

Accelerator
Neutrino
Neutron
Interaction
Experiment

Frank Krennrich, on behalf of the ANNIE Collaboration

Iowa State University

Physics Goals

- I) Measure the abundance of final state neutrons of neutrino interactions in water.
- Demonstrate improved event reconstruction with picosecond scale — high spatial resolution photodetectors (LAPPDs).

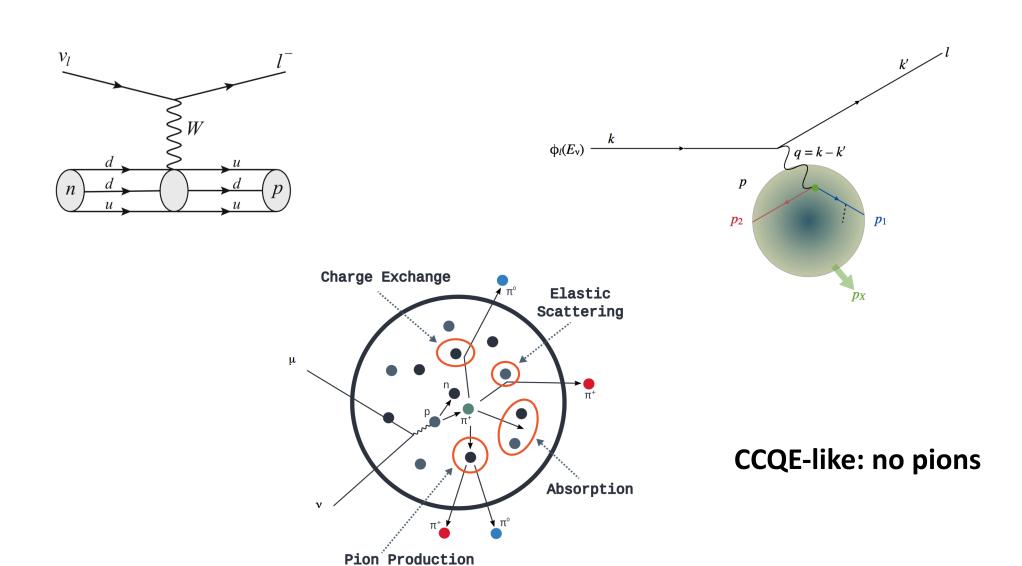
- Fermi National Accelerator Laboratory
- Iowa State University
- Lawrence Livermore National Lab.
- Ohio State University
- University of California at Davis
- University of California at Irvine
- University of Chicago, Enrico Fermi Institute

- · University of Edinburgh
- Johannes Gutenberg University Mainz
- University of Hamburg
- University of Sheffield
- University of Warwick
- Queen Mary University of London

What is ANNIE?

- Study final state neutron abundance of neutrino interactions as a function of energy and momentum transfer.
- Uses a neutrino beam at Fermilab (BNB).

First use of Gd-doped water on a neutrino beam.


First use of LAPPDs in a physics experiment.

Physics Motivations: Nuclear Physics Effects

5

... additional processes ...

neutron(s):

neutron capture in Gd-doped water produces delayed signal (30 us)

proton multiplicity:

liquid-argon technique

- i) Initial state nucleon-nucleon correlations: excitation of particles.
- ii) Final state correlations: scattering between a struck nucleon and spectator particles.
- iii) Two-nucleon meson currents: meson exchange between two interacting nucleons.

Physics Motivations: Nuclear Physics Effects

- Measure the abundance of final state neutrons from neutrino interactions in water at 0.5 - 3 GeV.
- A key physics measurement, e.g., to model the nature of "CCQE-like" neutrino/nucleus interactions.
- Cross section in the QE-regime is substantially affected by multinucleon ejection (np-nh) and of great interest for models, and relevant for precision oscillation experiments.
- ANNIE will measure neutron yields as a function of energy and direction of the final state muons.
- ANNIE will provide a sample of dominantly-pure neutrino events.

Physics Motivations: Supernova Neutrino Background

- Accumulation of neutrinos from all past supernovae provide important cosmological constraints to supernova rate, star formation rate & cosmic infrared background (cosmological consistency test!)
- Neutron tagging of neutrino signal:

$$\overline{V}_e + p \rightarrow e^+ + n$$

- dominant background (E > 20 MeV): from the decay of low energy (sub-Cherenkov) muons in water produced by atmospheric neutrinos.
- Neutron production in atmospheric neutrino interactions is important to estimate remaining background.

... very relevant for Super-K-Gd ... approved and going forward

Basic Design Considerations

Chronology of an Event

10 ns

CC interaction — prompt muon

muon momentum/vertex reconstruction using LAPPD

muon momentum/direction reconstruction with MRD

3 us

neutron(s) thermalize(s)

20 - 80 us

neutron(s) capture(s) on Gadolinium & light detection by PMTs

Why we need LAPPDs?

- Appropriate size of fiducial volume (set by analysis and enabled by LAPPDs) to stop neutrons within the water tank.
- PMT coverage to ensure the detection of sufficient light from neutron captures (simple case with 100 PMTs, 20% Q.E.)

stopping distance of neutrons

ANNIE: Phased Approach

Phase I: Fall 2015 - 2017 (completed)

- a) **Construction** of the water tank, mechanical support structure, 60 PMTs, HV-system, trigger & readout electronics, DACQ.
- b) Measurement of the neutron background
- c) Readiness for testing LAPPDs.

Neutron
Capture
Volume:
Gd-loaded
liquid scintillator

pure water

Phase II: 2017 - 2021

- a) Physics Run (1 year) with limited LAPPD coverage, enhanced PMT coverage (130), focus on CCQE-like events.
- b) Physics Run (2 years) with full LAPPD coverage (up to 20 LAPPDs), study neutron yields for CC, NC and inelastic scattering.

F. Krennrich

Booster Neutrino Beam (BNB)

- Energy range: spectrum similar to the atmospheric neutrino spectrum, and range comparable to future oscillation experiments.
- 93% purity in neutrino mode.
- Statistics: # of interactions expected in
 1 ton of water over 6 months.

ν -type	Total Interactions	Charged Current	Neutral Current
$ u_{\mu} $	9892	6991	2900
$ar{ u}_{\mu}$	130	83	47
$ u_e $	71	51	20
$ar{ u}_e$	3.0	2.0	1.0

 Low pileup rate. 1 neutrino interaction every 150 spills.

Location	ν_{μ} events/POT/ton	ν_{μ} events/spill	Avg. pileup/spill
SciBooNE	$2.80*10^{-16}$	0.03	5.0×10^{-5}
NOvA ND	$6.04*10^{-16}$	0.65	0.0045
MINOS ND	$1.85 * 10^{-14}$	20	3.76

Phase-I: Development of Key Components

- PMT readout: 500 MHz custom VME-ADC boards: 80 microsecond buffer (neutron capture).
- Other systems: DACQ, Clock/Trigger distribution, HV for water/MRD PMTs, FMV, ...

Beam-Induced Neutron Event Rate

- beam trigger + NCV-PMTs trigger
- Gd-loaded liquid scintillator (NCV) volume and water tank PMTs allow separation of neutron captures and cosmic-ray muons.
- Results: beam-correlated neutron background rates are sufficiently low to count final state neutrons from neutrino interactions.

16

Beam Correlated Background Neutrons

NCV				$\mathcal{R}_n^{ ext{NCV}}$
position	N_n^{ROI}	N_n^{CIT}	N_n	$(\% \text{ m}^{-3} \text{ spill}^{-1})$
0	339	$333 \pm 45_{\text{stat}} \pm 69_{\text{syst}}$	$5 \pm 48_{stat}$	$0.013 \pm 0.11_{\text{ stat}} \pm 0.16_{\text{ syst}}$
H1	60	$41 \pm 11_{\text{stat}} \pm 21_{\text{syst}}$	19 ± 13 _{stat}	$0.35 \pm 0.24_{\rm stat} \pm 0.40_{\rm syst}$
H2	743	$609 \pm 56_{\rm stat} \pm 192_{\rm syst}$	$133 \pm 62_{\rm stat}$	$0.41 \pm 0.19_{stat} \pm 0.60_{syst}$
V1	254	$206 \pm 30_{\rm stat} \pm 22_{\rm syst}$	$47 \pm 34_{stat}$	$0.29 \pm 0.20_{\rm stat} \pm 0.15_{\rm syst}$
V2	866	$540 \pm 51_{stat} \pm 229_{syst}$	$325 \pm 59_{\rm stat}$	$1.2 \pm 0.23_{\rm stat} \pm 0.9_{\rm syst}$
V3	368	$140 \pm 22_{\rm stat} \pm 124_{\rm syst}$	$227 \pm 29_{stat}$	$2.6 \pm 0.35_{\text{ stat}} \pm 1.5_{\text{ syst}}$
V4	3825	$1207 \pm 90_{\rm stat}$	$2613 \pm 109_{stat}$	$13.6 \pm 0.9_{\text{ stat}} \pm 3.1_{\text{ syst}}$

Neutron rate for 14-ton active volume for ANNIE Phase-II detector:

$$R_n = 0.053^{+0.053}_{-0.025}$$
 stat+syst

per ANNIE signal event

ANNIE Phase-II Construction

LAPPDs 11" PMTs

8", 10" PMTs

Mechanical design

Inner structure

Gd-loaded water filtration

ANNIE Phase-II Construction

Is it Gd compatible?

Muon Range Detector Refurbishment

Partial (2/3 intact) MRD system

Refurbishment of scintillator panels

2" PMTs

ANNIE Phase-II Deployment

ANNIE Phase-II Commissioning

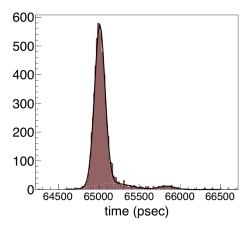
filled with de-ionized water

staged Gd-loading

panel (removable)

- MRD refurbishment complete
- beam & cosmic ray muons detected at expected rates.

LAPPD (Large Area Picosecond Photo Detector)


- LAPPD: 20 cm x 20 cm flat panel photocathode.
- 2 MCPs (ALD): <100 ps time resolution, multi-anode readout gives mm scale spatial resolution.</p>
- ANNIE: minimal pileup and single photon resolution are the basis for vertex reconstruction, single-/multi-particle separation, ...
- Incom Inc. has set up commercial production facility ANNIE purchased first LAPPD in 2018!
- 5 LAPPDs in hand meeting the requirements.

LAPPD Test Facilities (ISU, Fermilab)

- Test & calibration using a picosecond Laser
- single p.e. time resolution50 ps

Transit time spread

LAPPDs made by Incom Inc. & Fast Readout

- Fast readout (track reconstruction):
- PSEC4 chip samples at 10 GHz for 30 ns.
- Central Card provides synchronization, triggering and readout for 240-channels.

Photodetector Coverage

Muon track reconstruction:

- 128 8-inch PMTs
- 5 LAPPDs + 128 8-inch PMTs

Basic strategy:

- Timing-based likelihood function to fit vertex.
- Six parameters (X, Y, Z, T, Theta, Phi) are varied to calculate a combined likelihood to fit the track.

Vertex Resolution (longitudinal)

The addition of 5 LAPPDs greatly improves (x 3) the vertex and track reconstruction

128 conventional PMTs: 38 cm resolution

5 LAPPDs + 128 PMTs: 12 cm resolution

Energy Reconstruction

Muon energy reconstruction:

- based on track length in water/MRD, angle between muon & beam direction, number of hits (p.e.) in PMTs and LAPPDs vertex coordinates — distances.
- critical to measure momentum transfer.
- energy resolution for muons is ~ 10%.

arXiv:1803.10624

Momentum Transfer

Momentum transfer reconstruction:

 based on Stopped muon events for which the muon energy is measurable as the sum of energy deposited in the water tank and the MRD.

Momentum Transfer

ANNIE Timeline

Phase I: completed

Phase II construction

Phase II operations

opportunity
Phase II Upgrade
Phase III

ANNIE R&D Platform: Phase II Upgrade

Conclusions

- ANNIE will measure neutron production as a function of Q² in an energy regime of long baseline experiments this will also provide a better understanding of neutron tagging techniques for reducing background from atmospheric neutrinos (proton decay, supernova neutrinos).
- ANNIE Phase I was successfully built and operated. Backgrounds are shown to be sufficiently low for Phase II.
- ANNIE Phase II construction is complete and commissioning has started.

Data taking will start very soon.

* new tank design

Backup Slides

Physics Motivations: Proton Decay

- Proton decays, e.g., $p \rightarrow e^+ + \pi^0$
- > 90% of proton decays in water are not expected to yield neutrons.
- Background: atmospheric neutrinos, have many ways to produce secondary neutrons, however, predictions are not data driven.
- ANNIE measurements of neutron abundance in QE regime will provide important input for simulations of atmospheric neutrinos.
- BNB/atmospheric neutrino spectrum similar.
- Better understanding of background rejection from neutron tagging (Gddoped water) is critical for future proton decay experiments.

Constant in time background

NCV position	CIT event rate (Hz)
V4	11.4 ± 0.8
O	1.5 ± 0.4
О	1.2 ± 0.2
H1	0.8 ± 0.3
H2	2.6 ± 0.2
V1	1.8 ± 0.3
V2	3.1 ± 0.3
V3	4.5 ± 0.7
	position V4 O O H1 H2 V1 V2

- CIT in Mode A: 9 us before beam trigger.
- CIT in Mode B: 70-80 us window after the beam trigger.

—> 10⁻⁴ per trigger window (80 -100 us)

x V4 x V3 x V2 x V1

x H2x H1 X O

Neutron Time Distribution (O) — Cuts

neutrons captures seen in NCV:

- scintillation light 10 70 us after beam
- no evidence for a prompt neutrino interaction in tank
- compact size of NCV provides some localization of neutrons

^{*} only applied for 20 - 70 us, but not in the 10 - 20 us regime, where fast neutrons can scatter — same signature as after-pulsing

Calibration of NCV efficiency

- A californium-252 fission neutron sources was used to calibrate the NCV
- LYSO crystal was used to **trigger** the ANNIE DAQ **on fission gamma rays**
- Neutron captures detected by NCV in position V4
- Simulations (FREYA, RAT-PAC detector simulation) —> NCV efficiency: (9.6 +- 0.57_{stat})%

Phase-I Water Purification, Neutron Capture Volume

- Ultra pure water (0.5 ppm).
- Resistivity > 10 MOhm/m.
- 7,000 Gallons are continuously flushed with nitrogen and filtered through a deionizing purification system.

- Neutron capture volume (NCV) is an acrylic vessel.
- NCV can be moved vertically and along the beam axis.
- Filled with 100 liters of Gd-doped liquid scintillator
- EJ-335 contains pseudocumene and 0.25% Gd (weight)
- Peak wavelength 424 nm

Angular resolution (transverse)

