

DUNE

Future Neutrino Near Detectors

$T2K \rightarrow T2K-II$

- T2K will reach its approved 7.8x10²¹ POT by 2021
- T2K-II is proposed to extend the T2K run to collect >10x10²¹ POT by 2025 (Phase-I approval received)
 - Goal: exclude CP conservation at 3σ for a large range of δ_{CP} values, if neutrino mass ordering is known
 - With higher statistics, physics reach is enhanced by reducing systematic uncertainties from current level (~6%) to 4% or lower → requires upgrades to near detector

Expected sensitivity improvement for maximal CP violation ($\delta_{CP} = -\pi/2$) and normal mass ordering

T2K-II (ND280 Upgrade)

- One of the main limitations of the T2K ND280 data used in oscillation analyses so far is that they mainly cover the forward region, while the far detector (Super-K) has 4π acceptance
 - Introduces model dependencies when extrapolating to the full phase space
 - Neutrino-nucleus cross sections are not well known → need near detector upgrades to reduce associated systematic uncertainties

ND280 Upgrade

Current ND280

Replace P0D

Nov. 8, 2019

- Measure neutrino interactions over full phase space
- Improve
 - Detection of low energy protons and pions (reduce threshold)
 - Electron/gamma separation
 - Measurement of neutrons in antineutrino interactions
- Reduce backgrounds (better track ID using TOF)

ND280 Upgrade **Details**

ND280

Super Fine Grained Scintillator Detector

- ► 200 x 200 x 60 cm³ volume
- ► 1 x 1 x 1 cm³ scintillator cubes with 3 orthogonal fibers for 3D readout
 - ▶ Injection molding, chemical reflector cover
- Total 2M cubes \rightarrow 60k readout channels (WLS/MPPC), ~150ps timing resolution

2 tons active mass

arXiv:1901.03750 [physics.ins-det]

High-Angle TPCs

High-Angle TPCs

- Resistive bulk Micromegas
- Charge-sharing → lower pad density

Drift volume

Module frame

MicroMegas structure

Flange

No spark protection needed

Next Generation: DUNE & Hyper-K A need for even better detectors and techniques

$$\frac{dN_{\nu}^{\text{det}}}{dE_{\text{rec}}} = \int \phi_{\nu}^{\text{det}}(E_{\nu}) \cdot \sigma_{\nu}^{\text{target}}(E_{\nu}) \cdot T_{\nu_{\mu}}^{\text{det}}(E_{\nu}, E_{\text{rec}}) dE_{\nu}$$
Flux Cross section Detector response

- Detectors measure flux times cross section, with smearing, biases, and inefficiencies due to detector effects
 - In reality, we cannot factorize flux, cross section, and detector response - there are no simple cancellations
 - Fluxes at near and far detectors differ
 - Relationship of $E_{reco} \rightarrow E_{true}$ depends on poorly understood neutrino interaction models and on detector response
 - ▶ Reconstructed energies can feed down into oscillation dip, biasing measured oscillation parameters

Requires something better than functionally identical near detectors.

Cross section uncertainties

- Impact the final state particles and kinematics \rightarrow amount of energy visible in the detector
- $CC0\pi$ modeling uncertainties have been significantly reduced in recent years, thanks to a lot of theoretical work
 - ▶ But still large uncertainties in 1π , 2π , DIS, nuclear effects, etc.

T2K/Hyper-K

DUNE

- At typical T2K/Hyper-K neutrino energies, most (~85%) events do not have pions
- By contrast, at DUNE energies, pions are created in a large fraction of events

Need highly capable near detectors and a way to disentangle flux, cross sections, and detector response.

PRISM

(Precision Reaction Independent Spectrum Measurement)

- New technique: PRISM
 - Use near detector data collected at several off-axis angles
 - ▶ Narrow energy bands allow experimental determination of the relationship between true and reconstructed energy (and other observables)
 - ▶ Data-driven predictions of far detector event rates with minimal cross section model dependence
 - Just need a movable near detector!

Next-Generation Near Detector Needs

- Monitor beam direction and stability on-axis
- Measure details of neutrino interactions in as much detail as possible
- Disentangle flux, cross sections, detector effects
- ► Understand E_{reco} → E_{true} relationship

Hyper-K Near **Detector Suite**

Fermilab J.L. Raaf

NNN2019

| Future Neutrino Near Detectors

Nov. 8, 2019

Hyper-K Near Detector Suite

- INGRID (exists in T2K, to be upgraded for Hyper-K)
 - On-axis beam direction measurement and beam monitoring
 - ▶ Monitor event rate to ensure stable beam operation
 - ▶ Measure beam direction with <0.25 mrad accuracy
 - 14 modules: iron + scintillator layers (7 tons target mass per module)

Hyper-K Near Detector Suite

- **INGRID**
- ND280
 - Off-axis magnetized tracker
 - Charge separation (measure wrong-sign component of beam) & study of hadronic recoil system
 - Detector will be well understood from operation in T2K-II, but additional upgrades likely

Hyper-K Near Detector Suite

- **INGRID**
- ND280
- Intermediate Water Cherenkov Detector (IWCD)
 - PRISM concept: spans a range of off-axis angles $(1^{\circ}\rightarrow 4^{\circ})$ from beam direction)

IWCD

arXiv:1412.3086 [physics.ins-det]

750 m

PRISM at Hyper-K ND

- Neutrally buoyant detector can be moved to different off-axis positions by changing water level in shaft
- ► 1-kton scale WC detector (dimensions) located 750m from target
 - Multi-PMT photosensors with excellent spatial (80 mm) and timing (1.6 ns FWHM) resolution
 - Same target nucleus (water) as far detector
- Possibility to load water with Gd for neutron multiplicity measurements

DUNE

Fermilab J.L. Raaf | NNN2019 | Future Neutrino Near Detectors Nov. 8, 2019

DUNE Near Detector Suite

Three main detector components, working together:

- Liquid argon detector (ArgonCube)
- Magnetized downstream tracker with gaseous argon target (MPD)
- On-axis flux monitor with neutron detection capability (3DST-S+KLOE)

LAr and GAr systems can move to off-axis fluxes (PRISM)

LArTPC: ArgonCube

- Modular liquid argon TPC detector
 - ➤ 35 modules, each (1m x 1m x 3.5m) w/50cm drift (50kV max HV at cathodes)
 - Pixel readout to accommodate high event rate (>5 interactions/module/spill)
 - ▶ 12 million pads (2 billion voxels)
 - ► Readout via custom-designed low-power ASIC (LArPix)
 - Active volume
 - ▶ 5m in beam direction x 3m tall (hadronic shower containment) 7m transverse (eliminates need for side muon catcher)
 - Active mass ~150 tons (50 ton fiducial, 3m x 2m x 6m)

LArPix-v2 64 channels, 25 mm²

Multi-Purpose Detector (MPD)

- Magnetized high-pressure (10 atm) gaseous argon TPC + surrounding EM calorimeter + muon tagger
 - Gaseous TPC: fully active low-density tracker
 - **ECAL:** event $t_0 + \pi^0$ reconstruction + neutron detection
 - Muon tagger: μ/π separation
 - Open-geometry superconducting magnet (design in progress) with 0.5 T central field
- Provides muon spectrometry for muons leaving LAr
 - LAr event containment
- Provides an independent, statistically significant event sample on Ar gas, with
 - Sign selection and flavor tagging
 - Full 4π coverage
 - Very low tracking thresholds
 - Essentially no secondary interactions

High-Pressure Gas TPC (HPgTPC)

- DUNE gaseous TPC is planned to be a copy of the ALICE TPC
 - ► MWPC readout chambers now available (ALICE upgrade summer 2019)
 - Well-established technology, vetted detector design
- Expect to achieve ~2% dE/dx resolution

な Fermilab J.L. Raaf | NNN2019 | Future Neutrino Near Detectors Nov. 8, 2019

3D Scintillator Tracker Spectrometer + KLOE (3DST-S+KLOE)

6th DUNE Near Detector Workshop, Sept. 2019 https://indico.fnal.gov/event/21340/

- On-axis beam monitoring & high-stats cross section measurements on CH
- Active target (8t) consisting of 3-dimensional plastic scintillator tracker
 - ► 1x1x1 cm³ cubes
- Surrounded by tracking detectors and ECAL in a magnetic field
 - Tracking: atmospheric pressure gaseous TPCs or straw tubes
 - KLOE EM calorimeter (scintillator fiber + Pb)
 - KLOE magnet system
 - ▶ 0.6T central field (superconducting magnet)
 - ► Iron return yoke

DUNE Near Detector Suite

Multi-pronged approach with complementarity among subdetectors

- Measure neutrino interactions on argon, with extended capability to carbon
 - ► LAr detector collects neutrino interactions as seen in the Far Detector (although with different acceptance)
 - MPD (GAr) collects neutrino interactions with sign-selection, very low thresholds, minimal secondary interactions (with full 4π acceptance, as in Far Detector), some neutron detection ability via ECAL
 - ▶ 3DST-S+KLOE collects neutrino interactions on CH, with neutron detection capability
- Measure neutrino energy spectra for different neutrino fluxes via PRISM
- Monitor on-axis beam stability

Summary

- Near detectors play a critical role in long-baseline oscillation experiments
- Next generation experiments will require unprecedented control of systematic uncertainties
 - Neutrino-nucleus interaction modeling
 - \blacktriangleright Acceptance, fluxes, and $E_{reco} \rightarrow E_{true}$ relationship for near-to-far extrapolations
- Extremely capable detectors and novel ideas for disentangling flux & detector effects at near sites will enable the level of precision needed to measure δ_{CP}

Thank you

